[1]卢守相, 郭塞, 张建秋, 等. 高性能难加工材料可磨削性研究进展[J]. 表面技术, 2022, 51(03): 12-42.
[2]FLOM D, KOMANDURI R, LEE M. High-speed machining of metals[J]. Annual Review of Materials Science, 1984, 14(1): 231-278.
[3]郭塞, 江庆红, 刘昊, 等. 难加工材料超高速磨削亚表面损伤研究[J]. 航空制造技术, 2023, 66(14): 59-71.
[4] LI Z, DING W, SHEN L, et al. Comparative investigation on high-speed grinding of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1414-1424.
[5]LI Z, DING W, LIU C, SU H. Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 3917-3928.
[6]吴魁, 吴志璇. 超高速空气静压电主轴的关键技术[J]. 中国高新技术企业, 2016(18): 148-149.
[7]王超. 超精密气体静压轴承自激振动形成机理研究[D]. 电子科技大学, 2022.
[8]LIU X, YANG X, LIU W, et al. A review of hydrostatic bearing: research and analysis[J]. Recent Patents on Engineering, 2022, 16(3)
[9]REYNOLDS O. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil[J]. Phil Trans Roy Soc, 1885, 1: 157.
[10]ROWE W B. Advances in hydrostatic and hybrid bearing technology[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 1989, 203(4): 225-242.
[11]LU X D, PAONE M P, USMAN I, et al. Rotary-axial spindles for ultra-precision machining[J]. CIRP Annals, 2009, 58(1): 323-326.
[12]LIN S, JIANG S. Rotordynamics of an improved face-grinding spindle: rotational stiffness of thrust bearing increases radial stiffness of spindle[J]. Journal of Manufacturing Science and Engineering, 2022, 144(8)
[13]HUANG H-C, YANG S-H. Thrust-bearing layout design of a large-sized hydrostatic rotary table to withstand eccentric loads for horizontal boring machine applications[J]. Lubricants, 2022, 10(4)
[14]王建磊, 王云龙, 门川皓, 等. 精密磨床转台静压轴承的强健化设计[J]. 中国机械工程, 2020, 31(10): 1155-1161+1168.
[15]LIN S-C, LO Y-H, LIN Y-H, et al. Design and performance analysis of dual membrane restrictor for hydrostatic bearing[J]. Lubricants, 2022, 10(8)
[16]ROWE W B. Conical hydrostatic journal bearings for high speeds[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 235(4): 808-819.
[17]佐晓波. 超精密机床自补偿液体静压轴承设计与特性研究[D]. 国防科学技术大学, 2013.
[18]彭昆. 双锥液体静压主轴的设计与性能测试[D]. 广东工业大学, 2022.
[19]ROWE W, KOSHAL D, STOUT K. Slot-entry bearings for hybrid hydrodynamic and hydrostatic operation[J]. Journal of Mechanical Engineering Science, 1976, 18(2): 73-78.
[20]ROWE W, KOSHAL D, STOUT K. Investigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation[J]. Wear, 1977, 43(1): 55-69.
[21]庞志成. 环隙节流静压轴承静动态特性的理论与试验研究及应用[J]. 机床与液压, 1989(05): 35-39.
[22]HALE L C, DONALDSON R R, CASTRO C, et al. Development of a hydrostatic journal bearing with slit-step compensation[R]: Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2006.
[23]REHMAN W U, WANG X, CHENG Y, et al. Model-based design approach to improve performance characteristics of hydrostatic bearing using multivariable optimization[J]. Mathematics, 2021, 9(4)
[24]KODNYANKO V, KURZAKOV A, GRIGORIEVA O, et al. Theoretical disquisition on the static and dynamic characteristics of an adaptive stepped hydrostatic thrust bearing with a displacement compensator[J]. Mathematics, 2021, 9(22)
[25]TRIPKEWITZ F A, FRITZ M, WEIGOLD M. A circular hydrostatic shallow recess thrust bearing integrating a micro-range tilting axis[J]. Tribology International, 2024, 193
[26]MICHALEC M, ONDRA M, SVOBODA M, et al. A novel geometry optimization approach for multi-recess hydrostatic bearing pad operating in static and low-speed conditions using CFD simulation[J]. Tribology Letters, 2023, 71(2)
[27]WASSON K L. Hydrostatic machine tool spindles[D]. Massachusetts Institute of Technology, 1996.
[28]YOSHIMOTO S, OSHIMA S, DANBARA S, SHITARA T. Stability of water-lubricated, hydrostatic, conical bearings with spiral grooves for high-speed spindles[J]. Journal of Tribology-Transactions of the Asme, 2002, 124(2): 398-405.
