中文版 | English
题名

刮涂法油墨工程制备大面积钙钛矿太阳能电池及组件

其他题名
INK ENGINEERING IN BLADE-COATING LARGE-AREA PEROVSKITE SOLAR CELLS AND MODULES
姓名
姓名拼音
WANG Xin
学号
12232369
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
08 工学
导师
丘龙斌
导师单位
机械与能源工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钙钛矿太阳能电池因其卓越的能量转化效率和较低的制造成本,已成为光伏领域的研究热点。目前,高效率的钙钛矿太阳能电池通常采用旋涂法制备,该方法适用于制造小尺寸、高质量的薄膜。然而,在规模化生产中,旋涂法面临大量材料的浪费及大面积基底难以均匀覆盖等限制。刮涂法因其简便的操作过程、高的材料利用率及快速的生产能力,是旋涂工艺的有效替代方案。然而,由于刮涂工艺中湿膜干燥窗口较长,难以实现高质量均匀控制,薄膜质量和器件性能目前落后于旋涂工艺。在提高钙钛矿太阳能电池效率的策略中,使用碘化铅(PbI2)钝化是一种有效的手段。PbI2的引入可降低钙钛矿膜的缺陷,提高其结晶和薄膜质量,从而提高电池的能量转化效率。
基于此,采用刮涂法制备钙钛矿薄膜,通过在钙钛矿薄膜中引入过量PbI2,探究薄膜中PbI2的含量和分布对钙钛矿太阳能电池性能的影响。研究发现,过量的PbI2在薄膜中的随机分布可能会形成载流子传输屏障或降解位点。使用N-甲基吡咯烷酮(NMP)可实现过量PbI2再分配,诱导过量PbI2在结晶过程中迁移到钙钛矿表面,减少埋底界面处的PbI2残留,消除由钙钛矿埋界面中的光照引起的PbI2的潜在降解,并实现钙钛矿晶界处的原位钝化。优化后的钙钛矿太阳能电池实现了24.5%的效率,是已报道的刮涂钙钛矿太阳能电池中最高效率之一。
针对规模化生产的挑战,通过优化刮涂大面积湿膜的工艺参数,提高了薄膜的均匀性和结晶质量。通过计算并调整激光刻蚀P2宽度,最小化能量损耗,并确定了最佳的P1-P2-P3激光划线和活性区域宽度。最终,制备出活性面积为13.68 cm2的钙钛矿光伏组件,实现20.4%的能量转化效率。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] HIDALGO J, CASTRO‐MéNDEZ A F, CORREA‐BAENA J P. Imaging and Mapping Characterization Tools for Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(30): 1900444.
[2] 赵金霞. 含侧链吸附基团的光敏染料在染料敏化太阳能电池中的应用[D]. 大连理工大学, 2011.
[3] 钱昆. 从旋涂到印刷:钙钛矿光伏薄膜形貌调控研究[D]. 上海交通大学, 2021.
[4] PARIDA B, SINGH A, KALATHIL SOOPY A K, et al. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells[J]. Advanced Science, 2022, 9(14): 2200308.
[5] KELLER J, KISELMAN K, DONZEL-GARGAND O, et al. High-Concentration Silver Alloying and Steep Back-Contact Gallium Grading Enabling Copper Indium Gallium Selenide Solar Cell with 23.6% Efficiency[J]. Nature Energy, 2024: 1-12.
[6] 陈昊. 高效反式结构钙钛矿太阳能电池[D]. 中国科学院大学, 2020.
[7] 徐中原. 钙钛矿太阳能电池大面积刮涂制备工艺研究[D]. 厦门大学, 2020.
[8] GREEN M A. Third Generation Photovoltaics: Ultra-High Conversion Efficiency at Low Cost[J]. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123-135.
[9] TAVAKOLI M M, YADAV P, PROCHOWICZ D, et al. Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(17): 1803587.
[10] GAO F, ZHAO Y, ZHANG X, et al. Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 10(13): 1902650.
[11] LIU C, CHENG Y B, GE Z. Understanding of Perovskite Crystal Growth and Film Formation in Scalable Deposition Processes[J]. Chemical Society Reviews, 2020, 49(6): 1653-1687.
[12] NREL. Best Research-Cell Efficiencies.
[2024-03-13]. https://www.nrel.gov/pv/cell-efficiency.html.
[13] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[14] CHENG Y, PENG Y, JEN A K Y, et al. Development and Challenges of Metal Halide Perovskite Solar Modules[J]. Solar RRL, 2021, 6(3): 2100545.
