[1] 安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(06): 341-381.
[2] DING Y H, CHAN J C L. The East Asian summer monsoon: An overview[J]. Meteorology and Atmospheric Physics, 2005, 89(1-4): 117-142.
[3] WANG H J, CHEN H P. Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12109): 1-9.
[4] CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[5] 王新华. 我国粮食进出口、国内粮价与国际粮价的互动关系研究[J]. 统计与决策, 2013, (14): 118-121.
[6] 丑洁明, 董文杰, 徐洪, 等. 气候变化影响中国粮食安全研究的新思路[J]. 气候与环境研究, 2022, 27(01): 206-216.
[7] 苏芳, 刘钰, 汪三贵, 等. 气候变化对中国不同粮食产区粮食安全的影响[J]. 中国人口·资源与环境, 2022, 32(08): 140-152.
[8] 侯路瑶, 姜允芳, 石铁矛, 等. 基于气候变化的城市规划研究进展与展望[J]. 城市规划, 2019, 43(03): 121-132.
[9] 曹逸希. 韧性城市理念下应对气候变化影响的规划策略[J]. 陕西水利, 2020, (05): 220-224.
[10] 中国科学院学部. 关于气候变化对我国的影响与防灾对策建议[J]. 中国科学院院刊, 2008, (03): 229-234.
[11] WU F L, FANG X M, YANG Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3: 684-700.
[12] SHACKLETON N J N. Oxygen isotope analyses and Pleistocene temperatures reassessed[J]. Nature, 1967, 215: 15-17.
[13] EMILIANI C J S. Pleistocene temperatures[J]. Science, 1970, 168(3933): 822-825.
[14] DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Climate processes and climate sensitivity[M]. Washington: American Geophysical Union, 1984.
[15] PETIT J R, JOUZEL J, RAYNAUD D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429-436.
[16] 安芷生, 吴锡浩, 汪品先, 等. 最近130 ka中国的古季风——Ⅰ.古季风记录[J]. 中国科学(B辑), 1991, (10): 1076-1081.
[17] GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[18] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉: 中国地质大学出版社, 1995.
[19] TIAN Z, JIANG D. Revisiting last glacial maximum climate over China and East Asian monsoon using PMIP3 simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 115-126.
[20] 汪永进, 刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 2016, 61(9): 938-951.
[21] WANG Y J, CHENG H, Edwards R L, et al. A High-Resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[22] WANG Y J, CHENG H, EDWARDS R L, et al. Millennial- and orbital-scale changes in the east Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093.
[23] CHENG H, SINHA A, WANG X F, et al. The global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062.
[24] CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[25] TAN M. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2013, 42(3-4): 1067-1077.
[26] SUN Z, YANG Y, ZHAO J Y, et al. Potential ENSO effects on the oxygen isotope composition of modern speleothems: Observations from Jiguan Cave, central China[J]. Journal of Hydrology, 2018, 566: 164-174.
[27] JIANG D B, LANG X M, TIAN Z P, et al. Last glacial maximum climate over China from PMIP simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(3-4): 347-357.
[28] JIANG D B, YU G, ZHAO P, et al. Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Sciences, 2014, 32(2): 250-275.
[29] STRAUSS B E, STREHLAU J H, LASCU I, et al. The origin of magnetic remanence in stalagmites: Observations from electron microscopy and rock magnetism[J]. Geochemistry Geophysics Geosystems, 2013, 14(12): 5006-5025.
[30] MOORE G W. Speleothem: A new cave term[J]. Nature Speleology Society News, 1952, 10(6): 2.
[31] BAKER A, SMART P L, EDWARDS R L, et al. Annual growth banding in a cave stalagmite[J]. Nature, 1993, 364: 518-520.
[32] BAKER A, MARIETHOZ G, COMAS-BRU L, et al. The properties of annually laminated stalagmites a global synthesis[J]. Reviews of Geophysics, 2021, 59: e2020RG000722.
[33] YUAN D X, CHENG H, EDWARDS R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
[34] LECHLEITNER F A, BREITENBACH S F M, CHENG H, et al. Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation[J]. Quaternary Research, 2017, 88(3): 458-471.
[35] ZHAO M, LI H-C, SHEN C-C, et al. δ18O, δ13C, elemental content and depositional features of a stalagmite from Yelang Cave reflecting climate and vegetation changes since late Pleistocene in central Guizhou, China[J]. Quaternary International, 2017, 452: 102-115.
[36] 李玲珑, 刘再华. 不同植被条件下岩溶地下水δ13CDIC的差异研究[J]. 第四纪研究, 2015, 35(04): 913-921.
[37] WONG C I, BANNER J L, MUSGROVE M L. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records[J]. Geochimica et Cosmochimica Acta, 2011, 75(12): 3514-3529.
[38] FAIRCHILD I J, TREBLE P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449-468.
[39] ATSAWAWARANUNT K, COMAS-BRU L, AMIRNEZHAD-MOZHDEHI S, et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems[J]. Earth System Science Data, 2018, 10(3): 1687-1713.
[40] COMAS-BRU L, HARRISON S P. SISAL: Bringing Added Value to Speleothem Research[J]. Quaternary, 2019, 2(1): 7.
