[1] 王星. 面向智慧交通的出租车轨迹数据补全与异常检测研究[D]. 杭州电子科技大学,2023.
[2] 林正轩, 王超, 邵彬, 等. 基于线图视角的城市社区发现可视分析方法[J]. 计算机辅助设计与图形学学报: 1-11.
[3] CHEN W, GUO F, WANG F Y. A survey of traffic data visualization[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 2970-2984.
[4] ANDRIENKO G L, ANDRIENKO N V, CHEN W, et al. Visual Analytics of Mobility and Transportation: State of the Art and Further Research Directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2232-2249.
[5] ANDRIENKO G, ANDRIENKO N, DRUCKER E A. Big Data Visualization and Analytics: Future Research Challenges and Emerging Applications[C]//EDBT/ICDT joint conference: volume 2578. CEUR-WS.org, 2020.
[6] KAMW F, AL-DOHUKI S, ZHAO Y, et al. Urban structure accessibility modeling and visualization for joint spatiotemporal constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 104-116.
[7] GAO Y, WANG D, LIAO Y, et al. Relationship between urban tourism traffic and tourism landuse[J]. Journal of Transport and Land Use, 2021, 14(1): 761-776.
[8] YANG C, ZHANG Z, FAN Z, et al. Epimob: Interactive visual analytics of citywide human mobility restrictions for epidemic control[J]. IEEE Transactions on Visualization and Computer Graphics, 2022.
[9] WENG D, ZHENG C, DENG Z, et al. Towards better bus networks: A visual analytics approach[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 27(2): 817-827.
[10] ZENG W, SHEN Q, JIANG Y, et al. Route-Aware Edge Bundling for Visualizing OriginDestination Trails in Urban Traffic[C]//Computer Graphics Forum: volume 38. 2019: 581-593.
[11] VON LANDESBERGER T, BRODKORB F, ROSKOSCH P, et al. Mobilitygraphs: Visualanalysis of mass mobility dynamics via spatio-temporal graphs and clustering[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(1): 11-20.
[12] 要志鑫. 基于 Spark 的出租车大数据时空检索方法与可视化研究[D]. 北京建筑大学, 2023.
[13] Shenzhen dataset[EB/OL]. 2020. http://jtys.sz.gov.cn/.
[14] SHNEIDERMAN B. Response time and display rate in human performance with computers[J]. ACM Computing Surveys, 1984, 16(3): 265-285.
[15] KWON B C, VERMA J, HAAS P J, et al. Sampling for scalable visual analytics[J]. IEEE Computer Graphics and Applications, 2017, 37(1): 100-108.
[16] ROSENHOLTZ R, LI Y, NAKANO L. Measuring visual clutter[J]. Journal of vision, 2007, 7(2): 17-17.
[17] PARK Y, CAFARELLA M, MOZAFARI B. Visualization-aware sampling for very large databases[C]//IEEE 32nd International Conference on Data Engineering. 2016: 755-766.
[18] DING B, HUANG S, CHAUDHURI S, et al. Sample+ seek: Approximating aggregates with distribution precision guarantee[C]//Proceedings of the 2016 International Conference on Management of Data. 2016: 679-694.
[19] CHEN X, ZHANG J, FU C W, et al. Pyramid-based scatterplots sampling for progressive and streaming data visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 28(1): 593-603.
[20] LIANG X, SINTOS S, SHANG Z, et al. Combining aggregation and sampling (nearly) optimally for approximate query processing[C]//Proceedings of the 2021 International Conference on Management of Data. 2021: 1129-1141.
[21] KIM A, BLAIS E, PARAMESWARAN A G, et al. Rapid Sampling for Visualizations with Ordering Guarantees[J]. Proceedings of the VLDB Endowment, 2015, 8(5): 521-532.
[22] STARR E, GOLDFARB B. Binned scatterplots: A simple tool to make research easier and better[J]. Strategic Management Journal, 2020, 41(12): 2261-2274.
[23] BORCAN O. Improving visualization of trajectories by dataset reduction and line simplification [D]. 2012.
[24] LIU S, PU J, LUO Q, et al. VAIT: A visual analytics system for metropolitan transportation[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1586-1596.
[25] YANG X, ZHAO Z, LU S. Exploring spatial-temporal patterns of urban human mobility hotspots[J]. Sustainability, 2016, 8(7): 674.
[26] CHAE J, THOM D, JANG Y, et al. Public behavior response analysis in disaster events utilizing visual analytics of microblog data[J]. Computers & Graphics, 2014, 38: 51-60.
[27] XIE Z, YAN J. Kernel density estimation of traffic accidents in a network space[J]. Computers, environment and urban systems, 2008, 32(5): 396-406.
[28] BORRUSO G. Network density estimation: a GIS approach for analysing point patterns in a network space[J]. Transactions in GIS, 2008, 12(3): 377-402.
[29] GUO D. Flow mapping and multivariate visualization of large spatial interaction data[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1041-1048.
