中文版 | English
题名

面向大功率全钒液流电池的传质过程优化及低温性能改善研究

其他题名
OPTIMIZATION OF MASS TRANSFER PROCESS AND IMPROVEMENT OF LOW- TEMPERATURE PERFORMANCE FOR HIGH- POWER VANADIUM REDOX FLOW BATTERY
姓名
姓名拼音
XIE Jianyu
学号
12232357
学位类型
硕士
学位专业
085602 化学工程
学科门类/专业学位类别
08 工学
导师
赵天寿
导师单位
机械与能源工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全钒液流电池作为一种新型电化学储能技术,本征安全、易规模化、寿命长,在大规模长时储能领域受到了广泛关注。目前,全钒液流电池的产业化仍然受到了高昂的建造成本及较窄的运行温度范围的限制。提升电池的功率密度及运行温度区间,被认为是推动其进一步商业化推广的有效措施。目前在实验室级别,全钒液流电池的功率密度、能量效率等关键指标已经取得了一定的突破。然而,在将电极面积放大以提升功率的过程中,会观察到明显的性能衰减。另一方面,在环境温度较低时,会出现离子迁移率降低、电解液电导率下降、化学反应动力学变缓等现象,造成电池性能明显下降,影响电池宽温域运行。如何减少电极面积放大过程中的性能衰减,以及改善电池低温性能成为了该技术商业化道路上亟需解决的问题。基于此,本文对全钒液流电池在面向大功率应用时的传质过程优化及低温性能改善方面展开了研究,并提出了相应的解决策略。具体研究内容如下:

首先,基于活性物质传输与电化学反应耦合的三维模型,以提升多孔电极表面活性物质分布均匀度为目的,提出了分层叉指流场设计。相比起传统的单流道设计,该设计显著降低了电池面积放大过程中的流场进出口的压力损失和运行过程中的浓差极化。在电流密度为250 mA·cm-2,比流量为3 mL·min-1·cm-2时,基于国标(NB/T42081-2016)测试的50cm2的单电池能量效率可以达到68.61%,比传统单流道叉指流场高5.25%。

在低温性能改善方面,本课题基于原位交换机制,将引入氯离子添加剂的混酸电解液应用于低温环境,通过氯离子与钒离子的键合作用完成配体交换过程,形成络合物,这些络合物在电解液中以高动态性的溶剂化结构形式存在,有效增加了电解液中离子的活度并减小了电解液的粘度。从而极大改善了全钒液流电池的低温性能。实验表明:在温度为-10 ℃以及电流密度为150 mA·cm-2时,电池的能量效率和电解液利用率相比于传统的硫酸电解液提高了5.08%和20.45%。

这些研究结果表明,通过分层叉指流场设计和电解液离子调控可以有效提升全钒液流电池大功率应用时的传质过程及低温性能。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] ZHAO F Q, BAI F L, LIU X L, et al. A review on renewable energy transition under China's carbon neutrality target[J]. Sustainability, 2022, 14: 15006.
[2] COUNCIL N R. The national academies summit on America's energy future: summary of a meeting[M]. National Academies Press, 2008.
[3] 郑彦春, 陕超伦, 张晋宾. 长持续时间储能体系研究现状及发展展望[J]. 南方能源建设, 2024, 11: 93-101.
[4] RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: a review[J]. Energy Conversion and Management, 2020, 223: 113295.
[5] REHMAN S, AL-HADHRAMI L M, ALAM M M. Pumped hydro energy storage system: a technological review[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 586-598.
[6] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11: 2499.
[7] LI X J, PALAZZOLO A. A review of flywheel energy storage systems: state of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: 103576.
[8] OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters - a review[J]. Journal of Energy Storage, 2021, 34: 102000.
[9] KEAR G, SHAH A A, WALSH F C. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects[J]. International Journal of Energy Research, 2012, 36: 1105-1120.
[10] LEUNG P, LI X, PONCE DE LEóN C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. Rsc Advances, 2012, 2: 10125-10156.
[11] SáNCHEZ-DíEZ E, VENTOSA E, GUARNIERI M, et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage[J]. Journal of Power Sources, 2021, 481: 228804.
[12] SKYLLAS-KAZACOS M, KAZACOS G, POON G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34: 182-189.
