中文版 | English
题名

基于石笋氧同位素和环境磁学的末次冰期亚洲夏季风演化

其他题名
EVOLUTION OF THE ASIAN SUMMER MONSOON DURING THE LAST GLACIAL BASED ON STALAGMITE OXYGEN ISOTOPE AND ENVIRONMENT MAGNETISM
姓名
姓名拼音
YANG Huihui
学号
11849590
学位类型
博士
学位专业
083001 环境科学
学科门类/专业学位类别
08 工学
导师
周祐民
导师单位
海洋科学与工程系
论文答辩日期
2024-04-20
论文提交日期
2024-06-25
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

        亚洲夏季风(Asian summer monsoon, ASM)区是世界上人口最稠密的地区。 ASM 的异常变化往往会引起干旱、洪涝等极端气候环境事件,直接威胁到季风区人类的生命和财产安全。因此,对 ASM 区未来气候环境变化的精准预测是环境领域的前沿科学问题。 气候预测的准确性主要基于对过去气候环境变化的认知。 末次冰期是距今最近的冰期, 研究该时期的 ASM 演化特
征可为预测未来 ASM 区气候环境演变奠定基础,具有重要的科学和实践意义。
        目前末次冰期 ASM 大气环流格局重建主要依靠模拟结果,缺乏地质记录验证。 ASM 区的石笋能够记录该区较为连续的气候环境演化信息。 石笋δ18O 记录可揭示与大气环流有关的“风”的演化,石笋环境磁学则与大气环流中“雨”的演化息息相关。综合这两种参数,可系统探讨 ASM 轨道及千年时间尺度时空变化特征。
        本文选取贵州省石竹洞石笋 SZ-1 和 SZ-3 进行综合测试和分析。 U-Th 定年和 δ18O 测量结果显示, SZ-1 的沉积年代为 45 至 25 ka(即 ka B.P.;在 1950年之前几千年) , SZ-3 为 33 至 15 ka。 两者 δ18O 结果的阶段性平均值分别为-5.5‰和-5.6‰。 根据 Bootstrap 方法,本文对两段 δ18O 记录进行时间序列拼合,构建出该区末次冰期中后期 45-15 ka 的 δ18O 演化序列(SZ-1-3)。整体上, SZ-1-3 的 δ18O 变化特征与亚洲夏季风区其他记录变化相似。将本研究结果与亚洲夏季风区其他记录作系统对比,发现这些 δ18O 记录的平均值整体上由沿海至内陆逐渐减降低,反映出水汽分馏机制占主导, 揭示出末次冰期中后期 ASM 两条重要的水汽输送路径。其中一条起源于印度洋,经南亚沿海地区,进入我国西南地区,随后抵达我国中部季风区。另一条则起源于太平洋,经我国东南沿海地区,向我国夏季风区的中西部和北部输送。
        除上述大尺度变化特征 , SZ-1-3 还存在着千年尺度变化 ,其中尤以Heinrich 事件最为显著。为进一步探究末次冰期 Heinrich 事件期间 ASM 区大气环流变化, 本文从亚洲夏季风区 14 个洞穴的石笋 δ18O 记录中,提取出4 次 Heinrich 事件的 30 个变化幅度数据,并揭示出从沿海向内陆逐渐增大的空间分布规律。 该变化规律主要涉及两种机制: 1)北半球高纬地区冬季风增
强和低纬地区热带辐合带南移,导致我国中低纬夏季风区夏季降雨减少,且越深入内陆减少幅度越大。夏季降雨的 δ18O 偏负,因此夏季降雨减少会引起石笋 δ18O 记录偏正; 2) 我国中低纬夏季风区降雨的水汽来源于印度洋和太平洋。印度洋水汽输送距离远,形成的降雨 δ18O 偏负; 而太平洋水汽搬运距离短,降雨 δ18O 相对偏正。在 Heinrich 事件期间,近源太平洋水汽占夏季降雨比例的增多,远源印度洋水汽则相应占比减少,共同促进上述空间格局的形成。
        针对降雨强度变化, 石竹洞石笋 SZ-1 和上覆土壤的 322 个岩石磁学结果表明,两者的主要载磁矿物都是亚铁磁性的磁铁矿和磁赤铁矿。 这种载磁矿物的一致性证实 SZ-1 磁性矿物主要源自洞穴上覆土壤, 并由基岩裂隙水搬运至洞穴中,其含量和粒径变化与裂隙水搬运强度有关,进而可指示区域降雨强度变化。 依据 SZ-1 的 U-Th 定年结果, 本文建立了 70-20 ka 期间 SZ-
1 的 环 境 磁 学 指 标 IRMsoft( 揭示磁性矿物中的亚铁磁性矿物含量)和ARM/SIRM(揭示磁性矿物的粒度)的演化序列, 构建了我国西南地区在末次冰期的古降雨演化曲线。 结果显示, 当降雨增多时,岩石缝隙中的水动力增强,可以输送更多且粒径更大的磁性矿物进入溶洞并沉积在石笋中, 反之亦然。
        降雨变化的影响机制方面,本文发现石笋 SZ-1 环境磁学指标 IRMsoft 和ARM/SIRM 在 轨 道 时 间 尺 度 具 有 半 岁 差 周 期 , 在 千 年 时 间 尺 度 上 响 应Heinrich 事件的变化。 本文认为该半岁差信号由热带日照信号通过热带辐合带和 ASM 向热带以外低-中纬地区传递。 其对 Heinrich 事件的响应与石笋δ18O 记录一致, 暗示两者都受到热带辐合带向南移动和印度洋北部蒸发分馏减弱的共同影响。
        综上所述, 本文取得如下三点创新认识: 1) 基于亚洲夏季风区石竹洞石笋 δ18O 记录及其与其他石笋 δ18O 记录之间的对比,揭示出末次冰期中后期亚洲夏季风的水汽传输路径; 2) 通过提取亚洲夏季风区石笋 δ18O 记录在末次冰期多次 Heinrich 事件期间的变化幅度,探索其空间分布规律,并对分布规律给予机制解释; 3) 基于石竹洞的环境磁学指标,揭示出末次冰期 ASM区我国西南石竹洞地区的古降雨演化规律,并分析得出其存在半岁差周期,在千年时间尺度响应于 Heinrich 事件。这三项成果从 ASM“风”和“雨”的角度出发,加深了对亚洲夏季风演化在轨道时间及亚轨道时间尺度上的认识。本研究可为我国未来气候环境变化趋势提供理论支撑,为长期人类活动需求提供科学基础。

 

其他摘要

        The Asian Summer Monsoon (ASM) region is the most densely populated areas in the world. The abnormal changes of ASM often cause extreme weather events such as drought and flood, which directly threaten human life and property safety in the monsoon area. Therefore, the prediction of future climate change is on the cutting-edge in the field of environment research. The accuracy of future climate prediction is based on the knowledge of past climate change. The last glacial period is the most recent glacial period. Studying the evolution of ASM during this period lay a foundation for predicting the future climatic and environmental evolution in the ASM region, which has important scientific and practical significance.