[29]易宗煜, 丁国龙, 王维, 彭玲. 基于流固耦合的插齿机静压主轴结构优化设计[J]. 机床与液压, 2023, 51(13): 87-94.
[30]SHANG Y, CHENG K, DING H, CHEN S. Design and optimization of the surface texture at the hydrostatic bearing and the spindle for high precision machining[J]. Machines, 2022, 10(9)
[31]SHANG Y, CHENG K, BAI Q, CHEN S. Drag reduction analysis of the hydrostatic bearing with surface micro textures[J]. Applied Sciences, 2022, 12(21)
[32]CHEN D, ZHAO Y, ZHA C, et al. Performance evaluation of different types of micro-textured hydrostatic spindles under the main influencing factors[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(10): 2169-2183.
[33]GUO M, RONG Y, HUANG Y, et al. Ultrafast laser-chemical modification hybrid fabrication of hydrostatic bearings with a superhydrophobicity solid-liquid interface[J]. Science China Technological Sciences, 2024, 67(3): 696-708.
[34]STANSFIELD F M. The design of hydrostatic journal bearings[M]//TOBIAS S A, KOENIGSBERGER F. Advances in Machine Tool Design and Research 1967. Pergamon. 1968: 419-445.
[35]MONTUSIEWICZ J, OSYCZKA A. Computer aided optimum design of machine tool spindle systems with hydrostatic bearings[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 1997, 211(1): 43-51.
[36]DU J, LIANG G. Dynamic coefficients and stability analysis of a water-lubricated hydrostatic bearing by solving the uncoupled Reynolds equation[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2110-2122.
[37]CHEN W, SUN Y, LIANG Y, et al. Hydrostatic spindle dynamic design system and its verification[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 228(1): 149-155.
[38]周浩兵. 液体静压主轴系统承载特性分析及优化设计[D]. 河南科技大学, 2014.
[39]LIANG Y, CHEN W, SUN Y, et al. An expert system for hydro/aero-static spindle design used in ultra precision machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 107-113.
[40]OPITZ H, BöTTCHER R, EFFENBERGER W. Investigation on the dynamic behaviour of hydrostatic spindle-bearing systems[M]//TOBIAS S A, KOENIGSBERGER F. Advances in Machine Tool Design and Research 1969. Pergamon. 1970: 453-467.
[41]GAO S, SHANG Y, GAO Q, et al. CFD-based investigation on effects of orifice length–diameter ratio for the design of hydrostatic thrust bearings[J]. Applied Sciences, 2021, 11(3)
[42]FEDORYNENKO D, KIRIGAYA R, NAKAO Y. Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultra-precision machine tools[J]. Precision Engineering, 2020, 63: 187-196.
[43]CHEN C H, CHU C H, KANG Y, et al. The restrictive effects of orifice compensation on the stability of the Jeffcott rotor‐hybrid bearing system[J]. Industrial Lubrication and Tribology, 2002, 54(6): 255-261.
[44]CHEN C-H, KANG Y, HUANG C-C. The influences of orifice restriction and journal eccentricity on the stability of the rigid rotor-hybrid bearing system[J]. Tribology International, 2004, 37(3): 227-234.
[45]CHARLES S, BONNEAU O, FRE, NE J. Determination of the discharge coefficient of a thin-walled orifice used in hydrostatic bearings[J]. J Trib, 2005, 127(3): 679-684.
[46]KUMAR V, SHARMA S C, JAIN S. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients[J]. Tribology International, 2006, 39(4): 356-368.
[47]徐红哲. 小孔节流静压主轴系统的设计分析与仿真[D]. 河南科技大学, 2012.
[48]TRIPKEWITZ F A, LAZáK T, FRITZ M, et al. Experimental and theoretical study on the dynamic stiffness of circular oil hydrostatic shallow recess thrust bearings[J]. Tribology International, 2023, 183
[49]YU X, TANG B, WANG S, et al. High-speed and heavy-load tribological properties of hydrostatic thrust bearing with double rectangular recess[J]. International Journal of Hydrogen Energy, 2022, 47(49): 21273-21286.
[50]AGRAWAL N, SHARMA S C. Effect of the ER lubricant behaviour on the performance of spherical recessed hydrostatic thrust bearing[J]. Tribology International, 2021, 153
[51]苏浩. 液体静压主轴的流体—结构耦合分析及动态性能研究[D]. 哈尔滨工业大学, 2012.
[52]孙久伟, 张飞虎, 付鹏强, 等. 立式液体静压主轴的设计及温度场分析[J]. 润滑与密封, 2013, 38(02): 5-8+13.