[15] LEE D-K, PARK N-G. Additive Engineering for Highly Efficient and Stable Perovskite Solar Cells[J]. Applied Physics Reviews, 2023, 10(1): 011308.
[16] MA S, YUAN G, ZHANG Y, et al. Development of Encapsulation Strategies Towards the Commercialization of Perovskite Solar Cells[J]. Energy & Environmental Science, 2022, 15(1): 13-55.
[17] YANG C, ZHI R, ROTHMANN M U, et al. Toward Commercialization of Efficient and Stable Perovskite Solar Modules[J]. Solar RRL, 2021, 6(3): 2100600.
[18] REN A, LAI H, HAO X, et al. Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses[J]. Joule, 2020, 4(6): 1263-1277.
[19] 陈涛. 钙钛矿卤化物材料制备与光电性能研究[D]. 中国科学技术大学, 2020.
[20] YIN W-J, YANG J-H, KANG J, et al. Halide Perovskite Materials for Solar Cells: A Theoretical Review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942.
[21] CUI X, JIN J, TAI Q, et al. Recent Progress on the Phase Stabilization of FAPbI3 for High‐Performance Perovskite Solar Cells[J]. Solar RRL, 2022, 6(10): 2200497.
[22] YUAN L, CHEN X, GUO X, et al. Volatile Perovskite Precursor Ink Enables Window Printing of Phase-Pure FAPbI3 Perovskite Solar Cells and Modules in Ambient Atmosphere[J]. Angewandte Chemie International Edition, 2024, 63(7): e202316954.
[23] CHEN R, WU Y, WANG Y, et al. Crown Ether‐Assisted Growth and Scaling up of FACsPbI3 Films for Efficient and Stable Perovskite Solar Modules[J]. Advanced Functional Materials, 2020, 31(11): 2008760.
[24] ALI J, LI Y, GAO P, et al. Interfacial and Structural Modifications in Perovskite Solar Cells[J]. Nanoscale, 2020, 12(10): 5719-5745.
[25] ISIKGOR F H, ZHUMAGALI S, T. MERINO L V, et al. Molecular Engineering of Contact Interfaces for High-Performance Perovskite Solar Cells[J]. Nature Reviews Materials, 2022, 8(2): 89-108.
[26] YI Z, LI X, XIONG Y, et al. Self‐Assembled Monolayers (SAMs) in Inverted Perovskite Solar Cells and Their Tandem Photovoltaics Application[J]. Interdisciplinary Materials, 2024: e12145.
[27] JIANG Q, TONG J, XIAN Y, et al. Surface Reaction for Efficient and Stable Inverted Perovskite Solar Cells[J]. Nature, 2022, 611(7935): 278-283.
[28] ZHANG S, YE F, WANG X, et al. Minimizing Buried Interfacial Defects for Efficient Inverted Perovskite Solar Cells[J]. Science, 2023, 380(6643): 404-409.
[29] PARK J, KIM J, YUN H S, et al. Controlled Growth of Perovskite Layers with Volatile Alkylammonium Chlorides[J]. Nature, 2023, 616(7958): 724-730.
[30] ZHAO Y, MA F, QU Z, et al. Inactive (PbI2)2RbCl Stabilizes Perovskite Films for Efficient Solar Cells[J]. Science, 2022, 377(6605): 531-534.
[31] CHEN H, YE F, TANG W, et al. A Solvent- and Vacuum-Free Route to Large-Area Perovskite Films for Efficient Solar Modules[J]. Nature, 2017, 550(7674): 92-95.
[32] YANG J, LIM E L, TAN L, et al. Ink Engineering in Blade-Coating Large-Area Perovskite Solar Cells[J]. Advanced Energy Materials, 2022, 12(28): 2200975.
[33] UDDIN M A, RANA P J S, NI Z, et al. Iodide Manipulation Using Zinc Additives for Efficient Perovskite Solar Minimodules[J]. Nature Communications, 2024, 15(1): 1355.
[34] WANG F, SHI X, YU H, et al. Efficient Blade-Coated p-i-n Perovskite Solar Cells and Modules Enabled by Effective Molecular N Doping[J]. Small, 2023: e2306425.
[35] ZHU H, SHAO B, YIN J, et al. Retarding Ion Migration for Stable Blade-Coated Inverted Perovskite Solar Cells[J]. Advanced Materials, 2024, 36(9): e2306466.
[36] LI J, DAGAR J, SHARGAIEVA O, et al. Ink Design Enabling Slot‐Die Coated Perovskite Solar Cells with >22% Power Conversion Efficiency, Micro‐Modules, and 1 Year of Outdoor Performance Evaluation[J]. Advanced Energy Materials, 2023, 13(33): 2203898.