        The reconstruction of atmospheric circulation pattern of ASM during the last glacial period mainly relies on the simulation results at present, and lacks the verification from geological records. Stalagmites in ASM region record the relatively continuous climatic and environmental evolution information. Stalagmite δ18O records can reveal the evolution of “wind” in atmospheric circulation, and stalagmite environmental magnetism is closely related to the evolution of “rain” in atmospheric circulation. By combining these two research directions, the spatial and temporal variation characteristics of ASM on orbital and millennial time scale can be systematically discussed.

        The stalagmites SZ-1 and SZ-3 from Shizhu Cave in Guizhou Province were selected for comprehensive testing and analysis. U-Th dating and δ18O results indicate that the deposition age of SZ-1 is 45 to 25 ka (i.e. ka B.P.; Thousands of years before 1950), SZ-3 is 33 to 15 ka. The periodic mean values of their δ18O were -5.5‰ and -5.6‰, respectively. According to the Bootstrap method, two δ18O records were combined to construct the 45-15 ka δ18O evolution sequence (SZ-1-3) of the middle and late last glacial period in this area. Overall, the δ18O variation of SZ-1-3 is similar to other records in the ASM region. SZ-1-3 was systematically compared with other records in the ASM region, and it was found that the average values of these δ18O records gradually decreased from coastal to inland, reflecting the dominant water vapor fractionation mechanism, and revealing two important water vapor transport paths of ASM in the middle to late last glacial period. One originates in the Indian Ocean, through the coastal areas of South Asia, entered the southwest of China, and then reached the central monsoon region of China. The other originates from the Pacific Ocean, through the southeast coastal areas of our country, to the central, western and north parts of the summer monsoon area.

        In addition to the above changes, there are also millennial scale changes in SZ-1-3, especially during Heinrich stadials. In order to further investigate the changes of atmospheric circulation in the ASM region during the Heinrich stadials of the last glacial period, we extracted 30 amplitude data of 4 Heinrich events from the stalagmite δ18O records of 14 caves in the ASM region, and revealed the increasing spatial distribution from the coast to the interior. There are two main mechanisms involved in this change: (1) the increase of winter wind in the high latitude region of the northern hemisphere and the southward shift of the intertropical convergence zone in the low latitude region lead to the decrease of summer rainfall in the middle-low-latitude summer monsoon region of China. The decrease is greater with the increasing distance between land and sea. The δ18O of summer rainfall is relatively depleted, so the decrease of summer rainfall will cause more enriched stalagmite δ18O records. (2) The water vapor of rainfall in the middle-low-latitude summer monsoon area in China comes from the Indian Ocean and the Pacific Ocean. The water vapor transport distance in the Indian Ocean is far, so the precipitation δ18O is relatively depleted. The Pacific water vapor transport distance is short, and the rainfall δ18O is relatively enriched. The proportion of water vapor from the near Pacific Ocean increased, while the proportion of water vapor from the far Indian Ocean decreased, which jointly promoted the formation of the above spatial pattern during the Heinrich stadials.

        For changes in rainfall intensity, the 322 rock magnetic results of stalagmite SZ-1 and overlying soil of Shizhu Cave reveal that the main magnetic carrying minerals of them are ferromagnetic magnetite and maghemite. The consistency confirms that the magnetic mineral SZ-1 mainly originates from the overlying soil of the cave and is transported to the cave by the fissure water of the bedrock. The changed content and particle size of SZ-1 are related to the transport intensity of the fissure water, which further indicate the change of regional rainfall intensity. Based on the U-Th dating results of SZ-1, the evolution sequences of environmental magnetic parameters IRMsoft (revealing the ferromagnetic content in magnetic minerals) and ARM/SIRM (revealing the particle size of magnetic minerals) of SZ-1 during 70-20 ka were established, and the paleorainfall evolution curve of the last glacial period in southwest China was constructed. The results show that when rainfall increases, the hydrodynamic forces in the rock fissure are enhanced, and more magnetic minerals with larger particle sizes can be transported into the cave and deposited in the stalagmites, and vice versa.

        On the mechanisms of precipitation changes,this study show that IRMsoft and ARM/SIRM of SZ-1 have half-precession periods on the orbital timescale and respond to Heinrich stadials on the millennial timescale. It is suggested that the half-precession signal is transmitted by tropical insolation signal to low-middle-latitude areas outside the tropics through the intertropical convergence zone and ASM. Its response to the Heinrich stadials is consistent with the stalagmite δ18O records, suggesting that both of them are influenced by a combination of southward movement of the intertropical convergence zone and a weakening of evaporative fractionation in the northern Indian Ocean.

        In summary, this study has obtained the following three innovative understandings. (1) Based on the δ18O records of stalagmite and its comparison with other δ18O records in the Asian summer monsoon region, this study reveals the water vapor transport path of the Asian summer monsoon in the middle and late last glacial period. (2) By further extracting the variation amplitude of δ18O records in stalagmites in the Asian summer monsoon area during the Heinrich events of the last glacial period, the spatial distribution of these records is found, and the mechanism of the distribution is explained. (3) Based on the environmental magnetic parameters of the stalagmite SZ-1, this study reveal the changes of the paleo-rainfall during the last glacial period in the studied region. Also, half-precession periods on the orbital time scale and response to Heinrich stadials on the millennial time scale of these two environmental magnetic parameters are revealed. These three results deepen the understanding of ASM evolution on orbital and suborbital time scale from the perspective of ASM “wind” and “rainfall”.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2024-06
参考文献列表

[1] 安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(06): 341-381.
[2] DING Y H, CHAN J C L. The East Asian summer monsoon: An overview[J]. Meteorology and Atmospheric Physics, 2005, 89(1-4): 117-142.
[3] WANG H J, CHEN H P. Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12109): 1-9.
[4] CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[5] 王新华. 我国粮食进出口、国内粮价与国际粮价的互动关系研究[J]. 统计与决策, 2013, (14): 118-121.
[6] 丑洁明, 董文杰, 徐洪, 等. 气候变化影响中国粮食安全研究的新思路[J]. 气候与环境研究, 2022, 27(01): 206-216.
[7] 苏芳, 刘钰, 汪三贵, 等. 气候变化对中国不同粮食产区粮食安全的影响[J]. 中国人口·资源与环境, 2022, 32(08): 140-152.