[41] ZHANG H W, BRAHIM Y A, LI H Y, et al. The Asian summer monsoon: teleconnections and forcing mechanisms—a review from Chinese speleothem δ18O records[J]. Quaternary, 2019, 2(3): 26.
[42] ZHU Z M, FEINBERG J M, XIE S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 852-857.
[43] XIE S C, EVERSHED R P, HUANG X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
[44] BOURNE M D, FEINBERG J M, STRAUSS B E, et al. Long-term changes in precipitation recorded by magnetic minerals in speleothems[J]. Geology, 2015, 43(7): 595-598.
[45] JAQUETO P, TRINDADE I F R, FEINBERG J M, et al. Magnetic mineralogy of speleothems from tropical-subtropical sites of south America[J]. Frontiers in Earth Sciences, 2021, 9: 634482.
[46] JAQUETO P, TRINDADE R I F, HARTMANN G A, et al. Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7024-7039.
[47] CHENG H, ZHANG H W, ZHAO J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 62(10): 1489-1513.
[48] VEROSUB K L, ROBERTS A P. Environmental magnetism: Past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175-2192.
[49] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[50] O'NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51(12): 5547-5558.
[51] HENDY C H. The isotopic geochemistry of speleothems — I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824.
[52] CRAIG H. The measurement of oxygen isotope paleotemperatures, in Tongiorgi, E., ed., Stable Isotopes in Oceanographic Studies and Paleotemperatures[C], Spoleto: Consiglio Nazionale delle Ricerche, Laboratorio di Geologica Nucleare, Pisa, 1965: 161-182.
[53] 陈跃, 黄培华, 朱洪山. 北京周口店地区洞穴内第四纪石笋的同位素古温度研究[J]. 科学通报, 1986, (20): 1576-1578.
[54] LAURITZEN S E, LOVLIE R, MOE D, et al. Paleoclimate deduced from a multidisciplinary study of a half-million-year-old stalagmite from rana, northern Norway[J]. Quaternary Research, 1990, 34(3): 306-316.
[55] 刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997, 01: 41-49.
[56] 谭明, 刘东生, 秦小光, 等. 北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究[J]. 中国岩溶, 1997, (01): 2-11.
[57] KATHAYAT G, CHENG H, SINHA A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Report, 2016, 6: 24374.
[58] DANSGAARD. A new Greenland deep ice core[J]. Science, 1982, 218, 4579: 1273-1277.
[59] DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220.
[60] HEINRICH H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
[61] HEMMING S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1): RG1005.
[62] CHEN S T, WANG Y J, CHENG H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Report, 2016, 6: 32995.
[63] DONG J G, SHEN C C, KONG X G, et al. Asian monsoon dynamics at Dansgaard/Oeschger events 14-8 and Heinrich events 5-4 in northern China[J]. Quaternary Geochronology, 2018, 47: 72-80.
[64] DUAN W H, CHENG H, TAN M, et al. Timing and structure of Termination II in north China constrained by a precisely dated stalagmite record[J]. Earth and Planetary Science Letters, 2019, 512: 1-7.
[65] ZHANG X, QIU W, JIANG X, et al. Three-phase structure of the East Asia summer monsoon during Heinrich Stadial 4 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2021, 274: 107267.
[66] QIU W Y, ZHANG X, JIANG X, et al. Double-plunge structure of the East Asian summer monsoon during Heinrich stadial 1 recorded in Xianyun Cave, southeastern China[J]. Quaternary Science Reviews, 2022, 282: 107442.
[67] LI D, TAN L C, CAI Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5-6): 2969-2983.
[68] LIANG Y J, ZHAO K, EDWARDS R L, et al. East Asian monsoon changes early in the last deglaciation and insights into the interpretation of oxygen isotope changes in the Chinese stalagmite record[J]. Quaternary Science Reviews, 2020, 250.
[69] ZHANG H B, CHENG H, SPOTL C, et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO[J]. Scientific Report, 2018, 8(1): 12344.
[70] 谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义——古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(05): 851-862.
[71] TAN M. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re-reconstruction of ENSO-like state[J]. Science China Earth Sciences, 2016, 59(6): 1225-1241.
[72] CLEMENS S C, PRELL W L. The timing of orbital-scale Indian monsoon changes[J]. Quaternary Science Reviews, 2007, 26(3-4): 275-278.
[73] AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
[74] CLEMENS S C, PRELL W L, SUN Y. Orbital-scale timing and mechanisms driving late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(4): 1-19.
[75] BURNS S J, FLEITMANN D, MATTER A, et al. Speleothem evidence from Oman for continental pluvial events during interglacial periods[J]. Geology, 2001, 29(7): 623-626.
[76] KUTZBACH J E, LIU X D, LIU Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280, 000 years[J]. Climate Dynamics, 2007, 30(6): 567-579.
[77] MERLIS T M, SCHNEIDER T, BORDONI S, et al. The tropical precipitation response to orbital precession[J]. Journal of Climate, 2013, 26(6): 2010-2021.
[78] BATTISTI D S, DING Q, ROE G H. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(21): 11997-12020.
[79] RUDDIMAN W F. What is the timing of orbital-scale monsoon changes [J]. Quaternary Science Reviews, 2006, 25(23-24): 657-658.
