[1] SCHIERNING G. Bring on the heat[J]. Nature Energy, 2018, 3(2): 92-93.
[2] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997.
[3] BU Z L, ZHANG X Y, HU Y X, et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery[J]. Nature Communications, 2022, 13(1): 27916.
[4] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[5] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[6] LIU W S, KIM H S, JIE Q, et al. Importance of high power factor in thermoelectric materials for power generation application: A perspective[J]. Scripta Materialia, 2016, 111: 3-9.
[7] TOMITA M, OBA S, HIMEDA Y, et al. Modeling, simulation, fabrication, and characterization of a class Si-nanowire thermoelectric generator for IoT applications[J]. IEEE Transactions on Electron Devices, 2018, 65(11): 5180-5188.
[8] ZHUANG H-L, HU H H, PEI J, et al. High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores[J]. Energy & Environmental Science, 2022, 15(5): 2039-2048.
[9] LIN Y J, WU X Z, LI Y C, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique[J]. Nano Energy, 2022, 102: 107736.
[10] YAROSHEVSKY A A. Abundances of chemical elements in the earth's crust[J]. Geochemistry International, 2006, 44(1): 48-55.
[11] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 2017, 29(14): 1605884.
[12] LIU W S, GUO C F, YAO M L, et al. Bi2S3 nanonetwork as precursor for improved thermoelectric performance[J]. Nano Energy, 2014, 4: 113-122.
[13] KIRKHAM M J, DOS SANTOS A M, RAWN C J, et al. Determination of crystal structures of the thermoelectric material MgAgSb[J]. Physical Review B, 2012, 85(14): 144120.
[14] JIANG B B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830-834.
[15] ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg2Si1−xSnx thermoelectrics[J]. Physical Review B, 2006, 74(4): 045207.
[16] CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications, 2020, 11(1): 2723.
[17] LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841-846.
[18] LIU R H, XING Y F, LIAO J C, et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator[J]. Nature Communications, 2022, 13(1): 7738.
[19] JOSHI G, LEE H, LAN Y C, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J]. Nano Letters, 2008, 8(12): 4670-4674.
[20] HAN Z J, LI J-W, JIANG F, et al. Room-temperature thermoelectric materials: challenges and a new paradigm[J]. Journal of Materiomics, 2021, 8(2): 427-436.
[21] ZHAO L-D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance[J]. Energy & Environmental Science, 2013, 6(11): 3346-3355.
[22] OLVERA A A, MOROZ N A, SAHOO P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J]. Energy & Environmental Science, 2017, 10(7): 1668-1676.
[23] JOOD P, OHTA M, YAMAMOTO A, et al. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules[J]. Joule, 2018, 2(7): 1339-1355.
[24] DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT= 2.2 with Bi-doped n-type SnSe single crystals[J]. Nature Communications, 2016, 7(1): 13713.
[25] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[26] ZHAO L-D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[27] YIN L, YANG F, BAO X, et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design[J]. Nature Energy, 2023, 8: 665–674.
[28] 陈立东, 刘睿恒, 史讯. 热电材料与器件[M]. 北京: 科学出版社, 2018.
[29] LI J-F, LIU W-S, ZHAO L-D, et al. High-performance nanostructured thermoelectric materials[J]. NPG Asia Materials, 2010, 2(4): 152-158.
[30] IOFFE A F. Semiconductor Thermoelements and Thermoelectric Cooling[M]. Semiconductor Thermoelements and Thermoelectric Cooling. London, UK; Infosearch. 1956: 36-73.
[31] IOFFE A F. Physics of Semiconductors[M]. Moscow-Leningrad, Russian Izd. AN SSSR, 1957.
[32] LIU W S, YAN X, CHEN G, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1): 42-56.
[33] KIM H S, LIU W S, CHEN G, et al. Relationship between thermoelectric figure of merit and energy conversion efficiency[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8205-8210.
[34] KIM H S, LIU W S, REN Z F. The bridge between the materials and devices of thermoelectric power generators[J]. Energy & Environmental Science, 2017, 10(1): 69-85.
[35] WU W J, REN G K, CHEN X X, et al. Interfacial advances yielding high efficiencies for thermoelectric devices[J]. Journal of Materials Chemistry A, 2021, 9(6): 3209-3230.