[37] YANG Z, ZHANG W, WU S, et al. Slot-Die Coating Large-Area Formamidinium-Cesium Perovskite Film for Efficient and Stable Parallel Solar Module[J]. Science Advances, 2021, 7(18): eabg3749.
[38] SU J, CAI H, YANG J, et al. Perovskite Ink with an Ultrawide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air[J]. ACS Applied Materials & Interfaces, 2019, 12(3): 3531-3538.
[39] BISHOP J E, READ C D, SMITH J A, et al. Fully Spray-Coated Triple-Cation Perovskite Solar Cells[J]. Scientific Reports, 2020, 10(1): 6610.
[40] FANG J, LIN D, HUANG W, et al. Controllable Blading Interdiffusion of Formamidinium Iodide on Thermal Evaporated Scalable and Conformal Lead Iodide for Efficient Perovskite Solar Cells[J]. Journal of Alloys and Compounds, 2023, 955: 170255.
[41] LIN D, FANG J, YANG X, et al. Modulating the Distribution of Formamidinium Iodide by Ultrahigh Humidity Treatment Strategy for High-Quality Sequential Vapor Deposited Perovskite[J]. Small, 2023: e2307960.
[42] KIM J H, WILLIAMS S T, CHO N, et al. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating[J]. Advanced Energy Materials, 2015, 5(4): 1401229.
[43] 方军杰. 刮涂法制备钙钛矿太阳电池的晶格应变调控研究[D]. 陕西师范大学, 2021.
[44] FAHEEM M B, KHAN B, HASHMI J Z, et al. Insights from Scalable Fabrication to Operational Stability and Industrial Opportunities for Perovskite Solar Cells and Modules[J]. Cell Reports Physical Science, 2022, 3(4): 100827.
[45] FENG W, TAO J, LIU G, et al. Near-Stoichiometric and Homogenized Perovskite Films for Solar Cells with Minimized Performance Variation[J]. Angewandte Chemie International Edition, 2023, 135(17): e202300265.
[46] FEI C, LI N, WANG M, et al. Lead-Chelating Hole-Transport Layers for Efficient and Stable Perovskite Minimodules[J]. Science, 2023, 380(6647): 823-829.
[47] MA Y, ZHAO Q. A Strategic Review on Processing Routes Towards Scalable Fabrication of Perovskite Solar Cells[J]. Journal of Energy Chemistry, 2022, 64: 538-560.
[48] LEE S W, BAE S, KIM D, et al. Historical Analysis of High-Efficiency, Large-Area Solar Cells: Toward Upscaling of Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(51): e2002202.
[49] PARK N-G, ZHU K. Scalable Fabrication and Coating Methods for Perovskite Solar Cells and Solar Modules[J]. Nature Reviews Materials, 2020, 5(5): 333-350.
[50] YANG Z, LIU Z, AHMADI V, et al. Recent Progress on Metal Halide Perovskite Solar Minimodules[J]. Solar RRL, 2021, 6(3): 2100458.
[51] KOSASIH F U, RAKOCEVIC L, AERNOUTS T, et al. Electron Microscopy Characterization of P3 Lines and Laser Scribing-Induced Perovskite Decomposition in Perovskite Solar Modules[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45646-45655.
[52] CASTRIOTTA L A, ZENDEHDEL M, YAGHOOBI NIA N, et al. Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels[J]. Advanced Energy Materials, 2022, 12(12): 2103420.
[53] BI E, TANG W, CHEN H, et al. Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers[J]. Joule, 2019, 3(11): 2748-2760.
[54] LI L, CHEN P, SU R, et al. Buried-Metal-Grid Electrodes for Efficient Parallel-Connected Perovskite Solar Cells[J]. Advanced Materials, 2024, 36(2): e2305238.
[55] ROLDáN-CARMONA C, GRATIA P, ZIMMERMANN I, et al. High Efficiency Methylammonium Lead Triiodide Perovskite Solar Cells: The Relevance of Non-Stoichiometric Precursors[J]. Energy & Environmental Science, 2015, 8(12): 3550-3556.
[56] PARK B W, KEDEM N, KULBAK M, et al. Understanding How Excess Lead Iodide Precursor Improves Halide Perovskite Solar Cell Performance[J]. Nature Communications, 2018, 9(1): 3301.
[57] CHEN Y, MENG Q, XIAO Y, et al. Mechanism of PbI2 in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44101-44108.