[80] TAN L, SHEN C C, LOWEMARK L, et al. Rainfall variations in central Indo-Pacific over the past 2, 700 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 16(35): 17201-17206.
[81] QIU H Y, LI T Y, CHEN C J, et al. Significance of active speleothem δ18O at annual-decadal timescale——A case study from monitoring in Furong Cave[J]. Applied Geochemistry, 2021, 126: 104873.
[82] CHIANG J C H, FUNG I Y, WU C H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129.
[83] 张秋颖, 万修全, 刘泽栋, 等. 末次盛冰期气候环境基本特征和数值模拟研究进展[J]. 海洋通报, 2017, 36(01): 1-11.
[84] MacAyeal D R. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events[J]. Paleoceanography, 1993, 8(6): 775-784.
[85] BRADLEY R S, DIAZ H F. Late quaternary abrupt climate change in the tropics and sub-tropics: the continental signal of tropical hydroclimatic events (thes)[J]. Reviews of Geophysics, 2021, 59(4): 1-35.
[86] DONG B W, SUTTON R T. Adjustment of the coupled ocean-atmosphere system to a sudden change in the Thermohaline Circulation[J]. Geophysical Research Letters, 2002, 29(15): 181-184.
[87] CHIANG J C H, BITZ C M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone[J]. Climate Dynamics, 2005, 25(5): 477-496.
[88] BROCCOLI A J, DAHL K A, STOUFFER R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): L01702.
[89] HUANG R H, LIU Y, DU Z C, et al. Differences and links between the east Asian and south Asian summer monsoon systems: characteristics and variability[J]. Advances in Atmospheric Sciences, 2017, 10(34): 71-85.
[90] ZHANG Z Q, LIANG Y J, WANG Y J, et al. Evidence of ENSO signals in a stalagmite-based Asian monsoon record during the medieval warm period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110714.
[91] NEFF U, BURNS S J, MANGINI A, et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J]. Nature, 2001, 411: 290-293.
[92] WANG Y J, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[93] WANG X F, DUAN W H, TAN M, et al. Variability of PDO identified by a last 300-year stalagmite δ18O record in Southwest China[J]. Quaternary Science Reviews, 2021, 261: 106947.
[94] Thompson R, Oldfield F. Environmental magnetism[M]. London: Allen and Union, 1986.
[95] EVANS M, HELLER F. Environmental magnetism: principles and applications of Enviromagnetics[M]. San Diego: Academic Press, 2003.
[96] LIU Q S, ROBERTS A P, LARRASOANA J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): 1-51.
[97] LATHAM A G, SCHWARCZ H P, FORD D C, et al. Palaeomagnetism of stalagmite deposits[J]. Nature, 1979, 280: 383-385.
[98] LATHAM A G, FORD D C, SCHWARCZ H P, et al. Secular variation from Mexican stalagmites: their potential and problems[J]. Physics of the Earth and Planetary Interiors, 1989, 56(1-2): 34-48.
[99] MORINAGA H, INOKUCHI H, YASKAWA K J O G, et al. Magnetization of a stalagmite in Akiyoshi plateau as a record of the geomagnetic secular variation in west Japan[J]. Journal of Geomagnetism and Geoelectricity, 1986, 38(1): 27-44.
[100] PERKINS A M. Observations under electron microscopy of magnetic minerals extracted from speleothems[J]. Earth and Planetary Science Letters, 1996, 139(1-2): 281-289.
[101] LASCU I, FEINBERG J M, DORALE J A, et al. Age of the Laschamp excursion determined by U-Th dating of a speleothem geomagnetic record from North America[J]. Geology, 2016, 44(2): 139-142.
[102] PONTE J M, FONT E, VEIGA-PIRES C, et al. The effect of speleothem surface slope on the remanent magnetic inclination[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4143-4156.
[103] CHOU Y M, JIANG X Y, LIU Q S, et al. Multidecadally resolved polarity oscillations during a geomagnetic excursion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8913-8918.
[104] LASCU I, FEINBERG J M. Speleothem magnetism[J]. Quaternary Science Reviews, 2011, 30(23-24): 3306-3320.
[105] HERRIES A I, SHAW J. Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: implications for the age of the hominin fossils and stone tool industries[J]. Journal of Human Evolution, 2011, 60(5): 523-539.
[106] ADAMS J W, HERRIES A I R, KUYKENDALL K L, et al. Taphonomy of a South African cave: geological and hydrological influences on the GD 1 fossil assemblage at Gondolin, a Plio-Pleistocene paleocave system in the Northwest Province, South Africa[J]. Quaternary Science Reviews, 2007, 26(19-21): 2526-2543.
[107] Bull P A. Some fine-grained sedimentation phenomena in caves[J]. Earth Surf Processes Landforms, 1981, 6: 11-22.
[108] 谢树成, 胡超涌, 顾延生, 等. 最近13 ka以来长江中游古水文变化[J]. 地球科学(中国地质大学学报), 2015, 40(02): 198-205.
[109] PETERS C, DEKKERS M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16-19): 659-667.
[110] HU C Y, HENDERSON G M, HUANG J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232.
[111] LIU Q S, ROBERTS A P, TORRENT J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry Geophysics Geosystems, 2007, 8(Q09011): 1-10.