[36] GAO M, ROWE D. Thermoelectrics Handbook: Macro to Nano Thermoelectric module design theories[M]. Boca Raton: CRC Press, 2006.
[37] LIU W S, WANG H Z, WANG L J, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100.
[38] HUANG Z J, YIN L, HU C L, et al. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction[J]. Journal of Materials Science & Technology, 2020, 40: 113-118.
[39] MEJRI M, MALARD B, THIMONT Y, et al. Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications[J]. Journal of Alloys and Compounds, 2020, 846: 156413.
[40] SHANG H J, LIANG Z X, XU C C, et al. N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation[J]. Acta Materialia, 2020, 201: 572-579.
[41] ZHAO D G, LI X Y, HE L, et al. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging[J]. Journal of Alloys and Compounds, 2009, 477(1-2): 425-431.
[42] ZHANG Q H, LIAO J C, TANG Y S, et al. Interface stability of skutterudite thermoelectric materials/Ti88Al12[J]. Journal of Inorganic Materials, 2018, 33(8): 889-894.
[43] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[44] LIU W S, BAI S Q. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics, 2019, 5(3): 321-336.
[45] ZHANG Q H, HUANG X Y, BAI S Q, et al. Thermoelectric devices for power generation: recent progress and future challenges [J]. Advanced Engineering Materials, 2016, 18(2): 194-213.
[46] 高敏, 张景韶. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996.
[47] LIU W S, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: from materials to devices[J]. Acta Materialia, 2015, 87: 357-376.
[48] HAN Z J, GUI Z G, ZHU Y B, et al. The electronic transport channel protection and tuning in real space to boost the thermoelectric performance of Mg3+δSb2-yBiy near Room temperature[J]. Research, 2020, 2020: 1672051.
[49] SHU R, ZHOU Y C, WANG Q, et al. Mg3+δSbxBi2−x family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature[J]. Advanced Functional Materials, 2019, 29(4): 1807235.
[50] ZHU Y B, DONG E T, HAN Z J, et al. Maximized atomic disordering approach boost the thermoelectric performance of Mg2Sn through the self-compensation effect and steric effect[J]. Acta Materialia, 2021, 217: 117172.
[51] PEI Y Z, WANG H, SNYDER G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46): 6125-6135.
[52] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[53] QIN B C, ZHAO L-D. Carriers: the less, the faster[J]. Materials Lab, 2022, 1: 220004.
[54] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557.
[55] QIAN X, ZHOU J W, CHEN G. Phonon-engineered extreme thermal conductivity materials[J]. Nature Materials, 2021, 20(9): 1188-1202.
[56] MAO J, NIEDZIELA J L, WANG Y, et al. Self-compensation induced vacancies for significant phonon scattering in InSb[J]. Nano Energy, 2018, 48: 189-196.
[57] ROWE D M, SHUKLA V S, SAVVIDES N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys[J]. Nature, 1981, 290: 765-766.
[58] KIM W, ZIDE J, GOSSARD A, et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors[J]. Physical Review Letters, 2006, 96(4): 045901.
[59] SUN Y, YIN L, ZHANG Z W, et al. Low contact resistivity and excellent thermal stability of p-type YbMg0.8Zn1.2Sb2/Fe-Sb junction for thermoelectric applications[J]. Acta Materialia, 2022, 235: 118066.
[60] SUN Z, CHEN X, ZHANG J C, et al. Achieving reliable CoSb3 based thermoelectric joints with low contact resistivity using a high-entropy alloy diffusion barrier layer[J]. Journal of Materiomics, 2021, 8(4): 882-892.
[61] XING Y F, LIU R H, LIAO J C, et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule, 2020, 4(11): 2475-2483.
[62] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8): 1043-1053.
[63] MAO J, LIU Z H, REN Z F. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495–498.
[64] YANG J W, LI G D, ZHU H T, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material[J]. Joule, 2021, 6: 1-12.
[65] CHOWDHURY I, PRASHER R, LOFGREEN K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nature Nanotechnology, 2009, 4(4): 235-238.