[8] 侯路瑶, 姜允芳, 石铁矛, 等. 基于气候变化的城市规划研究进展与展望[J]. 城市规划, 2019, 43(03): 121-132.
[9] 曹逸希. 韧性城市理念下应对气候变化影响的规划策略[J]. 陕西水利, 2020, (05): 220-224.
[10] 中国科学院学部. 关于气候变化对我国的影响与防灾对策建议[J]. 中国科学院院刊, 2008, (03): 229-234.
[11] WU F L, FANG X M, YANG Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3: 684-700.
[12] SHACKLETON N J N. Oxygen isotope analyses and Pleistocene temperatures reassessed[J]. Nature, 1967, 215: 15-17.
[13] EMILIANI C J S. Pleistocene temperatures[J]. Science, 1970, 168(3933): 822-825.
[14] DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Climate processes and climate sensitivity[M]. Washington: American Geophysical Union, 1984.
[15] PETIT J R, JOUZEL J, RAYNAUD D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429-436.
[16] 安芷生, 吴锡浩, 汪品先, 等. 最近130 ka中国的古季风——Ⅰ.古季风记录[J]. 中国科学(B辑), 1991, (10): 1076-1081.
[17] GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[18] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉: 中国地质大学出版社, 1995.
[19] TIAN Z, JIANG D. Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 115-126.
[20] 汪永进, 刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 2016, 61(9): 938-951.
[21] WANG Y J, CHENG H, Edwards R L, et al. A High-Resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[22] WANG Y J, CHENG H, EDWARDS R L, et al. Millennial- and orbital-scale changes in the east Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093.
[23] CHENG H, SINHA A, WANG X F, et al. The global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
[24] CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[25] TAN M. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2013, 42(3-4): 1067-1077.
[26] SUN Z, YANG Y, ZHAO J Y, et al. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China[J]. Journal of Hydrology, 2018, 566: 164-174.
[27] JIANG D B, LANG X M, TIAN Z P, et al. Last glacial maximum climate over China from PMIP simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(3-4): 347-357.
[28] JIANG D B, YU G, ZHAO P, et al. Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Sciences, 2014, 32(2): 250-275.
[29] STRAUSS B E, STREHLAU J H, LASCU I, et al. The origin of magnetic remanence in stalagmites: Observations from electron microscopy and rock magnetism[J]. Geochemistry Geophysics Geosystems, 2013, 14(12): 5006-5025.
[30] MOORE G W. Speleothem: A new cave term[J]. Nature Speleology Society News, 1952, 10(6): 2.
[31] BAKER A, SMART P L, EDWARDS R L, et al. Annual growth banding in a cave stalagmite[J]. Nature, 1993, 364: 518-520.
[32] BAKER A, MARIETHOZ G, COMAS-BRU L, et al. The properties of annually laminated stalagmites a global synthesis[J]. Reviews of Geophysics, 2021, 59: e2020RG000722.
[33] YUAN D X, CHENG H, EDWARDS R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
[34] LECHLEITNER F A, BREITENBACH S F M, CHENG H, et al. Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation[J]. Quaternary Research, 2017, 88(3): 458-471.
[35] ZHAO M, LI H-C, SHEN C-C, et al. δ18O, δ13C, elemental content and depositional features of a stalagmite from Yelang Cave reflecting climate and vegetation changes since late Pleistocene in central Guizhou, China[J]. Quaternary International, 2017, 452: 102-115.
[36] 李玲珑, 刘再华. 不同植被条件下岩溶地下水δ13CDIC的差异研究[J]. 第四纪研究, 2015, 35(04): 913-921.
[37] WONG C I, BANNER J L, MUSGROVE M L. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3514-3529.
[38] FAIRCHILD I J, TREBLE P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449-468.
[39] ATSAWAWARANUNT K, COMAS-BRU L, AMIRNEZHAD-MOZHDEHI S, et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems[J]. Earth System Science Data, 2018, 10(3): 1687-1713.
[40] COMAS-BRU L, HARRISON S P. SISAL: Bringing Added Value to Speleothem Research[J]. Quaternary, 2019, 2(1): 7.
[41] ZHANG H W, BRAHIM Y A, LI H Y, et al. The Asian summer monsoon: teleconnections and forcing mechanisms—a review from Chinese speleothem δ18O records[J]. Quaternary, 2019, 2(3): 26.
[42] ZHU Z M, FEINBERG J M, XIE S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 852-857.
[43] XIE S C, EVERSHED R P, HUANG X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
[44] BOURNE M D, FEINBERG J M, STRAUSS B E, et al. Long-term changes in precipitation recorded by magnetic minerals in speleothems[J]. Geology, 2015, 43(7): 595-598.
[45] JAQUETO P, TRINDADE I F R, FEINBERG J M, et al. Magnetic mineralogy of speleothems from tropical-subtropical sites of south America[J]. Frontiers in Earth Sciences, 2021, 9: 634482.
[46] JAQUETO P, TRINDADE R I F, HARTMANN G A, et al. Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7024-7039.
[47] CHENG H, ZHANG H W, ZHAO J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 62(10): 1489-1513.
[48] VEROSUB K L, ROBERTS A P. Environmental magnetism: Past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175-2192.
[49] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[50] O'NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51(12): 5547-5558.
[51] HENDY C H. The isotopic geochemistry of speleothems — I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824.
[52] CRAIG H. The measurement of oxygen isotope paleotemperatures, in Tongiorgi, E., ed., Stable Isotopes in Oceanographic Studies and Paleotemperatures[C], Spoleto: Consiglio Nazionale delle Ricerche, Laboratorio di Geologica Nucleare, Pisa, 1965: 161-182.
[53] 陈跃, 黄培华, 朱洪山. 北京周口店地区洞穴内第四纪石笋的同位素古温度研究[J]. 科学通报, 1986, (20): 1576-1578.
[54] LAURITZEN S E, LOVLIE R, MOE D, et al. Paleoclimate deduced from a multidisciplinary study of a half-million-year-old stalagmite from rana, northern Norway[J]. Quaternary Research, 1990, 34(3): 306-316.
[55] 刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997, 01: 41-49.
[56] 谭明, 刘东生, 秦小光, 等. 北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究[J]. 中国岩溶, 1997, (01): 2-11.
[57] KATHAYAT G, CHENG H, SINHA A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Report, 2016, 6: 24374.
[58] DANSGAARD. A new Greenland deep ice core[J]. Science, 1982, 218, 4579: 1273-1277.
[59] DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220.
[60] HEINRICH H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
[61] HEMMING S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1): RG1005.