[112] ROBINSON S G. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements[J]. Physics of the Earth and Planetary Interiors, 1986, 42(1-2): 22-47.
[113] BURSTYN Y, SHAAR R, KEINAN J, et al. Holocene wet episodes recorded by magnetic minerals in stalagmites from Soreq Cave, Israel[J]. Geology, 2022, 50: 284-288.
[114] DORALE J A, Gonzalez L A, Reagan M, et al. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Mprtjeast Iowa[J]. Science, 1992, 258(5088): 1626-1630.
[115] 李吉龙, 段武辉, 吴江滢. 安徽蓬莱仙洞不同滴水点差异PCP作用及其古气候记录研究意义[J]. 第四纪研究, 2014, 34(04): 905-916.
[116] 王世杰, 罗维均, 刘秀明, 等. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义[J]. 地学前缘, 2009, 16(06): 66-76.
[117] SPOTL C, FAIRCHILD I J, TOOTH A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
[118] BREITENBACH F M S, LECHLEITNER A F, MEYER H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting-a monitoring study from NE India[J]. Chemical Geology, 2015, 402(8): 111-124.
[119] SHERWIN C M, BALDINI J U L. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems[J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 3915-3929.
[120] FAIRCHILD I J, SMITH C L, BAKER A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1-4): 105-153.
[121] RUSANOV V, GILSON R G, LOUGEAR A, et al. Mössbauer, magnetic, X-ray fluorescence and transmission electron microscopy study of natural magnetic materials from speleothems: hematite and the Morin transition[J]. Hyperfine Interactions, 2000, 128: 353-373.
[122] STREHLAU J, HEGNER L, STRAUSS B, et al. Simple and efficient separation of magnetic minerals from speleothems and other carbonates[J]. Journal of Sedimentary Research, 2014, 84: 1096-1106.
[123] CHEN F H, CHEN X M, CHEN J H, et al. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
[124] YANG X L, LIU J B, LIANG F Y, et al. Holocene stalagmite δ18O records in the East Asian monsoon region and their correlation with those in the Indian monsoon region[J]. The Holocene, 2014, 24(12): 1657-1664.
[125] LIU J B, CHEN J H, ZHANG X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208.
[126] MI X, LIU D, WANG Y, et al. Spatial pattern of orbital-to millennial-scale East Asian stalagmite δ18O variations during MIS 3[J]. Quaternary Science Reviews, 2022, 298: 107844.
[127] 贵州省地质调查院. 贵州省地质志[M]. 北京: 地质出版社, 2017.
[128] ORLAND I J, EDWARDS R L, CHENG H, et al. Direct measurements of deglacial monsoon strength in a Chinese stalagmite[J]. Geology, 2015, 43(6): 555-558.
[129] 周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, (01): 59-70.
[130] WANG B. The Asian Monsoon[M]. Berlin: Springer, 2006.
[131] KALNAY E, KANAMITSU M, KISTLER R, et al. NCEP/NCAR 40-year reanalysis project[J]. Renewable Energy, 1996, 77(3): 437-472.
[132] LIU Z Y, WEN X Y, BRADY E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
[133] TURNER A G, ANNAMALAI H. Climate change and the South Asian summer monsoon[J]. Nature Climate Change, 2012, 2(8): 587-595.
[134] KAUSHAL N, BREITENBACH S F M, LECHLEITNER F A, et al. The Indian summer monsoon from a speleothem δ18O perspective: a review[J]. Quaternary, 2018, 1(3): 29.
[135] CAI Y J, FUNG I Y, EDWARDS R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959.
[136] BOURDON B, TURNER S, HENDERSON G M, et al. Introduction to U-series geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 1-21.
[137] CHENG H, LAWRENCE EDWARDS R, SHEN C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91.
[138] SHEN C C, LIN H T, CHU M F, et al. Measurements of natural uranium concentration and isotopic composition with permil-level precision by inductively coupled plasma–quadrupole mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): 1-10.
[139] SHEN C C, WU C C, CHENG H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86.
[140] 潘永信, 朱日祥. 环境磁学研究现状和进展[J]. 地球物理学进展, 1996, (04): 87-99.
[141] KING J W, CHANNELL J E T. Sedimentary magnetism, Envrionmental magnetism, and magnetostratigraphy[J]. Reviews of Geophysics, 1991, 29(S1): 358-370.
[142] 符超峰, 宋友桂, 强小科, 等. 环境磁学在古气候环境研究中的回顾与展望[J]. 地球科学与环境学报, 2009, 31(03): 312-322.
[143] KISSEL C, LAJ C, CLEMENS S, et al. Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea[J]. Marine Geology, 2003, 201(1-3): 119-132.
[144] EGLI R. Characterization of Individual Rock Magnetic Components by Analysis of Remanence Curves, 1. Unmixing Natural Sediments[J]. Studia Geophysica et Geodaetica, 2004, 48: 391-446.
[145] ZHAO X Y, FUJI M, SUGANUMA Y, et al. Applying the burr type XII distribution to decompose remanent magnetization curves[J]. Journal of Geophysical Reasearch: Solid Earth, 2018, 123(10): 8298-8311.