[13] 桂志鹏, 万祥龙, 陈兵, 等. 电化学储能技术研究现状[J]. 洛阳理工学院学报(自然科学版), 2024, 34: 1-6.
[14] SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of The Electrochemical Society, 1986, 133: 1057-1058.
[15] ULAGANATHAN M, ARAVINDAN V, YAN Q Y, et al. Recent advancements in all-vanadium redox flow batteries[J]. Advanced Materials Interfaces, 2016, 3: 1500309.
[16] RYCHCIK M, SKYLLAS-KAZACOS M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources, 1988, 22: 59-67.
[17] CUNHA A, MARTINS J, RODRIGUES N, et al. Vanadium redox flow batteries: a technology review[J]. International Journal of Energy Research, 2015, 39: 889-918.
[18] VINCO J H, DOMINGOS A, ESPINOSA D C R, et al. Unfolding the vanadium redox flow batteries: an indeep perspective on its components and current operation challenges[J]. Journal of Energy Storage, 2021, 43: 103180.
[19] ABEROUMAND S, WOODFIELD P, SHABANI B, et al. Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach[J]. Physics Reports, 2020, 881: 1-49.
[20] CHOI C, KIM S, KIM R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274.
[21] DING C, SHEN Z F, ZHU Y, et al. Insights into the modification of carbonous felt as an electrode for vanadium redox flow batteries[J]. Materials, 2023, 16: 3811.
[22] WANG W, LUO Q T, LI B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23: 970-986.
[23] ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the storage of renewable energy: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 325-335.
[24] SKYLLAS-KAZACOS M, KAZACOS M. State of charge monitoring methods for vanadium redox flow battery control[J]. Journal of Power Sources, 2011, 196: 8822-8827.
[25] ZHANG K Y, XIONG J, YAN C W, et al. In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design[J]. Applied Energy, 2020, 272: 115093.
[26] DARLING R M, PERRY M L. The influence of electrode and channel configurations on flow battery performance[J]. Journal of The Electrochemical Society, 2014, 161: A1381-A1387.
[27] HUANG Z B, MU A L. Flow field design and performance analysis of vanadium redox flow battery[J]. Ionics, 2021, 27: 5207-5218.
[28] JIENKULSAWAD P, JIRABOVORNWISUT T, CHEN Y S, et al. Improving the performance of an all-vanadium redox flow battery under imbalance conditions: online dynamic optimization approach[J]. Acs Sustainable Chemistry and Engineering, 2020, 8: 13610-13622.
[29] LATHA T J, JAYANTI S. Hydrodynamic analysis of flow fields for redox flow battery applications[J]. Journal of Applied Electrochemistry, 2014, 44: 995-1006.
[30] KNUDSEN E, ALBERTUS P, CHO K T, et al. Flow simulation and analysis of high-power flow batteries[J]. Journal of Power Sources, 2015, 299: 617-628.
[31] TSUSHIMA S, SUZUKI T. Modeling and simulation of vanadium redox flow battery with interdigitated flow field for optimizing electrode architecture[J]. Journal of The Electrochemical Society, 2020, 167: 020553.
[32] YOU X, YE Q, CHENG P. Scale-up of high power density redox flow batteries by introducing interdigitated flow fields[J]. International Communications in Heat and Mass Transfer, 2016, 75: 7-12.
[33] LI F H, WEI Y G, TAN P, et al. Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 32: 101781.
[34] GUNDLAPALLI R, BHATTARAI A, RANJAN R, et al. Characterization and scale-up of serpentine and interdigitated flow fields for application in commercial vanadium redox flow batteries[J]. Journal of Power Sources, 2022, 542: 231812.
[35] ZHENG Q, XING F, LI X F, et al. Flow field design and optimization based on, the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411.
[36] DE LEON C P, FRIAS-FERRER A, GONZALEZ-GARCIA J, et al. Redox flow cells for energy conversion[J]. Journal of Power Sources, 2006, 160: 716-732.
[37] ZHOU X L, ZHAO T S, ZENG Y K, et al. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2016, 329: 247-254.
[38] LI L Y, KIM S, WANG W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials, 2011, 1: 394-400.
[39] TIAN W X, DU H, WANG J Z, et al. A review of electrolyte additives in vanadium redox flow batteries[J]. Materials, 2023, 16: 4582.