[62] CHEN S T, WANG Y J, CHENG H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Report, 2016, 6: 32995.
[63] DONG J G, SHEN C C, KONG X G, et al. Asian monsoon dynamics at Dansgaard/Oeschger events 14-8 and Heinrich events 5-4 in northern China[J]. Quaternary Geochronology, 2018, 47: 72-80.
[64] DUAN W H, CHENG H, TAN M, et al. Timing and structure of Termination II in north China constrained by a precisely dated stalagmite record[J]. Earth and Planetary Science Letters, 2019, 512: 1-7.
[65] ZHANG X, QIU W, JIANG X, et al. Three-phase structure of the East Asia summer monsoon during Heinrich Stadial 4 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2021, 274: 107267.
[66] QIU W Y, ZHANG X, JIANG X, et al. Double-plunge structure of the East Asian summer monsoon during Heinrich stadial 1 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2022, 282: 107442.
[67] LI D, TAN L C, CAI Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5-6): 2969-2983.
[68] LIANG Y J, ZHAO K, EDWARDS R L, et al. East Asian monsoon changes early in the last deglaciation and insights into the interpretation of oxygen isotope changes in the Chinese stalagmite record[J]. Quaternary Science Reviews, 2020, 250.
[69] ZHANG H B, CHENG H, SPOTL C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Report, 2018, 8(1): 12344.
[70] 谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义——古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(05): 851-862.
[71] TAN M. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re-reconstruction of ENSO-like state[J]. Science China Earth Sciences, 2016, 59(6): 1225-1241.
[72] CLEMENS S C, PRELL W L. The timing of orbital-scale Indian monsoon changes[J]. Quaternary Science Reviews, 2007, 26(3-4): 275-278.
[73] AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
[74] CLEMENS S C, PRELL W L, SUN Y. Orbital-scale timing and mechanisms driving late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(4): 1-19.
[75] BURNS S J, FLEITMANN D, MATTER A, et al. Speleothem evidence from Oman for continental pluvial events during interglacial periods[J]. Geology, 2001, 29(7): 623-626.
[76] KUTZBACH J E, LIU X D, LIU Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280, 000 years[J]. Climate Dynamics, 2007, 30(6): 567-579.
[77] MERLIS T M, SCHNEIDER T, BORDONI S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010-2021.
[78] BATTISTI D S, DING Q, ROE G H. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(21): 11997-12020.
[79] RUDDIMAN W F. What is the timing of orbital-scale monsoon changes [J]. Quaternary Science Reviews, 2006, 25(23-24): 657-658.
[80] TAN L, SHEN C C, LOWEMARK L, et al. Rainfall variations in central Indo-Pacific over the past 2, 700 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 16(35): 17201-17206.
[81] QIU H Y, LI T Y, CHEN C J, et al. Significance of active speleothem δ18O at annual-decadal timescale——A case study from monitoring in Furong Cave[J]. Applied Geochemistry, 2021, 126: 104873.
[82] CHIANG J C H, FUNG I Y, WU C H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129.
[83] 张秋颖, 万修全, 刘泽栋, 等. 末次盛冰期气候环境基本特征和数值模拟研究进展[J]. 海洋通报, 2017, 36(01): 1-11.
[84] MacAyeal D R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events[J]. Paleoceanography, 1993, 8(6): 775-784.
[85] BRADLEY R S, DIAZ H F. Late quaternary abrupt climate change in the tropics and sub-tropics: the continental signal of tropical hydroclimatic events (thes)[J]. Reviews of Geophysics, 2021, 59(4): 1-35.
[86] DONG B W, SUTTON R T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation[J]. Geophysical Research Letters, 2002, 29(15): 181-184.
[87] CHIANG J C H, BITZ C M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone[J]. Climate Dynamics, 2005, 25(5): 477-496.
[88] BROCCOLI A J, DAHL K A, STOUFFER R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): L01702.
[89] HUANG R H, LIU Y, DU Z C, et al. Differences and links between the east Asian and south Asian summer monsoon systems: characteristics and variability[J]. Advances in Atmospheric Sciences, 2017, 10(34): 71-85.
[90] ZHANG Z Q, LIANG Y J, WANG Y J, et al. Evidence of ENSO signals in a stalagmite-based Asian monsoon record during the medieval warm period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110714.
[91] NEFF U, BURNS S J, MANGINI A, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J]. Nature, 2001, 411: 290-293.
[92] WANG Y J, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[93] WANG X F, DUAN W H, TAN M, et al. Variability of PDO identified by a last 300-year stalagmite δ18O record in Southwest China[J]. Quaternary Science Reviews, 2021, 261: 106947.
[94] Thompson R, Oldfield F. Environmental magnetism[M]. London: Allen and Union, 1986.
[95] EVANS M, HELLER F. Environmental magnetism: principles and applications of Enviromagnetics[M]. San Diego: Academic Press, 2003.
[96] LIU Q S, ROBERTS A P, LARRASOANA J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): 1-51.
[97] LATHAM A G, SCHWARCZ H P, FORD D C, et al. Palaeomagnetism of stalagmite deposits[J]. Nature, 1979, 280: 383-385.
[98] LATHAM A G, FORD D C, SCHWARCZ H P, et al. Secular variation from Mexican stalagmites: their potential and problems[J]. Physics of the Earth and Planetary Interiors, 1989, 56(1-2): 34-48.
[99] MORINAGA H, INOKUCHI H, YASKAWA K J O G, et al. Magnetization of a stalagmite in Akiyoshi plateau as a record of the geomagnetic secular variation in west Japan[J]. Journal of Geomagnetism and Geoelectricity, 1986, 38(1): 27-44.
[100] PERKINS A M. Observations under electron microscopy of magnetic minerals extracted from speleothems[J]. Earth and Planetary Science Letters, 1996, 139(1-2): 281-289.
[101] LASCU I, FEINBERG J M, DORALE J A, et al. Age of the Laschamp excursion determined by U-Th dating of a speleothem geomagnetic record from North America[J]. Geology, 2016, 44(2): 139-142.
[102] PONTE J M, FONT E, VEIGA-PIRES C, et al. The effect of speleothem surface slope on the remanent magnetic inclination[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4143-4156.
[103] CHOU Y M, JIANG X Y, LIU Q S, et al. Multidecadally resolved polarity oscillations during a geomagnetic excursion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8913-8918.
[104] LASCU I, FEINBERG J M. Speleothem magnetism[J]. Quaternary Science Reviews, 2011, 30(23-24): 3306-3320.
[105] HERRIES A I, SHAW J. Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: implications for the age of the hominin fossils and stone tool industries[J]. Journal of Human Evolution, 2011, 60(5): 523-539.