[146] HE K, ZHAO X Y, PAN Y X, et al. Benchmarking component analysis of remanent magnetization curves with a synthetic mixture series: insight into the reliability of unmixing natural samples[J]. Journal of Geophysical Reasearch: Solid Earth, 2020, 125(10): e2020JB020105.
[147] GUYODO Y, LAPARA T M, ANSCHUTZ A J, et al. Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska[J]. Earth and Planetary Science Letters, 2006, 251(1-2): 168-178.
[148] SHI T H, DING J, ZHU Z M, et al. Occurrence and distribution patterns of magnetic particles within stalagmite growth laminae[J]. Geochemistry Geophysics Geosystems, 2022, 23(9): e2022GC010487.
[149] EFRON B. Bootstrap Methods: Another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1): 1-26.
[150] LI Y X, RAO Z G, XU Q H, et al. Inter-relationship and environmental significance of stalagmite δ13C and δ18O records from Zhenzhu Cave, north China, over the last 130 ka[J]. Earth and Planetary Science Letters, 2020, 536.
[151] 陈岳龙, 杨忠芳, 赵志丹. 同位素地质年代学与地球化学[M]. 北京: 地质出版社, 2005.
[152] MCCREA J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 18(6): 840-857.
[153] SHARMA T, CLAYTON R N. Measurement of O18/O16 ratios of total oxygen of carbonates[J]. Geochim Cosmochim Acta, 1965, 29(12): 1347-1353.
[154] DUAN W H, RUAN J Y, LUO W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183: 250-266.
[155] WANG Q, WANG Y J, ZHAO K, et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China[J]. Environmental Earth Sciences, 2018, 77(12): 1-18.
[156] 陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004.
[157] JOUZEL J, MASSON-DELMOTTE V, CATTANI O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839): 793-796.
[158] SHARP Z D. Principles of Stable Isotope Geochemistry[M]. Westminster: Pearson Education Group, 2017.
[159] ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
[160] JOUZEL J, KOSTER R D, SUOZZO R J, et al. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D12): 25791.
[161] BLUNIER, SCIENCE T J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period[J]. Science, 2001, 291(5501): 109-112.
[162] MOOK W G. Environmental isotopes in the hydrological cycle: principles and applications[M]. Paris: UNESCO, 2001.
[163] BARBANTE C, BARNOLA J, BECAGLI S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
[164] LACHNIET M S. Climatic and environmental controls on speleothem oxygen-isotope values[J]. Quaternary Science Reviews, 2009, 28(5-6): 412-432.
[165] FLAIM G, CAMIN F, TONON A, et al. Stable isotopes of lakes and precipitation along an altitudinal gradient in the Eastern Alps[J]. Biogeochemistry, 2013, 116(1-3): 187-198.
[166] WANG L, CHEN R, SONG Y, et al. Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains[J]. Theoretical and Applied Climatology, 2017, 134(3-4): 875-884.
[167] LIU J R, SONG X F, YUAN G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
[168] DAYEM K E, MOLNAR P, BATTISTI D S, et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J]. Earth and Planetary Science Letters, 2010, 295(1-2): 219-230.
[169] PENG T R, WANG C H, HUANG C C, et al. Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region[J]. Earth and Planetary Science Letters, 2010, 289(3): 357-366.
[170] HUANG Y Y, WANG B, LI X F, et al. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s[J]. Climate Dynamics, 2018, 51: 443-455.
[171] JOUZEL J, HOFFMANN G, KOSTER R D, et al. Water isotopes in precipitation: data/model comparison for present-day and past climates[J]. Quaternary Science Reviews, 2000, 19(1-5): 363-379.
[172] CAI Z Y, TIAN L D, BOWEN G J. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region[J]. Earth and Planetary Science Letters, 2017, 475: 25-33.
[173] CHENG T F, LU M. Moisture source-receptor network of the east asian summer monsoon land regions and the associated atmospheric steerings[J]. Journal of Climate, 2020, 33(21): 9213-9231.
[174] ZHANG H W, CAI Y J, TAN L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309(1): 1-14.
[175] 李嘉燕, 田怡苹, 光凯悦, 等. 文石石笋发生矿物重结晶的影响因素及其古气候意义[J]. 中国岩溶, 2022, 41(04): 648-659.
[176] DORALE J A, EDWARDS R L, ITO E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from crevice cave, Missouri, USA[J]. Science, 1998, 282: 1871-1874.
[177] ZHAO K, WANG Y J, EDWARDS R L, et al. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition[J]. Earth and Planetary Science Letters, 2010, 298(1-2): 191-198.
[178] DUTT S, GUPTA A K, CLEMENS S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B.P[J]. Geophysical Research Letters, 2015, 42(13): 5526-5532.
[179] ZHOU H Y, ZHAO J X, FENG Y X, et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China[J]. Quaternary Research, 2008, 69(2): 306-315.
[180] SUN Y B, CHEN J, CLEMENS S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau[J]. Geochemistry Geophysics Geosystems, 2006, 7(12): 1-16.
[181] LI Y X, RAO Z G, CAO J, et al. Highly negative oxygen isotopes in precipitation in southwest China and their significance in paleoclimatic studies[J]. Quaternary International, 2017, 440: 64-71.