[30] GUO H, WANG Z, YU B, et al. Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]//IEEE Pacific Visualization Symposium. 2011: 163-170.
[31] HURTER C, TISSOIRES B, CONVERSY S. Fromdady: Spreading aircraft trajectories across views to support iterative queries[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1017-1024.
[32] MOHSENI S, ZAREI N, RAGAN E D. A multidisciplinary survey and framework for design and evaluation of explainable AI systems[J]. ACM Transactions on Interactive Intelligent Systems (TiiS), 2021, 11(3-4): 1-45.
[33] MUNZNER T. Visualization analysis and design[M]. CRC press, 2014.
[34] KARRAY F, ALEMZADEH M, ABOU SALEH J, et al. Human-computer interaction:Overview on state of the art[J]. International journal on smart sensing and intelligent systems, 2008, 1(1): 137-159.
[35] GARCIA PINTO V, MELLO SCHNORR L, STANISIC L, et al. A visual performance analysis framework for task-based parallel applications running on hybrid clusters[J]. Concurrency and Computation: Practice and Experience, 2018, 30(18): e4472.
[36] YUN Y, MA D, YANG M. Human–computer interaction-based decision support system with applications in data mining[J]. Future Generation Computer Systems, 2021, 114: 285-289.
[37] Spotfire[EB/OL]. 2023. https://www.tibco.com/products/tibco-spotfire.
[38] Tableau[EB/OL]. 2020. https://www.tableau.com/.
[39] CHAN S M, XIAO L, GERTH J, et al. Maintaining interactivity while exploring massive time series[C]//IEEE Symposium on Visual Analytics Science and Technology. 2008: 59-66.
[40] YANG C, ZHANG Y, TANG B, et al. Vaite: A Visualization-Assisted Interactive Big Urban Trajectory Data Exploration System[C]//IEEE 32nd International Conference on Data Engineering. 2019: 2036-2039.
[41] D3[EB/OL]. 2020. https://d3js.org/.
[42] Apache Spark[EB/OL]. 2020. https://spark.apache.org/.
[43] BATTLE L, STONEBRAKER M, CHANG R. Dynamic reduction of query result sets for interactive visualizaton[C]//IEEE BigData. 2013: 1-8.
[44] RAPP T, PETERS C, DACHSBACHER C. Void-and-Cluster Sampling of Large Scattered Data and Trajectories[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(1): 780-789.
[45] CHEN H, CHEN W, MEI H, et al. Visual abstraction and exploration of multi-class scatterplots [J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1683-1692.
[46] YU J, SARWAT M. Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach[C]//IEEE 32nd International Conference on Data Engineering. 2020: 1165-1176.
[47] QIN X, LUO Y, TANG N, et al. Making data visualization more efficient and effective: A survey[J]. Proceedings of the VLDB Endowment, 2020, 29(1): 93-117.
[48] DING B, HUANG S, CHAUDHURI S, et al. Sample + Seek: Approximating Aggregates with Distribution Precision Guarantee[C]//Proceedings of the 2016 International Conference on Management of Data. 2016: 679-694.
[49] YANG C, CHEN L, WANG H, et al. Towards efficient selection of activity trajectories based on diversity and coverage[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 35. 2021: 689-696.
[50] ZHANG D, DING M, YANG D, et al. Trajectory simplification: an experimental study and quality analysis[J]. Proceedings of the VLDB Endowment, 2018, 11(9): 934-946.
[51] van Kreveld M, Löffler M, Wiratma L. On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance[A]. 2018: arXiv:1803.03550. arXiv: 1803.03550.
[52] Vrotsou K, Janetzko H, Navarra C, et al. SimpliFly: A Methodology for Simplification and Thematic Enhancement of Trajectories[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(1): 107-121.
[53] WOOD J, DYKES J, SLINGSBY A. Visualisation of origins, destinations and flows with OD maps[J]. The Cartographic Journal, 2010, 47(2): 117-129.
[54] ANDRIENKO G, ANDRIENKO N. Spatio-temporal aggregation for visual analysis of movements[C]//IEEE Symposium on Visual Analytics Science and Technology. 2008: 51-58.
[55] ADRIENKO N, ADRIENKO G. Spatial generalization and aggregation of massive movement data[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 17(2): 205-219.
[56] PIRINGER H, TOMINSKI C, MUIGG P, et al. A multi-threading architecture to support interactive visual exploration[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1113-1120.
[57] HURTER C, ERSOY O, TELEA A. Graph bundling by kernel density estimation[C]//Computer Graphics Forum: volume 31. Wiley Online Library, 2012: 865-874.
[58] HOLTEN D, VAN WIJK J J. Force-directed edge bundling for graph visualization[C]//Computer graphics forum: volume 28. Wiley Online Library, 2009: 983-990.
[59] SELASSIE D, HELLER B, HEER J. Divided edge bundling for directional network data[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2354-2363.
[60] CUI W, ZHOU H, QU H, et al. Geometry-based edge clustering for graph visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1277-1284.