[66] ZHANG Q H, DENG K F, WILKENS L, et al. Micro-thermoelectric devices[J]. Nature Electronics, 2022, 5(6): 333-347.
[67] XU Q, DENG B, WANG Y P, et al. Small, affordable, ultra-low-temperature vapor-compression and thermoelectric hybrid freezer for clinical applications[J]. Cell Reports Physical Science, 2023, 4(12): 101735.
[68] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320(5876): 634-638.
[69] LIU W S, ZHANG Q Y, LAN Y C, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577-587.
[70] LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions[J]. Physical Review Letters, 2012, 108(16): 166601.
[71] ZHANG Q, HE J, ZHU T J, et al. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials[J]. Applied Physics Letters, 2008, 93(10): 102109.
[72] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[73] LIU W-S, ZHANG B-P, ZHAO L-D, et al. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-Group elements for Sb[J]. Chemistry of Materials, 2008, 20(24): 7526-7531.
[74] WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n -type silicon germanium bulk alloy[J]. Applied Physics Letters, 2008, 93(19): 193121.
[75] XING Y F, LIU R H, LIAO J C, et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J]. Energy & Environmental Science, 2019, 12(11): 3390-3399.
[76] BU Z L, ZHANG X Y, SHAN B, et al. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys[J]. Science Advance, 2021, 7(19): eabf2738.
[77] QIN B C, WANG D Y, LIU X X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373(6554): 556-561.
[78] QIU P F, MAO T, HUANG Z F, et al. High-efficiency and stable thermoelectric module based on liquid-like materials[J]. Joule, 2019, 3(6): 1538-1548.
[79] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2[J]. Science, 2021, 371(6530): 722-727.
[80] TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered zintl compounds with high thermoelectric performance[J]. Advanced Materials, 2016, 28(46): 10182-10187.
[81] YING P J, LIU X H, FU C G, et al. High performance alpha-mgagsb thermoelectric materials for low temperature power generation[J]. Chemistry of Materials, 2015, 27(3): 909-913.
[82] KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds[J]. Energy & Environmental Science, 2018, 11(2): 429-434.
[83] XU C C, LIANG Z, SHANG H J, et al. Scalable synthesis of n-type Mg3Sb2-xBix for thermoelectric applications[J]. Materials Today Physics, 2021, 17: 100336.
[84] SHTERN M, SHERCHENKOV A, SHTERN Y, et al. Mechanical properties and thermal stability of nanostructured thermoelectric materials on the basis of PbTe and GeTe[J]. Journal of Alloys and Compounds, 2023, 946: 169364.
[85] SEPEHRI-AMIN H, IMASATO K, WOOD M, et al. Evolution of nanometer-scale microstructure within grains and in the intergranular region in thermoelectric Mg3(Sb, Bi)2 alloys[J]. ACS Applied Materials & Interfaces, 2022, 33(14): 37958–37966.
[86] YING P J, HE R, MAO J, et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat[J]. Nature Communications, 2021, 12(1): 1121.
[87] LIU Z H, GAO W H, OSHIMA H, et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling[J]. Nature Communications, 2022, 13(1): 1120.
[88] PEI J, CAI B W, ZHUANG H-L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges[J]. National Science Review, 2020, 7: 1856-1858.
[89] JIANG F, FENG T, ZHU Y B, et al. Structure, magnetic and thermoelectric properties of high entropy selenides Bi0.6Sb0.6In0.4Cr0.4Se3[J]. Materials Lab, 2022, 1(4): 220045.
[90] LI J-W, HAN Z J, YU J C, et al. Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values[J]. Nature Communications, 2023, 14(1): 7428.
[91] SHANG H J, LIANG Z X, XU C C, et al. N-type Mg3Sb2-xBix alloys as promising thermoelectric materials[J]. Research, 2020, 2020: 1219461.
[92] ZHANG J W, SONG L R, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.
[93] WOOD M, KUO J J, IMASATO K, et al. Improvement of low-temperature ZT in a Mg3Sb2 -Mg3Bi2 solid solution via Mg-vapor annealing[J]. Advanced Materials, 2019, 31(35): e1902337.
[94] IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J]. Energy & Environmental Science, 2019, 12(3): 965-971.