[58] WANG H, WANG Z, YANG Z, et al. Ligand‐Modulated Excess PbI2 Nanosheets for Highly Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(21): 2000865.
[59] BU T, LI J, LI H, et al. Lead Halide-Templated Crystallization of Methylamine-Free Perovskite for Efficient Photovoltaic Modules[J]. Science, 2021, 372(6548): 1327-1332.
[60] GAO Y, RAZA H, ZHANG Z, et al. Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells[J]. Advanced Functional Materials, 2023, 33(26): 2215171.
[61] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells[J]. Energy & Environmental Science, 2014, 7(3): 982-988.
[62] WANG S, JIANG Y, JUAREZ-PEREZ EMILIO J, et al. Accelerated Degradation of Methylammonium Lead Iodide Perovskites Induced by Exposure to Iodine Vapour[J]. Nature Energy, 2016, 2(1): 16195.
[63] SHAO W, WANG H, YE F, et al. Modulation of Nucleation and Crystallization in PbI2 Films Promoting Preferential Perovskite Orientation Growth for Efficient Solar Cells[J]. Energy & Environmental Science, 2023, 16(1): 252-264.
[64] GAO Y, REN F, SUN D, et al. Elimination of Unstable Residual Lead Iodide near the Buried Interface for the Stability Improvement of Perovskite Solar Cells[J]. Energy & Environmental Science, 2023, 16(5): 2295-2303.
[65] DENG Y, VAN BRACKLE C H, DAI X, et al. Tailoring Solvent Coordination for High-Speed, Room-Temperature Blading of Perovskite Photovoltaic Films[J]. Science Advances, 2019, 5(12): eaax7537.
[66] CHEN S, DAI X, XU S, et al. Stabilizing Perovskite-Substrate Interfaces for High-Performance Perovskite Modules[J]. Science, 2021, 373(6557): 902-907.
[67] CHEN S, XIAO X, GU H, et al. Iodine Reduction for Reproducible and High-Performance Perovskite Solar Cells and Modules[J]. Science Advances, 2021, 7(10): eabe8130.
[68] DENG Y, XU S, CHEN S, et al. Defect Compensation in Formamidinium–Caesium Perovskites for Highly Efficient Solar Mini-Modules with Improved Photostability[J]. Nature Energy, 2021, 6(6): 633-641.
[69] FENG W, ZHANG C, ZHONG J X, et al. Correlating Alkyl Chain Length with Defect Passivation Efficacy in Perovskite Solar Cells[J]. Chemical Communications, 2020, 56(37): 5006-5009.
[70] TAN Y, CHANG X, ZHONG J-X, et al. Chemical Linkage and Passivation at Buried Interface for Thermally Stable Inverted Perovskite Solar Cells with Efficiency over 22%[J]. CCS Chemistry, 2023, 5(8): 1802-1814.
[71] HU J, XU X, CHEN Y, et al. Overcoming Photovoltage Deficitvianatural Amino Acid Passivation for Efficient Perovskite Solar Cells and Modules[J]. Journal of Materials Chemistry A, 2021, 9(9): 5857-5865.
[72] CHEN Y, HU J, XU Z, et al. Managing Phase Orientation and Crystallinity of Printed Dion–Jacobson 2D Perovskite Layers via Controlling Crystallization Kinetics[J]. Advanced Functional Materials, 2022, 32(19): 2112146.
[73] LIU K, LIANG Q, QIN M, et al. Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells[J]. Joule, 2020, 4(11): 2404-2425.
[74] LIANG Q, LIU K, SUN M, et al. Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition[J]. Advanced Materials, 2022, 34(16): 2200276.
[75] BU T, ONO L K, LI J, et al. Modulating Crystal Growth of Formamidinium–Caesium Perovskites for over 200 cm2 Photovoltaic Sub-Modules[J]. Nature Energy, 2022, 7(6): 528-536.
[76] LU Y-N, ZHONG J-X, YU Y, et al. Constructing an N/N+ Homojunction in a Monolithic Perovskite Film for Boosting Charge Collection in Inverted Perovskite Photovoltaics[J]. Energy & Environmental Science, 2021, 14(7): 4048-4058.
[77] WU W Q, YANG Z, RUDD P N, et al. Bilateral Alkylamine for Suppressing Charge Recombination and Improving Stability in Blade-Coated Perovskite Solar Cells[J]. Science Advances, 2019, 5(3): eaav8925.