[106] ADAMS J W, HERRIES A I R, KUYKENDALL K L, et al. Taphonomy of a South African cave: geological and hydrological influences on the GD 1 fossil assemblage at Gondolin, a Plio-Pleistocene paleocave system in the Northwest Province, South Africa[J]. Quaternary Science Reviews, 2007, 26(19-21): 2526-2543.
[107] Bull P A. Some fine-grained sedimentation phenomena in caves[J]. Earth Surf Processes Landforms, 1981, 6: 11-22.
[108] 谢树成, 胡超涌, 顾延生, 等. 最近13 ka以来长江中游古水文变化[J]. 地球科学(中国地质大学学报), 2015, 40(02): 198-205.
[109] PETERS C, DEKKERS M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16-19): 659-667.
[110] HU C Y, HENDERSON G M, HUANG J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232.
[111] LIU Q S, ROBERTS A P, TORRENT J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry Geophysics Geosystems, 2007, 8(Q09011): 1-10.
[112] ROBINSON S G. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements[J]. Physics of the Earth and Planetary Interiors, 1986, 42(1-2): 22-47.
[113] BURSTYN Y, SHAAR R, KEINAN J, et al. Holocene wet episodes recorded by magnetic minerals in stalagmites from Soreq Cave, Israel[J]. Geology, 2022, 50: 284-288.
[114] DORALE J A, Gonzalez L A, Reagan M, et al. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Mprtjeast Iowa[J]. Science, 1992, 258(5088): 1626-1630.
[115] 李吉龙, 段武辉, 吴江滢. 安徽蓬莱仙洞不同滴水点差异PCP作用及其古气候记录研究意义[J]. 第四纪研究, 2014, 34(04): 905-916.
[116] 王世杰, 罗维均, 刘秀明, 等. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义[J]. 地学前缘, 2009, 16(06): 66-76.
[117] SPOTL C, FAIRCHILD I J, TOOTH A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
[118] BREITENBACH F M S, LECHLEITNER A F, MEYER H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting-a monitoring study from NE India[J]. Chemical Geology, 2015, 402(8): 111-124.
[119] SHERWIN C M, BALDINI J U L. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems[J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 3915-3929.
[120] FAIRCHILD I J, SMITH C L, BAKER A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1-4): 105-153.
[121] RUSANOV V, GILSON R G, LOUGEAR A, et al. Mössbauer, magnetic, X-ray fluorescence and transmission electron microscopy study of natural magnetic materials from speleothems: hematite and the Morin transition[J]. Hyperfine Interactions, 2000, 128: 353-373.
[122] STREHLAU J, HEGNER L, STRAUSS B, et al. Simple and efficient separation of magnetic minerals from speleothems and other carbonates[J]. Journal of Sedimentary Research, 2014, 84: 1096-1106.
[123] CHEN F H, CHEN X M, CHEN J H, et al. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
[124] YANG X L, LIU J B, LIANG F Y, et al. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014, 24(12): 1657-1664.
[125] LIU J B, CHEN J H, ZHANG X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208.
[126] MI X, LIU D, WANG Y, et al. Spatial pattern of orbital-to millennial-scale East Asian stalagmite δ18O variations during MIS 3[J]. Quaternary Science Reviews, 2022, 298: 107844.
[127] 贵州省地质调查院. 贵州省地质志[M]. 北京: 地质出版社, 2017.
[128] ORLAND I J, EDWARDS R L, CHENG H, et al. Direct measurements of deglacial monsoon strength in a Chinese stalagmite[J]. Geology, 2015, 43(6): 555-558.
[129] 周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, (01): 59-70.
[130] WANG B. The Asian Monsoon[M]. Berlin: Springer, 2006.
[131] KALNAY E, KANAMITSU M, KISTLER R, et al. NCEP/NCAR 40-year reanalysis project[J]. Renewable Energy, 1996, 77(3): 437-472.
[132] LIU Z Y, WEN X Y, BRADY E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
[133] TURNER A G, ANNAMALAI H. Climate change and the South Asian summer monsoon[J]. Nature Climate Change, 2012, 2(8): 587-595.
[134] KAUSHAL N, BREITENBACH S F M, LECHLEITNER F A, et al. The Indian summer monsoon from a speleothem δ18O perspective: a review[J]. Quaternary, 2018, 1(3): 29.
[135] CAI Y J, FUNG I Y, EDWARDS R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959.
[136] BOURDON B, TURNER S, HENDERSON G M, et al. Introduction to U-series geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 1-21.
[137] CHENG H, LAWRENCE EDWARDS R, SHEN C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
[138] SHEN C C, LIN H T, CHU M F, et al. Measurements of natural uranium concentration and isotopic composition with permil-level precision by inductively coupled plasma–quadrupole mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): 1-10.
[139] SHEN C C, WU C C, CHENG H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86.
[140] 潘永信, 朱日祥. 环境磁学研究现状和进展[J]. 地球物理学进展, 1996, (04): 87-99.
[141] KING J W, CHANNELL J E T. Sedimentary magnetism, Envrionmental magnetism, and magnetostratigraphy[J]. Reviews of Geophysics, 1991, 29(S1): 358-370.
[142] 符超峰, 宋友桂, 强小科, 等. 环境磁学在古气候环境研究中的回顾与展望[J]. 地球科学与环境学报, 2009, 31(03): 312-322.
[143] KISSEL C, LAJ C, CLEMENS S, et al. Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea[J]. Marine Geology, 2003, 201(1-3): 119-132.
[144] EGLI R. Characterization of Individual Rock Magnetic Components by Analysis of Remanence Curves, 1. Unmixing Natural Sediments[J]. Studia Geophysica et Geodaetica, 2004, 48: 391-446.
[145] ZHAO X Y, FUJI M, SUGANUMA Y, et al. Applying the burr type XII distribution to decompose remanent magnetization curves[J]. Journal of Geophysical Reasearch: Solid Earth, 2018, 123(10): 8298-8311.
[146] HE K, ZHAO X Y, PAN Y X, et al. Benchmarking component analysis of remanent magnetization curves with a synthetic mixture series: insight into the reliability of unmixing natural samples[J]. Journal of Geophysical Reasearch: Solid Earth, 2020, 125(10): e2020JB020105.
[147] GUYODO Y, LAPARA T M, ANSCHUTZ A J, et al. Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska[J]. Earth and Planetary Science Letters, 2006, 251(1-2): 168-178.
[148] SHI T H, DING J, ZHU Z M, et al. Occurrence and distribution patterns of magnetic particles within stalagmite growth laminae[J]. Geochemistry Geophysics Geosystems, 2022, 23(9): e2022GC010487.
