[
[1] SCHOUW H M, HUISMAN L A, JANSSEN Y F, et al. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021: 1-21.
[2] 蔡朝冲. 近红外Ⅱ区荧光高分辨活体成像研究[D]. 浙江大学, 2020.
[3] MINSKY M. Microscopy apparatus US patent 3013467[J]. USP Office, Ed. US, 1961, 658.
[4] ELLIOTT A D. Confocal microscopy: principles and modern practices[J]. Current Protocols in Cytometry, 2020, 92(1): e68.
[5] XI P, RAJWA B, JONES J T, et al. The design and construction of a cost-efficient confocal laser scanning microscope[J]. American Journal of Physics, 2007, 75(3): 203-207.
[6] ZHANG Y, HU B, DAI Y, et al. A new multichannel spectral imaging laser scanning confocal microscope[J]. Computational and Mathematical Methods in Medicine, 2013, 2013.
[7] WILSON T. Resolution and optical sectioning in the confocal microscope[J]. Journal of Microscopy, 2011, 244(2): 113-121.
[8] LI J, FENG Z, YU X, et al. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background[J]. Coordination Chemistry Reviews, 2022, 472: 214792.
[9] SMITH A M, MANCINI M C, NIE S. Second window for in vivo imaging[J]. Nature Uanotechnology, 2009, 4(11): 710-711.
[10] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[11] FENG Z, TANG T, WU T, et al. Perfecting and extending the near-infrared imaging window[J]. Light: Science & Applications, 2021, 10(1): 197.
[12] DIAO S, HONG G, ANTARIS A L, et al. Biological imaging without autofluorescence in the second near-infrared region[J]. Nano Research, 2015, 8: 3027-3034.
[13] WANG T, CHEN Y, WANG B, et al. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging[J]. Frontiers in Physiology, 2023, 14: 1126805.
[14] MENG X, PANG X, ZHANG K, et al. Recent Advances in Near‐Infrared‐II Fluorescence Imaging for Deep‐Tissue Molecular Analysis and Cancer Diagnosis[J]. Small, 2022, 18(31): 2202035.
[15] POTMA E O, KNEZ D, ETTENBERG M, et al. High-speed 2D and 3D mid-IR imaging with an InGaAs camera[J]. APL Photonics, 2021, 6(9).
[16] LIU Z, ZHU Y, ZHANG L, et al. Structural and functional imaging of brains[J]. Science China Chemistry, 2023, 66(2): 324-366.
[17] BAGHDASARYAN A, WANG F, REN F, et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models[J]. Nature Communications, 2022, 13(1): 5613.
[18] XU Y, LI C, MA X, et al. Long wavelength–emissive Ru (II) metallacycle–based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(32): e2209904119.
[19] NIU X, WEI P, SUN J, et al. Biomineralized hybrid nanodots for tumor therapy via NIR-II fluorescence and photothermal imaging[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1052014.
[20] WELSHER K, LIU Z, SHERLOCK S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 2009, 4(11): 773-780.
[21] BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 2017, 1(4): 0056.
[22] SUO Y, WU F, XU P, et al. NIR‐II fluorescence endoscopy for targeted imaging of colorectal cancer[J]. Advanced Healthcare Materials, 2019, 8(23): 1900974.
[23] ZHENG Z, JIA Z, QU C, et al. Biodegradable silica‐based nanotheranostics for precise MRI/NIR‐II fluorescence imaging and self‐reinforcing antitumor therapy[J]. Small, 2021, 17(10): 2006508.
[24] LI J, JIANG R, WANG Q, et al. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy[J]. Biomaterials, 2019, 217: 119304.
[25] ZHOU W, YIN L, ZHANG X, et al. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1002006.
[26] HAN B, HU X, ZHANG X, et al. The fluorescence mechanism of carbon dots based on the separation and identification of small molecular fluorophores[J]. RSC Advances, 2022, 12(19): 11640-11648.
[27] KASPRZYK W, ŚWIERGOSZ T, ROMAŃCZYK P P, et al. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives[J]. Nanoscale, 2022, 14(39): 14368-14384.
[28] RODRÍGUEZ-LUNA M R, OKAMOTO N, AL-TAHER M, et al. In vivo imaging evaluation of fluorescence intensity at tail emission of near-infrared-I (NIR-I) fluorophores in a porcine model[J]. Life, 2022, 12(8): 1123.
[29] HE L, HE L H, XU S, et al. Engineering of reversible NIR‐II redox‐responsive fluorescent probes for imaging of inflammation in vivo[J]. Angewandte Chemie International Edition, 2022, 134(46): e202211409.