[61] DIX A, ELLIS G. By chance enhancing interaction with large data sets through statistical sampling[C]//Proceedings of the Working Conference on Advanced Visual Interfaces. 2002: 167-176.
[62] REINHARDT S, HUBER M, DUMITRESCU O, et al. Visual debugging of SPH simulations[C]//2017 21st International Conference Information Visualisation (IV). IEEE, 2017: 117-126.
[63] RAFIEI D. Effectively visualizing large networks through sampling[C]//VIS 05. IEEE Visualization, 2005. IEEE, 2005: 375-382.
[64] WU Y, CAO N, ARCHAMBAULT D, et al. Evaluation of graph sampling: A visualization perspective[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(1): 401-410.
[65] PONCIANO J R, LINHARES C D, ROCHA L E, et al. Combining clutter reduction methods for temporal network visualization[C]//Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. 2022: 1748-1755.
[66] ELLIS G, DIX A. Enabling automatic clutter reduction in parallel coordinate plots[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 717-724.
[67] ZHOU Z, MA Y, ZHANG Y, et al. Context-aware visual abstraction of crowded parallel coordinates[J]. Neurocomputing, 2021, 459: 23-34.
[68] LAMPE O D, HAUSER H. Interactive visualization of streaming data with kernel density estimation[C]//IEEE Pacific visualization symposium. 2011: 171-178.
[69] EAGLIN T, CHO I, RIBARSKY W. Space-time kernel density estimation for real-time interactive visual analytics[C]//Proceedings of the 50th Hawaii International Conference on System Sciences. 2017.
[70] HUANG Y, LI Y, ZHANG Z, et al. GPU-accelerated compression and visualization of largescale vessel trajectories in maritime IoT industries[J]. IEEE Internet of Things Journal, 2020, 7(11): 10794-10812.
[71] LIU H, TANG B, ZHANG J, et al. Ghive: accelerating analytical query processing in apache hive via cpu-gpu heterogeneous computing[C]//Proceedings of the 13th Symposium on Cloud Computing. 2022: 158-172.
[72] LIU H, TANG B, ZHANG J, et al. Ghive: A demonstration of gpu-accelerated query processing in apache hive[C]//Proceedings of the 2022 International Conference on Management of Data. 2022: 2417-2420.
[73] ELDAWY A, MOKBEL M F, JONATHAN C. HadoopViz: A MapReduce framework for extensible visualization of big spatial data[C]//IEEE 32nd International Conference on Data Engineering. IEEE, 2016: 601-612.
[74] YU J, ZHANG Z, SARWAT M. Geosparkviz: a scalable geospatial data visualization framework in the apache spark ecosystem[C]//Proceedings of the 30th International Conference on Scientific and Statistical Database Management. 2018: 1-12.
[75] BUDIU M, GOPALAN P, SURESH L, et al. Hillview: A trillion-cell spreadsheet for big data[A]. 2019.
[76] KRÜGER R, THOM D, WÖRNER M, et al. TrajectoryLenses–a set-based filtering and exploration technique for long-term trajectory data[C]//Computer Graphics Forum: volume 32. 2013: 451-460.
[77] ANDRIENKO N, ANDRIENKO G, GARCIA J M C, et al. Analysis of flight variability: a systematic approach[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25(1): 54-64.
[78] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. MIT press, 2009.
[79] FUJISHIGE S. Submodular functions and optimization[M]. 2005.
[80] LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks [C]//Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. 2007: 420-429.
[81] Google map[EB/OL]. 2020. https://www.google.com/maps/preview.
[82] Fitts’Law: Tracking users’clicks[EB/OL]. 2020. https://www.interaction-design.org/literature/article/fitts-law-tracking-users-clicks.
[83] Porto dataset[EB/OL]. 2023. https://archive.ics.uci.edu/dataset/339/taxi+service+trajectory+prediction+challenge+ecml+pkdd+2015.
[84] Chengdu dataset[EB/OL]. 2020. https://outreach.didichuxing.com/app-vue/dataList.
[85] Unfolding maps[EB/OL]. 2020. http://unfoldingmaps.org/.
[86] The open-source graphical library[EB/OL]. 2020. https://processing.org.
[87] CheetahTraj source code[EB/OL]. 2024. https://github.com/ChrisZcu/CheetahTraj.
[88] EITER T, MANNILA H. Computing discrete Fréchet distance[M]. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert, 1994.
[89] HUANG Z, ZHAO Y, CHEN W, et al. A natural-language-based visual query approach of uncertain human trajectories[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(1): 1256-1266.
[90] SADAHIRO Y, LAY R, KOBAYASHI T. Trajectories of moving objects on a network: detection of similarities, visualization of relations, and classification of trajectories[J]. Transactions in GIS, 2013, 17(1): 18-40.
[91] LIU H, GAO Y, LU L, et al. Visual analysis of route diversity[C]//2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2011: 171-180.
[92] BAUR L. Over-the-web retrieval and visualization of massive trajectory sets[D]. 2021.
修改评论