[149] EFRON B. Bootstrap Methods: Another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1): 1-26.
[150] LI Y X, RAO Z G, XU Q H, et al. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536.
[151] 陈岳龙, 杨忠芳, 赵志丹. 同位素地质年代学与地球化学[M]. 北京: 地质出版社, 2005.
[152] MCCREA J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 18(6): 840-857.
[153] SHARMA T, CLAYTON R N. Measurement of O18/O16 ratios of total oxygen of carbonates[J]. Geochim Cosmochim Acta, 1965, 29(12): 1347-1353.
[154] DUAN W H, RUAN J Y, LUO W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 250-266.
[155] WANG Q, WANG Y J, ZHAO K, et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China[J]. Environmental Earth Sciences, 2018, 77(12): 1-18.
[156] 陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004.
[157] JOUZEL J, MASSON-DELMOTTE V, CATTANI O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839): 793-796.
[158] SHARP Z D. Principles of Stable Isotope Geochemistry[M]. Westminster: Pearson Education Group, 2017.
[159] ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
[160] JOUZEL J, KOSTER R D, SUOZZO R J, et al. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D12): 25791.
[161] BLUNIER, SCIENCE T J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period[J]. Science, 2001, 291(5501): 109-112.
[162] MOOK W G. Environmental isotopes in the hydrological cycle: principles and applications[M]. Paris: UNESCO, 2001.
[163] BARBANTE C, BARNOLA J, BECAGLI S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
[164] LACHNIET M S. Climatic and environmental controls on speleothem oxygen-isotope values[J]. Quaternary Science Reviews, 2009, 28(5-6): 412-432.
[165] FLAIM G, CAMIN F, TONON A, et al. Stable isotopes of lakes and precipitation along an altitudinal gradient in the Eastern Alps[J]. Biogeochemistry, 2013, 116(1-3): 187-198.
[166] WANG L, CHEN R, SONG Y, et al. Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains[J]. Theoretical and Applied Climatology, 2017, 134(3-4): 875-884.
[167] LIU J R, SONG X F, YUAN G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
[168] DAYEM K E, MOLNAR P, BATTISTI D S, et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J]. Earth and Planetary Science Letters, 2010, 295(1-2): 219-230.
[169] PENG T R, WANG C H, HUANG C C, et al. Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region[J]. Earth and Planetary Science Letters, 2010, 289(3): 357-366.
[170] HUANG Y Y, WANG B, LI X F, et al. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s[J]. Climate Dynamics, 2018, 51: 443-455.
[171] JOUZEL J, HOFFMANN G, KOSTER R D, et al. Water isotopes in precipitation: data/model comparison for present-day and past climates[J]. Quaternary Science Reviews, 2000, 19(1-5): 363-379.
[172] CAI Z Y, TIAN L D, BOWEN G J. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region[J]. Earth and Planetary Science Letters, 2017, 475: 25-33.
[173] CHENG T F, LU M. Moisture source-receptor network of the east asian summer monsoon land regions and the associated atmospheric steerings[J]. Journal of Climate, 2020, 33(21): 9213-9231.
[174] ZHANG H W, CAI Y J, TAN L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309(1): 1-14.
[175] 李嘉燕, 田怡苹, 光凯悦, 等. 文石石笋发生矿物重结晶的影响因素及其古气候意义[J]. 中国岩溶, 2022, 41(04): 648-659.
[176] DORALE J A, EDWARDS R L, ITO E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from crevice cave, Missouri, USA[J]. Science, 1998, 282: 1871-1874.
[177] ZHAO K, WANG Y J, EDWARDS R L, et al. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition[J]. Earth and Planetary Science Letters, 2010, 298(1-2): 191-198.
[178] DUTT S, GUPTA A K, CLEMENS S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B.P[J]. Geophysical Research Letters, 2015, 42(13): 5526-5532.
[179] ZHOU H Y, ZHAO J X, FENG Y X, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China[J]. Quaternary Research, 2008, 69(2): 306-315.
[180] SUN Y B, CHEN J, CLEMENS S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau[J]. Geochemistry Geophysics Geosystems, 2006, 7(12): 1-16.
[181] LI Y X, RAO Z G, CAO J, et al. Highly negative oxygen isotopes in precipitation in southwest China and their significance in paleoclimatic studies[J]. Quaternary International, 2017, 440: 64-71.
[182] LIU G, LI X, CHIANG H W, et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records[J]. Science advances, 2020, 6: eaay8189.
[183] CHENG H, ZHANG H W, SPOTL C, et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23408-23417.
[184] WU Y, LI T Y, YU T L, et al. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234: 106261.
[185] LI T Y, WU Y, SHEN C C, et al. High precise dating on the variation of the Asian summer monsoon since 37 ka B.P.[J]. Scientific Report, 2021, 11(1): 9375.
[186] HAN L Y, LI T Y, CHENG H, et al. Potential influence of temperature changes in the southern hemisphere on the evolution of the Asian summer monsoon during the last glacial period[J]. Quaternary International, 2016, 392: 239-250.
[187] LI T Y, HAN L Y, CHENG H, et al. Evolution of the Asian summer monsoon during Dansgaard/Oeschger events 13-17 recorded in a stalagmite constrained by high-precision chronology from southwest China[J]. Quaternary Research, 2017, 88(1): 121-128.
[188] JIANG X Y, HE Y Q, SHEN C C, et al. Decoupling of the East Asian summer monsoon and Indian summer monsoon between 20 and 17 ka[J]. Quaternary Research, 2014, 88(1): 146-153.
[189] LIU D B, WANG Y J, CHENG H, et al. Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations[J]. Quaternary Science Reviews, 2010, 29(9-10): 1107-1115.
[190] ZHANG Z Q, WANG Y J, LIU D B, et al. Multi-scale variability of the Asian monsoon recorded in an annually-banded stalagmite during the Neoglacial from Qixing Cave, Southwestern China[J]. Quaternary International, 2018, 487: 78-86.
[191] COSFORD J, QING H R, YUAN D X, et al. Millennial-scale variability in the Asian monsoon: Evidence from oxygen isotope records from stalagmites in southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266(1-2): 3-12.
[192] LI H C, BAR-MATTHEWS M, CHANG Y P, et al. High-resolution δ18O and δ13C records during the past 65 ka from Fengyu Cave in Guilin: Variation of monsoonal climates in south China[J]. Quaternary International, 2017, 441: 117-128.
[193] MOHTADI M, PRANGE M, OPPO D W, et al. North Atlantic forcing of tropical Indian Ocean climate[J]. Nature, 2014, 509(7498): 76-80.
[194] CLEMENT A C, PETERSON L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(RG4002): 1-39.