[95] SHI X M, SUN C, BU Z L, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics[J]. Advance Science, 2019, 6(16): 1802286.
[96] SHI X M, ZHAO T T, ZHANG X Y, et al. Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping[J]. Advanced Materials, 2019, 31(36): 1903387.
[97] CHEN X X, WU H J, CUI J, et al. Extraordinary thermoelectric performance in n-type manganese doped Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure[J]. Nano Energy, 2018, 52: 246-255.
[98] JIANG F, FENG T, ZHU Y B, et al. Extraordinary thermoelectric performance, thermal stability and mechanical properties of n-type Mg3Sb1.5Bi0.5 through multi-dopants at interstitial site[J]. Materials Today Physics, 2022, 27: 100835.
[99] LIANG J S, SHI X L, PENG Y, et al. Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n‐type Mg3(Sb, Bi)2 Zintls[J]. Advanced Energy Materials, 2022, 12: 2201086.
[100] OHNO S, IMASATO K, ANAND S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1): 141-154.
[101] IMASATO K, WOOD M, KUO J J, et al. Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5[J]. Journal of Materials Chemistry A, 2018, 6(41): 19941-19946.
[102] JøRGENSEN L R, ZHANG J W, ZEUTHEN C B, et al. Thermal stability of Mg3Sb1.475Bi0.475Te0.05 high performance n-type thermoelectric investigated through powder X-ray diffraction and pair distribution function analysis[J]. Journal of Materials Chemistry A, 2018, 6(35): 17171-17176.
[103] WOOD M, IMASATO K, ANAND S, et al. The importance of the Mg–Mg interaction in Mg3Sb2–Mg3Bi2 shown through cation site alloying[J]. Journal of Materials Chemistry A, 2020, 8(4): 2033-2038.
[104] LIU Z H, SATO N, GAO W H, et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting[J]. Joule, 2021, 5(5): 1196-1208.
[105] ZHU Q, SONG S W, ZHU H T, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials[J]. Journal of Power Sources, 2019, 414: 393-400.
[106] FU Y T, ZHANG Q H, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K[J]. Energy & Environmental Science, 2022, 15: 3265-3274.
[107] LIANG Z, XU C C, SHANG H, et al. High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3[J]. Materials Today Physics, 2021, 19: 100413.
[108] BU Z L, ZHANG X Y, HU Y X, et al. An over 10% module efficiency using non-Bi2Te3 thermoelectric materials for recovering heat of < 600 K[J]. Energy & Environmental Science, 2021, 14: 6506-6513.
[109] YIN L, CHEN C, ZHANG F, et al. Reliable n-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications[J]. Acta Materialia, 2020, 198: 25-34.
[110] SONG S W, LIANG Z X, XU C C, et al. Reliable metal alloy contact for Mg3+δBi1.5Sb0.5 thermoelectric devices[J]. Soft Science, 2022, 2(3): 13.
[111] WANG Y C, CHEN J, JIANG Y, et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33419-33428.
[112] YING P J, REITH H, NIELSCH K, et al. Geometrical Optimization and Thermal-Stability Characterization of Te-free Thermoelectric Modules Based on MgAgSb/Mg3(Bi,Sb)2[J]. Small, 2022, 18(24): e2201183.
[113] YING P J, WILKENS L, REITH H, et al. A robust thermoelectric module based on MgAgSb/Mg3(Sb,Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K[J]. Energy & Environmental Science, 2022, 15(6): 2557-2566.
[114] XU C C, LIANG Z X, REN W Y, et al. Realizing high energy conversion efficiency in a novel segmented-Mg3(Sb, Bi)2/Cubic-GeTe thermoelectric module for power generation[J]. Advanced Energy Materials, 2022, 12(45): 2202392.
[115] LI A R, NAN P F, WANG Y C, et al. Chemical stability and degradation mechanism of Mg3Sb2-xBix thermoelectrics towards room-temperature applications[J]. Acta Materialia, 2022, 239: 118301.
[116] XU C C, JIAN M M, LIANG Z X, et al. Enhancing the thermal stability of n-type Mg3+xSb1.5Bi0.49Te0.01 by defect manipulation[J]. Nano Energy, 2023, 106: 108036.