[53]赵春明, 马平, 龚乘龙, 牛兴. 基于单向流-固耦合的高精密液体静压主轴应力场和温度场研究[J]. 润滑与密封, 2014, 39(05): 62-68.
[54]SHANG Y, CHENG K, DING H, CHEN S. Design of a hydrostatic spindle and its simulation analysis with the application to a high precision internal grinding machine[J]. Machines, 2022, 10(2)
[55]尹承真. 液体静压主轴热态特性研究与优化[D]. 中国工程物理研究院, 2020.
[56]PHAM V-H, NGUYEN M-T, BUI T-A. Oil pressure and viscosity influence on stiffness of the hydrostatic spindle bearing of a medium-sized circular grinding machine[J]. International Journal of Modern Physics B, 2020, 34(22n24)
[57]CHEN D, FAN J, ZHANG F. Dynamic and static characteristics of a hydrostatic spindle for machine tools[J]. Journal of Manufacturing Systems, 2012, 31(1): 26-33.
[58]YU X, WANG F, ZHOU D, et al. Deformation characteristics of adaptive hydrostatic thrust bearing under extreme working conditions[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(9)
[59]BOUYER J, WODTKE M, FILLON M. Experimental research on a hydrodynamic thrust bearing with hydrostatic lift pockets: Influence of lubrication modes on bearing performance[J]. Tribology International, 2022, 165
[60]YI H, JUNG H, KIM K, RYU K. Static load characteristics of hydrostatic journal bearings: measurements and predictions[J]. Sensors, 2022, 22(19)
[61]ZHANG Y, PAN W, ZHAN S, et al. Investigating the dynamic characteristics of the hydrostatic bearing spindle system with active piezoelectric restrictors[J]. Journal of Tribology, 2022, 144(7)
[62]ZHANG Y, PAN W, CHEN S, et al. Research on trajectory control of rotor systems supported by a combination of rolling and hydrostatic bearings[J]. Precision Engineering, 2024, 88: 475-486.
[63]CHEN D, BONIS M, ZHANG F, DONG S. Thermal error of a hydrostatic spindle[J]. Precision Engineering, 2011, 35(3): 512-520.
[64]熊万里, 侯志泉, 吕浪. 液体静压主轴回转误差的形成机理研究[J]. 机械工程学报, 2014, 50(07): 112-119.
[65]原帅. 可控节流液体静压主轴回转精度精确仿真及其规律研究[D]. 湖南大学, 2021.
[66]ZHANG P, CHEN Y. Analysis of error motions of axial locking-prevention hydrostatic spindle[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 233(1): 3-17.
[67]FEDORYNENKO D, SAPON S, BOYKO S. Accuracy of spindle units with hydrostatic bearings[J]. Acta Mechanica et Automatica, 2016, 10(2): 117-124.
[68]陈东菊, 李源, 查春青, 等. 动态参数影响下液体静压主轴运动精度分析及优化[J]. 西安交通大学学报, 2020, 54(06): 90-98.
[69]MA P, ZHAO C, LU X, et al. Rotation error measurement technology and experimentation research of high-precision hydrostatic spindle[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9-12): 1313-1320.
[70]浮燕, 李想, 王辉. 液体静压主轴回转精度测试方法的研究[J]. 机床与液压, 2016, 44(03): 158-162.
[71]ROWE W B. Dynamic and static properties of recessed hydrostatic journal bearings by small displacement analysis[J]. Journal of Lubrication Technology, 1980, 102(1): 71-79.
[72]SHAO J-P, LIU G-D, YU X. Simulation and experiment on pressure field characteristics of hydrostatic hydrodynamic hybrid thrust bearings[J]. Industrial Lubrication and Tribology, 2019, 71(1): 102-108.
[73]YU X, GAO W, FENG Y, et al. Research progress of hydrostatic bearing and hydrostatic-hydrodynamic hybrid bearing in high-end computer numerical control machine equipment[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24(6): 1053-1081.
[74]丁振乾. 静压轴承设计计算[J]. 磨床与磨削, 1978(04): 1-85.
[75]丁振乾, 蒋福岩. 动静压轴承油腔结构对性能的影响[J]. 磨床与磨削, 1984(04): 14-21.
[76]NAKAO Y, KIRIGAYA R, FEDORYNENKO D, et al. Thermal characteristics of spindle supported with water-lubricated hydrostatic bearings[J]. International Journal of Automation Technology, 2019, 13(5): 602-609.
[77]CHEN R, WANG X, DU C, et al. Stiffness model and experimental study of hydrostatic spindle system considering rotor swing[J]. Shock and Vibration, 2020, 2020: 1-8.
修改评论