[182] LIU G, LI X, CHIANG H W, et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records[J]. Science advances, 2020, 6: eaay8189.
[183] CHENG H, ZHANG H W, SPOTL C, et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23408-23417.
[184] WU Y, LI T Y, YU T L, et al. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China[J]. Quaternary Science Reviews, 2020, 234: 106261.
[185] LI T Y, WU Y, SHEN C C, et al. High precise dating on the variation of the Asian summer monsoon since 37 ka B.P.[J]. Scientific Report, 2021, 11(1): 9375.
[186] HAN L Y, LI T Y, CHENG H, et al. Potential influence of temperature changes in the southern hemisphere on the evolution of the Asian summer monsoon during the last glacial period[J]. Quaternary International, 2016, 392: 239-250.
[187] LI T Y, HAN L Y, CHENG H, et al. Evolution of the Asian summer monsoon during Dansgaard/Oeschger events 13-17 recorded in a stalagmite constrained by high-precision chronology from southwest China[J]. Quaternary Research, 2017, 88(1): 121-128.
[188] JIANG X Y, HE Y Q, SHEN C C, et al. Decoupling of the East Asian summer monsoon and Indian summer monsoon between 20 and 17 ka[J]. Quaternary Research, 2014, 88(1): 146-153.
[189] LIU D B, WANG Y J, CHENG H, et al. Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations[J]. Quaternary Science Reviews, 2010, 29(9-10): 1107-1115.
[190] ZHANG Z Q, WANG Y J, LIU D B, et al. Multi-scale variability of the Asian monsoon recorded in an annually-banded stalagmite during the Neoglacial from Qixing Cave, Southwestern China[J]. Quaternary International, 2018, 487: 78-86.
[191] COSFORD J, QING H R, YUAN D X, et al. Millennial-scale variability in the Asian monsoon: Evidence from oxygen isotope records from stalagmites in southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266(1-2): 3-12.
[192] LI H C, BAR-MATTHEWS M, CHANG Y P, et al. High-resolution δ18O and δ13C records during the past 65 ka from Fengyu Cave in Guilin: Variation of monsoonal climates in south China[J]. Quaternary International, 2017, 441: 117-128.
[193] MOHTADI M, PRANGE M, OPPO D W, et al. North Atlantic forcing of tropical Indian Ocean climate[J]. Nature, 2014, 509(7498): 76-80.
[194] CLEMENT A C, PETERSON L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(RG4002): 1-39.
[195] DAHL K A, BROCCOLI A J, STOUFFER R J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective[J]. Climate Dynamics, 2005, 24(4): 325-346.
[196] MARKLE B R, STEIG E J, BUIZERT C, et al. Global atmospheric teleconnections during Dansgaard–Oeschger events[J]. Nature Geoscience, 2016, 10(1): 36-40.
[197] LYNCH-STIEGLITZ J. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9(1): 83-104.
[198] DONG X Y, KATHAYAT G, RASMUSSEN S O, et al. Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2[J]. Nature Communications, 2022, 13(1): 5867.
[199] BROCCOLI A J, DAHL K A, STOUFFER R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33, L01702.
[200] ZHANG R, DELWORTH T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 2005, 18(12): 1853-1860.
[201] WANG X F, EDWARDS R L, AULER A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45, 000 years[J]. Nature, 2017, 541(7636): 204-207.
[202] CLEMENT A C, HALL A, BROCCOLI A J. The importance of precessional signals in the tropical climate[J]. Climate Dynamics, 2004, 22(4): 327-341.
[203] WANG X F, AULER A S, EDWARDS R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90, 000 years[J]. Geophysical Research Letters, 2007, 34(L23701): 1-5.
[204] LINDZEN R S, HOU A V. Hadley Circulations for zonally averaged heating centered off the equator[J]. Journal of the Atmospheric Science, 1988, 45(17): 2416-2427.
[205] JACOBEL A W, MCMANUS J F, ANDERSON R F, et al. Large deglacial shifts of the pacific intertropical convergence zone[J]. Nature Communications, 2016, 7: 10449.
[206] DEPLAZES G, LUCKGE A, STUUT J B W, et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29(2): 99-114.
[207] ZORZI C, SANCHEZ GONI M F, ANUPAMA K, et al. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich stadial 2 and the last interglacial-glacial transition[J]. Quaternary Science Reviews, 2015, 125: 50-60.
[208] PAUSATA F S R, BATTISTI D S, NISANCIOGLU K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
[209] PORTER S C, AN Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 25: 305-308.
[210] SUN Y B, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
[211] CHIANG J C H, HERMAN M J, YOSHIMURA K, et al. Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14745-14750.
[212] LAINE A, KAGEYAMA M, SALAS-MELIA D, et al. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation[J]. Climate Dynamics, 2009, 32(5): 593-614.
[213] SCHIEMANN R, LUTHI D, SCHAR C. Seasonality and interannual variability of the westerly jet in the Tibetan plateau region[J]. Journal of Climate, 2009, 22(11): 2940-2957.
[214] YANASE W, ABE-OUCHI A. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations[J]. Climate of the Past, 2007, 3: 439-451.
[215] NAGASHIMA K, TADA R, TANI A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214-1220.