[117] WANG L Q, SATO N, PENG Y, et al. Realizing high thermoelectric performance in n-type Mg3(Sb, Bi)2-based materials via synergetic Mo addition and Sb–Bi ratio refining[J]. Advanced Energy Materials, 2023, 13(35): 2301667.
[118] LIU X H, ZHU T J, WANG H, et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence[J]. Advanced Energy Materials, 2013, 3(9): 1238-1244.
[119] LIU W S, KIM H S, CHEN S, et al. n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3269-3274.
[120] MAO J, KIM H S, SHUAI J, et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system[J]. Acta Materialia, 2016, 103: 633-642.
[121] XIN J Z, ZHANG Y, WU H J, et al. Multiscale defects as strong phonon scatters to enhance thermoelectric performance in Mg2Sn1-xSbx solid solutions[J]. Small Methods, 2019, 3(12): 1900412.
[122] YASSERI M, SANKHLA A, KAMILA H, et al. Solid solution formation in Mg2(Si,Sn) and shape of the miscibility gap[J]. Acta Materialia, 2020, 185: 80-88.
[123] DONG E T, ZHU Y B, TAN S H, et al. Bistructural pseudocontinuous solid solution with hierarchical microstructures from Ab initio study: application to the Mg2Sn−Mg3Sb2 system[J]. Acta Materialia, 2022, 236: 118139.
[124] SAPARAMADU U, DE BOOR J, MAO J, et al. Comparative studies on thermoelectric properties of p-type Mg2Sn0.75Ge0.25 doped with lithium, sodium, and gallium[J]. Acta Materialia, 2017, 141: 154-162.
[125] SAPARAMADU U, MAO J, DAHAL K, et al. The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25[J]. Acta Materialia, 2017, 124: 528-535.
[126] HIRAYAMA N, IIDA T, SAKAMOTO M, et al. Substitutional and interstitial impurity p-type doping of thermoelectric Mg2Si: a theoretical study[J]. Science and Technology of Advanced Materials, 2019, 20(1): 160-172.
[127] YASSERI M, MITRA K, SANKHLA A, et al. Influence of Mg loss on the phase stability in Mg2X (X=Si, Sn) and its correlation with coherency strain[J]. Acta Materialia, 2021, 208: 116737.
[128] SANKHLA A, KAMILA H, NAITHANI H, et al. On the role of Mg content in Mg2(Si,Sn): assessing its impact on electronic transport and estimating the phase width by in-situ characterization and modelling[J]. Materials Today Physics, 2021, 21: 100471.
[129] YIN K, ZHANG Q, ZHENG Y, et al. Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions[J]. Journal of Materials Chemistry C, 2015, 3(40): 10381-10387.
[130] ZHANG L B, CHEN X, TANG Y L, et al. Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating[J]. Journal of Materials Chemistry A, 2016, 4(45): 17726-17731.
[131] PRASANTH B, JAYACHANDREN B, HEBALKAR N, et al. Improved thermal stability of thermoelectric Mg2Si0.4Sn0.6[J]. Materials Letters, 2020, 276: 128204.
[132] CHEN J, FAN W H, WANG Y C, et al. Improvement of stability in a Mg2Si-based thermoelectric single-leg device via Mg50Si15Ni50 barrier[J]. Journal of Alloys and Compounds, 2022, 926: 166888.
[133] CHENG K, BU Z L, TANG J, et al. Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600 K[J]. Materials Today Physics, 2022, 28: 100887.
[134] MUTHIAH S, CHOUDHARY S, SANGWAN P, et al. High-performance functionalized Mg2Si0.9Sn0.1 thermoelectric leg synthesis by a single-step reactive SPS process[J]. ACS Applied Energy Materials, 2022, 5(12): 15710-15718.
[135] CAMUT J, ZIOLKOWSKI P, PONNUSAMY P, et al. Efficiency measurement and modeling of a high-performance Mg2(Si,Sn)-based thermoelectric generator[J]. Advanced Engineering Materials, 2023, 25(1): 2200776.
[136] M.H. I, ROMANJEK K, MEJRI M, et al. Manufacturing and performances of silicide-based thermoelectric modules[J]. Energy Conversion and Management, 2021, 242: 114304.