[195] DAHL K A, BROCCOLI A J, STOUFFER R J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective[J]. Climate Dynamics, 2005, 24(4): 325-346.
[196] MARKLE B R, STEIG E J, BUIZERT C, et al. Global atmospheric teleconnections during Dansgaard–Oeschger events[J]. Nature Geoscience, 2016, 10(1): 36-40.
[197] LYNCH-STIEGLITZ J. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9(1): 83-104.
[198] DONG X Y, KATHAYAT G, RASMUSSEN S O, et al. Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2[J]. Nature Communications, 2022, 13(1): 5867.
[199] BROCCOLI A J, DAHL K A, STOUFFER R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33, L01702.
[200] ZHANG R, DELWORTH T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 2005, 18(12): 1853-1860.
[201] WANG X F, EDWARDS R L, AULER A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45, 000 years[J]. Nature, 2017, 541(7636): 204-207.
[202] CLEMENT A C, HALL A, BROCCOLI A J. The importance of precessional signals in the tropical climate[J]. Climate Dynamics, 2004, 22(4): 327-341.
[203] WANG X F, AULER A S, EDWARDS R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90, 000 years[J]. Geophysical Research Letters, 2007, 34(L23701): 1-5.
[204] LINDZEN R S, HOU A V. Hadley Circulations for zonally averaged heating centered off the equator[J]. Journal of the Atmospheric Science, 1988, 45(17): 2416-2427.
[205] JACOBEL A W, MCMANUS J F, ANDERSON R F, et al. Large deglacial shifts of the pacific intertropical convergence zone[J]. Nature Communications, 2016, 7: 10449.
[206] DEPLAZES G, LUCKGE A, STUUT J B W, et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29(2): 99-114.
[207] ZORZI C, SANCHEZ GONI M F, ANUPAMA K, et al. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich stadial 2 and the last interglacial-glacial transition[J]. Quaternary Science Reviews, 2015, 125: 50-60.
[208] PAUSATA F S R, BATTISTI D S, NISANCIOGLU K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
[209] PORTER S C, AN Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 25: 305-308.
[210] SUN Y B, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
[211] CHIANG J C H, HERMAN M J, YOSHIMURA K, et al. Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14745-14750.
[212] LAINE A, KAGEYAMA M, SALAS-MELIA D, et al. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation[J]. Climate Dynamics, 2009, 32(5): 593-614.
[213] SCHIEMANN R, LUTHI D, SCHAR C. Seasonality and interannual variability of the westerly jet in the Tibetan plateau region[J]. Journal of Climate, 2009, 22(11): 2940-2957.
[214] YANASE W, ABE-OUCHI A. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations[J]. Climate of the Past, 2007, 3: 439-451.
[215] NAGASHIMA K, TADA R, TANI A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214-1220.
[216] SAMPE T, XIE S P. Large-Scale dynamics of the Meiyu-baiu rainband: environmental forcing by the westerly jet[J]. Journal of Climate, 2010, 23(1): 113-134.
[217] BAKER A J, SODEMANN H, BALDINI J U L, et al. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(12): 5850-5862.
[218] ZHANG H B, GRIFFITHS M L, CHIANG J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583.
[219] GADGIL S. The monsoon system: Land-sea breeze or the ITCZ?[J]. Journal of Earth System Science, 2018, 127(1): 1-29.
[220] TIAN L, YAO T, SCHUSTER P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108: 1-16.
[221] HU J, EMILE-GEAY J, TABOR C, et al. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model [J]. 2019, 34(12): 2098-2112.
[222] ROE G H, DING Q H, BATTISTI D S, et al. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50Ma[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5453-5470.
[223] BOSMANS J H C, ERB M P, DOLAN A M, et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs[J]. Quaternary Science Reviews, 2018, 188: 121-135.
[224] KABOTH-BAHR S, BAHR A, ZEEDEN C, et al. A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene[J]. Scientific Report, 2021, 1(1): 6938.
[225] SIDDALL M, Rohling E J, ALMOGI-LABIN A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423: 853-858.
[226] SIDDALL M, ROHLING E J, THOMPSON W G, et al. Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook[J]. Reviews of Geophysics, 2008, 46(4): 1-29.
[227] CHEN Q M, CHENG X, CAI Y J, et al. Asian Summer Monsoon Changes Inferred From a Stalagmite δ18O Record in Central China During the Last Glacial Period[J]. Frontiers in Earth Science, 2022, 10, 863829.
[228] ZHANG H B, GRIFFITHS M L, HUANG J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
[229] 陈仕涛, 汪永进, 吴江滢, 等. 东亚季风气候对Heinrich2事件的响应: 来自石笋的高分辨率记录[J]. 地球化学, 2006, (6): 586-592.
[230] LIU D B, WANG Y J, CHENG H, et al. Contrasting Patterns in Abrupt Asian Summer Monsoon Changes in the Last Glacial Period and the Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(2): 214-226.
[231] CAI Y J, AN Z S, CHENG H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8): 621-624.
[232] GONG D Y, HO C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29(10): 1-4.
[233] CAO J, HU J M, TAO Y. An index for the interface between the Indian summer monsoon and the East Asian summer monsoon[J]. Journal of Geophysical Research: Atmosphere, 2012, 117(D18108): 1-9.
[234] CAO J, GUI S, SU Q, et al. The variability of the Indian-east Asian summer monsoon interface in relation to the spring seesaw mode between the Indian ocean and the central-western pacific[J]. Journal of Climate, 2016, 29(13): 5027-5040.
[235] ZHOU T J, YU R C, ZHANG J, et al. Why the western pacific subtropical high has extended westward since the late 1970s[J]. Journal of Climate, 2009, 22(8): 2199-2215.
[236] ZHAO J Y, CHENG H, YANG Y, et al. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records[J]. Climate Dynamics, 2019, 52(5-6): 3741-3757.
[237] DRAXLER R R, HESS G D. An overview of the HYSPLIT_4 modelling system for trajectories[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
[238] LIU Q S, DENG C L, TORRENT J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3-4): 368-385.
[239] 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 02: 193-209.
[240] 姜月华, 殷洪福, 王润华. 环境磁学理论、方法和研究进展[J]. 地球学报, 2004, (03): 357-362.
[241] 胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义[J]. 第四纪研究, 2014, 34(03): 458-473.
[242] Tauxe L. Essentials of paleomagnetism[M]. Berkeley: University of California Press, 2010.
[243] 胡鹏翔. 中国黄土-古土壤序列的环境磁学机制研究——新方法与新证据[D]. 北京: 中国科学院大学, 2015.
[244] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(04): 1041-1048.
[245] 朱岗崑. 古地磁学: 基础、原理、方法、成果与应用[M]. 北京: 科学出版社, 2005.