[78] YIN J, SHI X, WANG L, et al. High-Performance Inverted Perovskite Solar Devices Enabled by a Polyfullerene Electron Transporting Material[J]. Angewandte Chemie International Edition, 2022, 61(52): e202210610.
[79] BARAL P, ZHANG X, GARDEN K, et al. Efficient and Stable Perovskite Solar Cells Based on Blade-Coated CH3NH3PbI3 Thin Films Fabricated Using “Green” Solvents under Ambient Conditions[J]. Organic Electronics, 2023, 116: 106763.
[80] CHAO L, NIU T, GAO W, et al. Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells[J]. Advanced Materials, 2021, 33(14): 2005410.
[81] YANG M, LI Z, REESE M O, et al. Perovskite Ink with Wide Processing Window for Scalable High-Efficiency Solar Cells[J]. Nature Energy, 2017, 2(5): 17038.
[82] DENG Y, ZHENG X, BAI Y, et al. Surfactant-Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient Photovoltaic Modules[J]. Nature Energy, 2018, 3(7): 560-566.
[83] JIA Z, ZHONG H, SHEN J, et al. Precursor Formula Engineering Enabling High Quality Solution Processed C60 Films for Efficient and Stable Inverted Perovskite Solar Cells[J]. Chemical Engineering Journal, 2022, 446: 136897.
[84] YU Z, TAO J, SHEN J, et al. Back-Contact Ionic Compound Engineering Boosting the Efficiency and Stability of Blade-Coated Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 34040-34048.
[85] 文永涛. 两步连续沉积法制备甲脒基钙钛矿太阳能电池及组件[D]. 武汉理工大学, 2022.
[86] NREL. Champion Module Efficiencies.
[2024-03-13]. https://www.nrel.gov/pv/module-efficiency.html.
[87] CHEN R, WANG J, LIU Z, et al. Reduction of Bulk and Surface Defects in Inverted Methylammonium- and Bromide-Free Formamidinium Perovskite Solar Cells[J]. Nature Energy, 2023, 8(8): 839-849.
[88] 李恒毅. 一步刮涂法制备高效甲脒基钙钛矿太阳能组件[D]. 武汉理工大学, 2023.
[89] XIE G, LI H, WANG X, et al. Phase Segregation and Voltage Loss Mitigated Highly Efficient Perovskite–Organic Tandem Solar Cells with a Simple Ambipolar SnOx Interconnecting Layer[J]. Advanced Functional Materials, 2023, 33(52): 2308794.
[90] LI H, XIE G, WANG X, et al. Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules[J]. Advanced Science, 2023, 10(19): 2300586.
[91] LI Z, ZHANG C, SHAO Z, et al. Controlled Surface Decomposition Derived Passivation and Energy-Level Alignment Behaviors for High Performance Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2018, 6(20): 9397-9401.
[92] 李志鹏. 钙钛矿太阳能电池的界面优化[D]. 青岛科技大学, 2019.
[93] REN Z, CUI Z, SHI X, et al. Poly(Carbazole Phosphonic Acid) as a Versatile Hole-Transporting Material for p-i-n Perovskite Solar Cells and Modules[J]. Joule, 2023, 7(12): 2894-2904.
[94] DU Y, TIAN Q, WANG S, et al. Crystallization Control Based on the Regulation of Solvent-Perovskite Coordination for High-Performance Ambient Printable FAPbI3 Perovskite Solar Cells[J]. Advanced Materials, 2024, 36(9): e2307583.
[95] MURRMANN H, WIDMANN D. Current Crowding on Metal Contacts to Planar Devices[J]. IEEE Transactions on Electron Devices, 1969, 16(12): 1022-1024.
[96] BROOKS K G, NAZEERUDDIN M K. Laser Processing Methods for Perovskite Solar Cells and Modules[J]. Advanced Energy Materials, 2021, 11(29): 2101149.
[97] DI GIACOMO F, CASTRIOTTA L A, KOSASIH F U, et al. Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules[J]. Micromachines, 2020, 11(12): 1127.
[98] PALMA A L, MATTEOCCI F, AGRESTI A, et al. Laser-Patterning Engineering for Perovskite Solar Modules with 95% Aperture Ratio[J]. IEEE Journal of Photovoltaics, 2017, 7(6): 1674-1680.

所在学位评定分委会
材料与化工
国内图书分类号
TM914.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766047
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
王欣. 刮涂法油墨工程制备大面积钙钛矿太阳能电池及组件[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232369-王欣-机械与能源工程系(18012KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王欣]的文章
百度学术
百度学术中相似的文章
[王欣]的文章
必应学术
必应学术中相似的文章
[王欣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。