[137] OHKUBO I, MURATA M, LIMA M S L, et al. Miniaturized in-plane π-type thermoelectric device composed of a II–IV semiconductor thin film prepared by microfabrication[J]. Materials Today Energy, 2022, 28: 101075.
[138] ARAI K, MATSUBARA M, SAWADA Y, et al. Improvement of electrical contact between Te material and Ni electrode interfaces by application of a buffer layer[J]. Journal of Electronic Materials, 2012, 41(6): 1771-1777.
[139] SAKAMOTO T, IIDA T, HONDA Y, et al. The use of transition-metal silicides to reduce the contact resistance between the electrode and sintered n-type Mg2Si[J]. Journal of Electronic Materials, 2012, 41(6): 1805-1810.
[140] THIMONT Y, LOGNONE Q, GOUPIL C, et al. Design of apparatus for Ni/Mg2Si and Ni/MnSi1.75 contact resistance determination for thermoelectric legs[J]. Journal of Electronic Materials, 2014, 43(6): 2023-2028.
[141] BOOR J D, GLOANEC C, KOLB H, et al. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators[J]. Journal of Alloys and Compounds, 2015, 632: 348-353.
[142] LONG Y, CHEN S P, ZHANG H, et al. Microstructure and properties of interface between Mg2Si thermoelectric materials and Cu/Ni combined electrode[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3983-3988.
[143] YANG R Y, CHEN S P, FAN W H, et al. Interfacial properties of Cu/Ni/Mg2Si joints prepared in one step by the spark plasma sintering method[J]. Journal of Alloys and Compounds, 2017, 704: 545-551.
[144] MITRA K, MAHAPATRA S, DASGUPTA T. Fabrication of nickel contacts for Mg2Si based thermoelectric generators via an induction assisted rapid monoblock sintering technique[J]. Journal of Electronic Materials, 2019, 48(3): 1754-1757.
[145] PHAM N H, FARAHI N, KAMILA H, et al. Ni and Ag electrodes for magnesium silicide based thermoelectric generators[J]. Materials Today Energy, 2019, 11: 97-105.
[146] JAYACHANDRAN B, PRASANTH B, GOPALAN R, et al. Thermally stable, low resistance Mg2Si0.4Sn0.6/Cu thermoelectric contacts using SS 304 interlayer by one step sintering[J]. Materials Research Bulletin, 2021, 136: 111147.
[147] CAMUT J, PHAM N H, NHI TRUONG D Y, et al. Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices[J]. Materials Today Energy, 2021, 21: 100718.
[148] CAMUT J, AYACHI S, CASTILLO-HERNáNDEZ G, et al. Overcoming asymmetric contact resistances in Al-contacted Mg2(Si,Sn) thermoelectric legs[J]. Materials, 2021, 14(22): 6774.
[149] AYACHI S, CASTILLO HERNANDEZ G, PHAM N H, et al. Developing contacting solutions for Mg2Si1-xSnx-based thermoelectric generators: Cu and Ni45Cu55 as potential contacting electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40769-40780.
[150] CHEN S P, CHEN Y Z, OHNO S, et al. Enhancing interfacial properties of Mg2Si‐based thermoelectric joint with Mg2SiNi3 compound as electrodes[J]. Physica Status Solidi A: Applications and Materials Science, 2020, 217(15): 1901035.
[151] CHEN S P, CHEN J, FAN W H, et al. Improvement of contact and bonding performance of Mg2Si/Mg2SiNi3 thermoelectric joints by optimizing the concentration gradient of Mg[J]. Journal of Electronic Materials, 2022, 51(5): 2256-2265.
[152] GOYAL G K, DASGUPTA T. Generic approach for contacting thermoelectric solid solutions: case study in n- and p-type Mg2Si0.3Sn0.7[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20754-20762.
[153] CAI L L, LI P, WANG P, et al. Duration of thermal stability and mechanical properties of Mg2Si/Cu thermoelectric joints[J]. Journal of Electronic Materials, 2018, 47(5): 2591-2599.