[30] QIN Z, REN T B, ZHOU H, et al. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing[J]. Angewandte Chemie International Edition, 2022, 61(19): e202201541.
[31] REN T B, WANG Z Y, XIANG Z, et al. A General Strategy for Development of Activatable NIR‐II Fluorescent Probes for In Vivo High‐Contrast Bioimaging[J]. Angewandte Chemie International Edition, 2021, 133(2): 813-818.
[32] GREINER J, SANKARANKUTTY A C, SEIDEL T, et al. Confocal microscopy-based estimation of intracellular conductivities in myocardium for modeling of the normal and infarcted heart[J]. Computers in Biology and Medicine, 2022, 146: 105579.
[33] OJHA S, PRIBYL J, KLIMOVIC S, et al. Measurement of liver stiffness using atomic force microscopy coupled with polarization microscopy[J]. JoVE (Journal of Visualized Experiments), 2022 (185): e63974.
[34] MIRSANAYE K, URIBE CASTAÑO L, KAMALIDDIN Y, et al. Unsupervised determination of lung tumor margin with widefield polarimetric second-harmonic generation microscopy[J]. Scientific Reports, 2022, 12(1): 20713.
[35] SONODA K, HARADA M, AOMURA D, et al. Relationship between glomerular number in fresh kidney biopsy samples and light microscopy samples[J]. Clinical and Experimental Nephrology, 2022, 26(5): 424-434.
[36] HANAFY B G, ABUMANDOUR M M A, KANDYLE R, et al. Ultrastructural characterization of the intestine of the Eurasian common moorhen using scanning electron microscopy and light microscopy[J]. Microscopy Research and Technique, 2022, 85(1): 106-116.
[37] TEO A W J, MANSOOR H, SIM N, et al. In vivo confocal microscopy evaluation in patients with keratoconus[J]. Journal of Clinical Medicine, 2022, 11(2): 393.
[38] HE M, WU D, ZHANG Y, et al. Protein-enhanced NIR-IIb emission of indocyanine green for functional bioimaging[J]. ACS Applied Bio Materials, 2020, 3(12): 9126-9134.
[39] HE M, LI D, ZHENG Z, et al. Aggregation-induced emission nanoprobe assisted ultra-deep through-skull three-photon mouse brain imaging[J]. Nano Today, 2022, 45: 101536.
[40] ZHANG M, YUE J, CUI R, et al. Bright quantum dots emitting at∼ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6590-6595.
[41] WANG F, WAN H, MA Z, et al. Light-sheet microscopy in the near-infrared II window[J]. Nature Methods, 2019, 16(6): 545-552.
[42] HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68.
[43] SKIPETROV S E. Langevin description of speckle dynamics in nonlinear disordered media[J]. Physical Review E, 2003, 67(1): 016601.
[44] RODRÍGUEZ C, CHEN A, RIVERA J A, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo[J]. Nature Methods, 2021, 18(10): 1259-1264.
[45] CONKEY D B, CARAVACA-AGUIRRE A M, PIESTUN R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2): 1733-1740.
[46] YOON S, CHEON S Y, PARK S, et al. Recent advances in optical imaging through deep tissue: Imaging probes and techniques[J]. Biomaterials Research, 2022, 26(1): 57.
[47] JI N, SATO T R, BETZIG E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 22-27.
[48] TANG J, GERMAIN R N, CUI M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8434-8439.
[49] PARK J H, SUN W, CUI M. High-resolution in vivo imaging of mouse brain through the intact skull[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9236-9241.
[50] 谭天, 史天悦, 吴长锋, 等. 基于间接波前整形的近红外二区荧光共聚焦成像研究[J]. 中国光学 (中英文), 2024, 17(1): 150-159.
[51] LIU Y, LIU J, CHEN D, et al. Fluorination enhances NIR‐II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie International Edition, 2020, 132(47): 21235-21243.
[52] BEHNKE T, WÜRTH C, HOFFMANN K, et al. Encapsulation of hydrophobic dyes in polystyrene micro-and nanoparticles via swelling procedures[J]. Journal of Fluorescence, 2011, 21: 937-944.
[53] WEBB R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 1996, 59(3): 427.
[54] LIM C S, HEO J H, YOU M S, et al. Synthesis of PS-b-P2VP di-block copolymer particles with internal structure via simple reprecipitation method[J]. Macromolecular Research, 2014, 22: 324-328.
[55] LAMBORA A, GUPTA K, CHOPRA K. Genetic algorithm-A literature review[C]//2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, 2019: 380-384.
修改评论