[216] SAMPE T, XIE S P. Large-Scale dynamics of the Meiyu-baiu rainband: environmental forcing by the westerly jet[J]. Journal of Climate, 2010, 23(1): 113-134.
[217] BAKER A J, SODEMANN H, BALDINI J U L, et al. Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(12): 5850-5862.
[218] ZHANG H B, GRIFFITHS M L, CHIANG J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583.
[219] GADGIL S. The monsoon system: Land-sea breeze or the ITCZ?[J]. Journal of Earth System Science, 2018, 127(1): 1-29.
[220] TIAN L, YAO T, SCHUSTER P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108: 1-16.
[221] HU J, EMILE-GEAY J, TABOR C, et al. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model [J]. 2019, 34(12): 2098-2112.
[222] ROE G H, DING Q H, BATTISTI D S, et al. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50Ma[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5453-5470.
[223] BOSMANS J H C, ERB M P, DOLAN A M, et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs[J]. Quaternary Science Reviews, 2018, 188: 121-135.
[224] KABOTH-BAHR S, BAHR A, ZEEDEN C, et al. A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene[J]. Scientific Report, 2021, 1(1): 6938.
[225] SIDDALL M, Rohling E J, ALMOGI-LABIN A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423: 853-858.
[226] SIDDALL M, ROHLING E J, THOMPSON W G, et al. Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook[J]. Reviews of Geophysics, 2008, 46(4): 1-29.
[227] CHEN Q M, CHENG X, CAI Y J, et al. Asian Summer Monsoon Changes Inferred From a Stalagmite δ18O Record in Central China During the Last Glacial Period[J]. Frontiers in Earth Science, 2022, 10, 863829.
[228] ZHANG H B, GRIFFITHS M L, HUANG J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
[229] 陈仕涛, 汪永进, 吴江滢, 等. 东亚季风气候对Heinrich2事件的响应: 来自石笋的高分辨率记录[J]. 地球化学, 2006, (6): 586-592.
[230] LIU D B, WANG Y J, CHENG H, et al. Contrasting Patterns in Abrupt Asian Summer Monsoon Changes in the Last Glacial Period and the Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(2): 214-226.
[231] CAI Y J, AN Z S, CHENG H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8): 621-624.
[232] GONG D Y, HO C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29(10): 1-4.
[233] CAO J, HU J M, TAO Y. An index for the interface between the Indian summer monsoon and the East Asian summer monsoon[J]. Journal of Geophysical Research: Atmosphere, 2012, 117(D18108): 1-9.
[234] CAO J, GUI S, SU Q, et al. The variability of the Indian-east Asian summer monsoon interface in relation to the spring seesaw mode between the Indian ocean and the central-western pacific[J]. Journal of Climate, 2016, 29(13): 5027-5040.
[235] ZHOU T J, YU R C, ZHANG J, et al. Why the western pacific subtropical high has extended westward since the late 1970s[J]. Journal of Climate, 2009, 22(8): 2199-2215.
[236] ZHAO J Y, CHENG H, YANG Y, et al. Reconstructing the western boundary variability of the Western Pacific Subtropical High over the past 200 years via Chinese cave oxygen isotope records[J]. Climate Dynamics, 2019, 52(5-6): 3741-3757.
[237] DRAXLER R R, HESS G D. An overview of the HYSPLIT_4 modelling system for trajectories[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
[238] LIU Q S, DENG C L, TORRENT J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3-4): 368-385.
[239] 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 02: 193-209.
[240] 姜月华, 殷洪福, 王润华. 环境磁学理论、方法和研究进展[J]. 地球学报, 2004, (03): 357-362.
[241] 胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义[J]. 第四纪研究, 2014, 34(03): 458-473.
[242] Tauxe L. Essentials of paleomagnetism[M]. Berkeley: University of California Press, 2010.
[243] 胡鹏翔. 中国黄土-古土壤序列的环境磁学机制研究——新方法与新证据[D]. 北京: 中国科学院大学, 2015.
[244] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(04): 1041-1048.
[245] 朱岗崑. 古地磁学: 基础、原理、方法、成果与应用[M]. 北京: 科学出版社, 2005.
[246] Butler R F. Paleomagnetism: magnetic domains to geologic terranes[M]. Oxford: Blackwell Scientific Publications, 1992.
[247] LIU Q S, Banerjee S K, Jackson M J, et al. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences[J]. Journal of Geophysical Research, 2004, 109(B03101): 1-16.
[248] VERWEY E J W. Electron conduction of magnetite (Fe3O4) and its transition point at low temperatures[J]. Nature, 1939, 144: 327-328.
[249] DUNLOP D, ÖZDEMIR. Rock magnetism[M]. Cambridge: Cambridge University Press, 1997.
[250] MORIN J F. Magnetic Susceptibility of αFe2O3 and αFe2O3 with Added Titanium[J]. Physical Review, 1950, 78(6): 819-820.
[251] 姜兆霞. 反铁磁性矿物的磁性机制研究—以含铝赤铁矿和含铝针铁矿为例[D]. 北京: 中国科学院大学, 2012.
[252] FABIAN K. Some additional parameters to estimate domain state from isothermal magnetization measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 337-345.