[154] JAYACHANDRAN B, DASGUPTA T, SINGH A. A constant properties model for the performance estimation in segmented thermoelectric generator elements and its experimental validation using an n-type Mg2Si0.3Sn0.7–Bi2Te2.7Se0.3 segmented leg[J]. ACS Applied Energy Materials, 2023, 11(6): 6157–6170.
[155] PENG H, WANG C L, LI J C, et al. Elastic and vibrational properties of Mg2Si1-xSnx alloy from first principles calculations[J]. Solid State Communications, 2012, 152(9): 821-824.
[156] LIU W, YIN K, ZHANG Q J, et al. Eco-friendly high-performance silicide thermoelectric materials[J]. National Science Review, 2017, 4(4): 611-626.
[157] GAO P, BERKUN I, SCHMIDT R D, et al. Transport and mechanical properties of high-ZT Mg2.08Si0.4−xSn0.6Sbx thermoelectric materials[J]. Journal of Electronic Materials, 2014, 43: 1790-1803.
[158] ISHIKAWA M, NAKAMURA T, HIRATA S, et al. Mechanical properties of Mg2Si with metallic binders[J]. Japanese Journal of Applied Physics, 2015, 54(7S2): 07JC03.
[159] HUANG H M, WEN P F, DENG S, et al. The thermoelectric and mechanical properties of Mg2(Si0.3Sn0.7)0.99Sb0.01 prepared by one-step solid state reaction combined with hot-pressing[J]. Journal of Alloys and Compounds, 2021, 881: 160546.
[160] SKOMEDAL G, HOLMGREN L, MIDDLETON H, et al. Design, assembly and characterization of silicide-based thermoelectric modules[J]. Energy Conversion and Management, 2016, 110: 13-21.
[161] ZHAO H Z, SUI J, TANG Z J, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7: 97-103.
[162] LIU Z H, SHUAI J, MAO J, et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency[J]. Acta Materialia, 2016, 102: 17-23.
[163] SHUAI J, KIM H S, LAN Y C, et al. Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaAg0.97Sb0.99[J]. Nano Energy, 2015, 11: 640-646.
[164] ZHENG Y Y, LIU C Y, MIAO L, et al. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity[J]. Nano Energy, 2019, 59: 311-320.
[165] LIU Z H, MAO J, SUI J H, et al. High thermoelectric performance of α-MgAgSb for power generation[J]. Energy & Environmental Science, 2018, 11(1): 23-44.
[166] KRAEMER D, SUI J, MCENANEY K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[J]. Energy & Environmental Science, 2015, 8(4): 1299-1308.
[167] XIE L J, YANG J W, LIU Z Y, et al. Highly efficient thermoelectric cooling performance of ultrafine-grained and nanoporous materials[J]. Materials Today, 2023, 65: 5-13.
[168] XIE L J, YIN L, YU Y, et al. Screening strategy for developing thermoelectric interface materials[J]. Science, 2023, 382(6673): 921-928.
[169] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[170] BLöCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[171] SHANG H J, ZOU Q, ZHANG L, et al. Improving thermal stability and revealing physical mechanism in n-type Mg3Sb2-xBix for practical applications[J]. Nano Energy, 2023: 108270.
[172] ZHANG Q H, LIAO J C, TANG Y S, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science, 2017, 10(4): 956-963.
[173] JIANG M, FU Y T, ZHANG Q H, et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds[J]. National Science Review, 2023: nwad095.
[174] LI A R, FU C G, ZHAO X B, et al. High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective[J]. Research, 2020, 2020: 1934848.
[175] IMASATO K, WOOD M, ANAND S, et al. Understanding the high thermoelectric performance of Mg3Sb2-Mg3Bi2 alloys[J]. Advanced Energy and Sustainability Research, 2022, 3: 2100208.
[176] XING T, SONG Q F, QIU P F, et al. High efficiency GeTe-based materials and modules for thermoelectric power generation[J]. Energy & Environmental Science, 2021, 14(2): 995-1003.
[177] CUI Y Y, ZHANG X L, DUAN B, et al. Band structure and thermoelectric properties of Al-doped Mg3−xAlxSb2 compounds[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15206-15213.
[178] SONG L R, ZHANG J W, IVERSEN B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials[J]. Journal of Materials Chemistry A, 2017, 5(10): 4932-4939.