[246] Butler R F. Paleomagnetism: magnetic domains to geologic terranes[M]. Oxford: Blackwell Scientific Publications, 1992.
[247] LIU Q S, Banerjee S K, Jackson M J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences[J]. Journal of Geophysical Research, 2004, 109(B03101): 1-16.
[248] VERWEY E J W. Electron conduction of magnetite (Fe3O4) and its transition point at low temperatures[J]. Nature, 1939, 144: 327-328.
[249] DUNLOP D, ÖZDEMIR. Rock magnetism[M]. Cambridge: Cambridge University Press, 1997.
[250] MORIN J F. Magnetic Susceptibility of αFe2O3 and αFe2O3 with Added Titanium[J]. Physical Review, 1950, 78(6): 819-820.
[251] 姜兆霞. 反铁磁性矿物的磁性机制研究—以含铝赤铁矿和含铝针铁矿为例[D]. 北京: 中国科学院大学, 2012.
[252] FABIAN K. Some additional parameters to estimate domain state from isothermal magnetization measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 337-345.
[253] ROBERTS A P, CUI Y, VEROSUB K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17909-17924.
[254] DREYBRODT W. Chemical kinetics, speleothem growth and climate[J]. Bores, 1999, 28(3): 347-356.
[255] DREYBRODT W, SCHOLZ D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 734-752.
[256] TRINDADE R I F, JAQUETO P, TERRA-NOVA F, et al. Speleothem record of geomagnetic south Atlantic anomaly recurrence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13198-13203.
[257] ZANELLA E, TEMA E, LANCI L, et al. A 10, 000 yr record of high-resolution paleosecular variation from a flowstone of Rio Martino Cave, Northwestern Alps, Italy[J]. Earth and Planetary Science Letters, 2018, 485: 32-42.
[258] JORDANOVA N. Soil Magnetism: applications in pedology, environmental science and agriculture[M]. Amsterdam: Elsevier/Academic Press, 2017.
[259] MAXBAUER D P, FEINBERG J M, FOX D L. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges[J]. Earth-Science Reviews, 2016, 155: 28-48.
[260] HARTMANN A, BAKER A. Modelling karst vadose zone hydrology and its relevance for paleoclimate reconstruction[J]. Earth-Science Reviews, 2017, 172: 178-192.
[261] FLORINDO F, ZHU R X, GUO B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659.
[262] DENG C L, VIDIC N J, VEROSUB K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B03103): 1-17.
[263] VAN VELZEN A J, DEKKERS M J. Low-Temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters[J]. Studia Geophysica et Geodaetica, 1999, 43(4): 357-375.
[264] DENG C L, ZHU R X, VEROSUB K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene Loess along a NW-SE transect in the Chinese Loess Plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718.
[265] DENG C L, ZHU R X, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11-22): 873-878.
[266] VEROSUB K L, FINE P, SINGER M J, et al. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences[J]. Geology, 1993, 21(11): 1011-1014.
[267] SUN W, BANERJEE S K, HUNT C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment[J]. Earth and Planetary Science Letters, 1995, 133(3): 493-505.
[268] OCHES E A, BANERJEE S K. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic[J]. Studia Geophysica Et Geodaetica, 1996, 40: 287-300.
[269] COR B DE BOER, DEKKERS M J. Grain-size dependence of the rock magnetic properties for a natural maghemite[J]. Geophysical Research Letters, 1996, 23(20): 2815-2818.
[270] 刘秀铭, SHAW J, 蒋建中, 等. 磁赤铁矿的几种类型与特点分析[J]. 中国科学: 地球科学, 2010, 40(05): 592-602.
[271] HUNT C P, BANERJEE S K, HAN J, et al. Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China[J]. Geophysical Journal International, 1995, 123(1): 232-244.
[272] LIU Q S, DENG C L, YU Y J, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[273] PETROVSKY E, KAPICKA A. On determination of the Curie point from thermomagnetic curves[J]. Journal of Geophysical Research, 2006, 111(B12S27): 1-10.
[274] JIANG D B, WANG H J, DRANGE H, et al. Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D34102): 1-11.
[275] 施雅风, 郑本兴, 姚檀栋. 青藏高原末次冰期最盛时的冰川与环境[J]. 冰川冻土, 1997, 19(02): 97-113.
[276] 刘东生, 张新时, 熊尚发, 等. 青藏高原冰期环境与冰期全球降温[J]. 第四纪研究, 1999, 05: 385-396.
[277] FARRERA I, HARRISON S P, PRENTICE I C, et al. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry[J]. Climate Dynamics, 1999, 15(11): 823-856.
[278] OPENSHAW S, LATHAM A, SHAW J. Speleothem palaeosecular variation records from China: their contribution to the coverage of Holocene palaeosecular variation data in east Asia[J]. Journal of geomagnetism and geoelectricity, 1997, 49: 485-505.
[279] WANG Y, LU H Y, YI S W, et al. Tropical forcing orbital-scale precipitation variations revealed by a maar lake record in South China[J]. Climate Dynamics, 2021, 58(9-10): 2269-2280.
[280] JIAN Z M, WANG Y, DANG H W, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7044-7051.
[281] BERGER A, LOUTRE M F. Intertropical latitudes and precessional and half-precessional cycles[J]. Science, 1997, 278: 1476-1478.
[282] HAGELBERG T K, BOND G, DEMENOCAL P. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene[J]. Paleoceanography, 1994, 9(4): 545-558.
[283] SUN J M, HUANG X G. Half-precessional cycles recorded in Chinese loess: response to low-latitude insolation forcing during the Last Interglaciation[J]. Quaternary Science Reviews, 2006, 25(9): 1065-1072.
[284] KONG X X, JIANG Z X, CAI Y J. Orbital and sub-orbital pacing of mudstones in the Dongying Depression, eastern China: Implications for middle Eocene East Asian climate evolution[J]. Geological Society of America Bulletin, 2023, 135(11-12): 3024-3042.
[285] KIM D, KIM H, KANG S M, et al. Weak Hadley cell intensity changes due to compensating effects of tropical and extratropical radiative forcing[J]. npj Climate and Atmospheric Science, 2022, 5(1): 61.
[286] FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697.
[287] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.

所在学位评定分委会
资源与环境
国内图书分类号
P532
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766056
专题南方科技大学
工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
杨会会. 基于石笋氧同位素和环境磁学的末次冰期亚洲夏季风演化[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849590-杨会会-海洋科学与工程(10606KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨会会]的文章
百度学术
百度学术中相似的文章
[杨会会]的文章
必应学术
必应学术中相似的文章
[杨会会]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。