[253] ROBERTS A P, CUI Y, VEROSUB K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17909-17924.
[254] DREYBRODT W. Chemical kinetics, speleothem growth and climate[J]. Bores, 1999, 28(3): 347-356.
[255] DREYBRODT W, SCHOLZ D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 734-752.
[256] TRINDADE R I F, JAQUETO P, TERRA-NOVA F, et al. Speleothem record of geomagnetic south Atlantic anomaly recurrence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13198-13203.
[257] ZANELLA E, TEMA E, LANCI L, et al. A 10, 000 yr record of high-resolution paleosecular variation from a flowstone of Rio Martino Cave, Northwestern Alps, Italy[J]. Earth and Planetary Science Letters, 2018, 485: 32-42.
[258] JORDANOVA N. Soil Magnetism: applications in pedology, environmental science and agriculture[M]. Amsterdam: Elsevier/Academic Press, 2017.
[259] MAXBAUER D P, FEINBERG J M, FOX D L. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges[J]. Earth-Science Reviews, 2016, 155: 28-48.
[260] HARTMANN A, BAKER A. Modelling karst vadose zone hydrology and its relevance for paleoclimate reconstruction[J]. Earth-Science Reviews, 2017, 172: 178-192.
[261] FLORINDO F, ZHU R X, GUO B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659.
[262] DENG C L, VIDIC N J, VEROSUB K L, et al. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B03103): 1-17.
[263] VAN VELZEN A J, DEKKERS M J. Low-Temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters[J]. Studia Geophysica et Geodaetica, 1999, 43(4): 357-375.
[264] DENG C L, ZHU R X, VEROSUB K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene Loess along a NW-SE transect in the Chinese Loess Plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718.
[265] DENG C L, ZHU R X, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11-22): 873-878.
[266] VEROSUB K L, FINE P, SINGER M J, et al. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences[J]. Geology, 1993, 21(11): 1011-1014.
[267] SUN W, BANERJEE S K, HUNT C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment[J]. Earth and Planetary Science Letters, 1995, 133(3): 493-505.
[268] OCHES E A, BANERJEE S K. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic[J]. Studia Geophysica Et Geodaetica, 1996, 40: 287-300.
[269] COR B DE BOER, DEKKERS M J. Grain-size dependence of the rock magnetic properties for a natural maghemite[J]. Geophysical Research Letters, 1996, 23(20): 2815-2818.
[270] 刘秀铭, SHAW J, 蒋建中, 等. 磁赤铁矿的几种类型与特点分析[J]. 中国科学: 地球科学, 2010, 40(05): 592-602.
[271] HUNT C P, BANERJEE S K, HAN J, et al. Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China[J]. Geophysical Journal International, 1995, 123(1): 232-244.
[272] LIU Q S, DENG C L, YU Y J, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[273] PETROVSKY E, KAPICKA A. On determination of the Curie point from thermomagnetic curves[J]. Journal of Geophysical Research, 2006, 111(B12S27): 1-10.
[274] JIANG D B, WANG H J, DRANGE H, et al. Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D34102): 1-11.
[275] 施雅风, 郑本兴, 姚檀栋. 青藏高原末次冰期最盛时的冰川与环境[J]. 冰川冻土, 1997, 19(02): 97-113.
[276] 刘东生, 张新时, 熊尚发, 等. 青藏高原冰期环境与冰期全球降温[J]. 第四纪研究, 1999, 05: 385-396.
[277] FARRERA I, HARRISON S P, PRENTICE I C, et al. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry[J]. Climate Dynamics, 1999, 15(11): 823-856.
[278] OPENSHAW S, LATHAM A, SHAW J. Speleothem palaeosecular variation records from China: their contribution to the coverage of Holocene palaeosecular variation data in east Asia[J]. Journal of geomagnetism and geoelectricity, 1997, 49: 485-505.
[279] WANG Y, LU H Y, YI S W, et al. Tropical forcing orbital-scale precipitation variations revealed by a maar lake record in South China[J]. Climate Dynamics, 2021, 58(9-10): 2269-2280.
[280] JIAN Z M, WANG Y, DANG H W, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7044-7051.
[281] BERGER A, LOUTRE M F. Intertropical latitudes and precessional and half-precessional cycles[J]. Science, 1997, 278: 1476-1478.
[282] HAGELBERG T K, BOND G, DEMENOCAL P. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene[J]. Paleoceanography, 1994, 9(4): 545-558.
[283] SUN J M, HUANG X G. Half-precessional cycles recorded in Chinese loess: response to low-latitude insolation forcing during the Last Interglaciation[J]. Quaternary Science Reviews, 2006, 25(9): 1065-1072.
[284] KONG X X, JIANG Z X, CAI Y J. Orbital and sub-orbital pacing of mudstones in the Dongying Depression, eastern China: Implications for middle Eocene East Asian climate evolution[J]. Geological Society of America Bulletin, 2023, 135(11-12): 3024-3042.
[285] KIM D, KIM H, KANG S M, et al. Weak Hadley cell intensity changes due to compensating effects of tropical and extratropical radiative forcing[J]. npj Climate and Atmospheric Science, 2022, 5(1): 61.
[286] FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697.
[287] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
修改评论