[40] ZENG Y K, LI F H, LU F, et al. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries[J]. Applied Energy, 2019, 238: 435-441.
[41] SUN J, ZHENG M L, YANG Z S, et al. Flow field design pathways from lab-scale toward large-scale flow batteries[J]. Energy, 2019, 173: 637-646.
[42] KUMAR S, JAYANTI S. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2017, 360: 548-558.
[43] RAO P, JAYANTI S. Physics-based electrochemical model of vanadium redox flow battery for low-temperature applications[J]. Batteries, 2023, 9: 374.
[44] WU X, LIU J, XIANG X, et al. Electrolytes for vanadium redox flow batteries[J]. Pure and Applied Chemistry, 2014, 86: 661-669.
[45] RAHMAN F, SKYLLAS-KAZACOS M. Vanadium redox battery: positive half-cell electrolyte studies[J]. Journal of Power Sources, 2009, 189: 1212-1219.
[46] HUANG Z B, MU A L, WU L X, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery[J]. Acs Sustainable Chemistry and Engineering, 2022, 10: 7786-7810.
[47] REN J Y, LI Y J, WANG Z Y, et al. Thermal issues of vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123818.
[48] ZHANG J L, LI L Y, NIE Z M, et al. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries[J]. Journal of Applied Electrochemistry, 2011, 41: 1215-1221.
[49] WANG G, CHEN J W, WANG X Q, et al. Influence of several additives on stability and electrochemical behavior of V(V) electrolyte for vanadium redox flow battery[J]. Journal of Electroanalytical Chemistry, 2013, 709: 31-38.
[50] ZHANG C, ZHAO T S, XU Q, et al. Effects of operating temperature on the performance of vanadium redox flow batteries[J]. Applied Energy, 2015, 155: 349-353.
[51] XIAO S B, YU L H, WU L T, et al. Broad temperature adaptability of vanadium redox flow battery-part 1: electrolyte research[J]. Electrochimica Acta, 2016, 187: 525-534.
[52] XI J Y, XIAO S B, YU L H, et al. Broad temperature adaptability of vanadium redox flow battery-part 2: cell research[J]. Electrochimica Acta, 2016, 191: 695-704.
[53] WANG K, ZHANG Y N, LIU L, et al. Broad temperature adaptability of vanadium redox flow battery-part 3: the effects of total vanadium concentration and sulfuric acid concentration[J]. Electrochimica Acta, 2018, 259: 11-19.
[54] YANG Y D, ZHANG Y M, LIU T, et al. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte[J]. Journal of Power Sources, 2019, 415: 62-68.
[55] YANG Y D, ZHANG Y M, TANG L, et al. Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery[J]. Journal of Power Sources, 2019, 434: 226719.
[56] YIN S S, ZHOU L P, DU X Z, et al. Influence of temperature on performance of all vanadium redox flow battery: analysis of ionic mass transfer[J]. Ionics, 2019, 25: 593-606.
[57] YANG Y D, ZHANG Y M, TANG L, et al. Improved energy density and temperature range of vanadium redox flow battery by controlling the state of charge of positive electrolyte[J]. Journal of Power Sources, 2020, 450: 227675.
[58] ZHANG Z H, WEI L, WU M C, et al. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries[J]. Applied Energy, 2021, 289: 116690.
[59] VIJAYAKUMAR M, LI L Y, GRAFF G, et al. Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries[J]. Journal of Power Sources, 2011, 196: 3669-3672.
[60] VIJAYAKUMAR M, WANG W, NIE Z M, et al. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes[J]. Journal of Power Sources, 2013, 241: 173-177.
[61] VIJAYAKUMAR M, NIE Z M, WALTER E, et al. Understanding aqueous electrolyte stability through combined computational and magnetic resonance spectroscopy: a case study on vanadium redox flow battery electrolytes[J]. ChemPlusChem, 2015, 80: 428-437.
[62] KAUSAR N, MOUSA A, SKYLLAS-KAZACOS M. The effect of additives on the high-temperature stability of the vanadium redox flow battery positive electrolytes[J]. ChemElectroChem, 2016, 3: 276-282.
[63] KIM D, JEON J. A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries[J]. Journal of Electroanalytical Chemistry, 2017, 801: 92-97.
[64] SUN J, JIANG H R, ZHANG B W, et al. Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries[J]. Applied Energy, 2020, 259: 114198.
[65] ZHU S, PELTON R H, COLLVER K. Mechanistic modelling of fluid permeation through compressible fiber beds[J]. Chemical Engineering Science, 1995, 50: 3557-3572.
[66] NEWMAN J, BALSARA N P. Electrochemical systems[M]. John Wiley and Sons, 2021.
[67] SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53: 8087-8100.
[68] SHAH A, TANGIRALA R, SINGH R, et al. A dynamic unit cell model for the all-vanadium flow battery[J]. Journal of The Electrochemical Society, 2011, 158: A671-A677.
[69] SCHMAL D, VANERKEL J, VANDUIN P J. Mass transfer at carbon fibre electrodes[J]. Journal of Applied Electrochemistry, 1986, 16: 422-430.
[70] YOU D J, ZHANG H M, CHEN J. A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009, 54: 6827-6836.
[71] WAN S B, JIANG H R, GUO Z X, et al. Machine learning-assisted design of flow fields for redox flow batteries[J]. Energy and Environmental Science, 2022, 15: 2874-2888.
[72] YE Q, ZHAO T S, XU C. The role of under-rib convection in mass transport of methanol through the serpentine flow field and its neighboring porous layer in a DMFC[J]. Electrochimica Acta, 2006, 51: 5420-5429.
[73] PAN L M, SUN J, QI H H, et al. Along-flow-path gradient flow field enabling uniform distributions of reactants for redox flow batteries[J]. Journal of Power Sources, 2023, 570: 233012.
[74] PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences, 2023, 120: e2305572120.
[75] ZENG Y K, ZHAO T S, ZHOU X L, et al. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries[J]. Applied Energy, 2016, 182: 204-209.
[76] SHAH A A, AL-FETLAWI H, WALSH F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55: 1125-1139.
[77] YAMAMURA T, WATANABE N, YANO T, et al. Electron-transfer kinetics of Np3+/Np4+, NpO2+/NpO22+, V2+/V3+, and VO2+/VO2+ at carbon electrodes[J]. Journal of The Electrochemical Society, 2005, 152: A830-A836.
[78] ZHANG B W, LEI Y, BAI B F, et al. A two-dimensional model for the design of flow fields in vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 460-469.
[79] BOURKE A, MILLER M A, LYNCH R P, et al. Electrode kinetics of vanadium flow batteries: contrasting responses of VII-VIII and VIV-VV to electrochemical pretreatment of carbon[J]. Journal of The Electrochemical Society, 2016, 163: A5097-A5105.
[80] WEI L, GUO Z X, SUN J, et al. A convection-enhanced flow field for aqueous redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121747.
[81] BRATSCH S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18: 1-21.
[82] WHITEHEAD A H, HARRER M. Investigation of a method to hinder charge imbalance in the vanadium redox flow battery[J]. Journal of Power Sources, 2013, 230: 271-276.
[83] WEI L, FAN X Z, JIANG H R, et al. Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method[J]. Journal of Power Sources, 2020, 478: 228725.
[84] WANG Z Y, LI Y J, REN J Y, et al. A response time-based method to operando decouple the polarizations in redox flow batteries[J]. Cell Reports Physical Science, 2023, 4: 101395.
[85] PAN L M, XIE J Y, GUO J C, et al. In-plane gradient design of flow fields enables enhanced convections for redox flow batteries[J]. Energy Advances, 2023, 2: 2006-2017.
[86] GUO Z X, REN J Y, SUN J, et al. A bifurcate interdigitated flow field with high performance but significantly reduced pumping work for scale-up of redox flow batteries[J]. Journal of Power Sources, 2023, 564: 232757.
[87] GUO Z X, SUN J, WANG Z Y, et al. Numerical modeling of interdigitated flow fields for scaled-up redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123548.
[88] MA X K, ZHANG H M, SUN C X, et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 153-158.
[89] TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162.

所在学位评定分委会
材料与化工
国内图书分类号
O646.21
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766051
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
谢渐宇. 面向大功率全钒液流电池的传质过程优化及低温性能改善研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232357-谢渐宇-机械与能源工程(8156KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[谢渐宇]的文章
百度学术
百度学术中相似的文章
[谢渐宇]的文章
必应学术
必应学术中相似的文章
[谢渐宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。