[179] XIN H X, QIN X Y, JIA J H, et al. Thermoelectric properties of nanocrystalline (Mg1−xZnx)3Sb2 isostructural solid solutions fabricated by mechanical alloying[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165403.
[180] PETZOW G, SUGA T, ELSSNER G, et al. Bond strength of vacuum brazed Mg-PSZ/steel joints[J]. Materials Research Bulletin, 1987, 22(9): 1187-1193.
[181] REUSS A. Berechnung der flie grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58.
[182] KUO J J, YU Y, KANG S D, et al. Mg deficiency in grain boundaries of n-type Mg3Sb2 identified by atom probe tomography[J]. Advanced Materials Interfaces, 2019, 6(13): 1900429.
[183] KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg-Sb single crystals[J]. Journal of Materials Chemistry A, 2014, 2(31): 12311-12316.
[184] ZHANG J W, SONG L R, IVERSEN B B. Improved thermoelectric properties of n-type Mg3Sb2 through cation-site doping with Gd or Ho[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 10964-10971.
[185] ZHU W Y, ZHENG P P, SHAO Y M, et al. Enhanced average thermoelectric properties of n‑type Mg3Sb2 based materials by mixed-valence Ni doping[J]. Journal of Alloys and Compounds, 2022, 924: 166598.
[186] LUO T, KUO J J, GRIFFITH K J, et al. Nb‐mediated grain growth and grain‐boundary engineering in Mg3Sb2‐based thermoelectric materials[J]. Advanced Functional Materials, 2021, 31(28): 2100258.
[187] SHUAI J, MAO J, SONG S W, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10(3): 799-807.
[188] SHUAI J, WANG Y M, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2[J]. Acta Materialia, 2015, 93: 187-193.
[189] LI B, LONG W, ZHOU X P. The effect of Ti on the microstructure and mechanical properties of (Ti+Mg3Sb2)/Mg composites[J]. Advanced Composites Letters, 2020, 29: 1-8.
[190] MAO T, QIU P F, DU X L, et al. Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions[J]. Advanced Functional Materials, 2019, 30(6): 1908315.
[191] ZHANG J W, JORGENSEN L R, SONG L, et al. Insight into the strategies for improving the thermal stability of efficient n-type Mg3Sb2-based thermoelectric materials[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31024-31034.
[192] DEHOFF R T. Thermodynamics in materials science[M]. 2nd Edition. Boca Raton: CRC Press, 2006.
[193] MAO J, SHUAI J, SONG S W, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10548-10553.
[194] SONG S W, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δ Y0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25-33.
[195] ZHANG J W, SONG L R, IVERSEN B B. Rapid one-step synthesis and compaction of high-performance n-type Mg3Sb2 thermoelectrics[J]. Angewandte Chemie-international Edition, 2020, 59(11): 4278-4282.
[196] ZENG Z R, ZHOU M R, ESMAILY M, et al. Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing[J]. Communications Materials, 2022, 3(1): 1-10.
[197] WANG T L, LIU F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook[J]. Journal of Magnesium and Alloys, 2022, 10(2): 326-355.
[198] FUJIMOTO S, NAGASE K, OHSHIMA H, et al. Thermoelectric module of SiGe bulk alloys forming p‐n junction at the hot side[J]. Advanced Engineering Materials, 2022, 24(8): 2101520.
[199] LIU W S, ZHOU J W, JIE Q, et al. New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby[J]. Energy & Environmental Science, 2016, 9(2): 530-539.
[200] KIM G, LEE H, KIM J, et al. Enhanced fracture toughness of Al and Bi co-doped Mg2Si by metal nanoparticle decoration[J]. Ceramics International, 2017, 43(15): 12979-12982.
[201] KIM G, RIM H J, LEE H, et al. Mg2Si-based thermoelectric compounds with enhanced fracture toughness by introduction of dual nanoinclusions[J]. Journal of Alloys and Compounds, 2019, 801: 234-238.
[202] YIN K, SU X L, YAN Y G, et al. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites[J]. Scripta Materialia, 2017, 126: 1-5.
[203] KIM G, KIM S W, RIM H J, et al. Improved trade-off between thermoelectric performance and mechanical reliability of Mg2Si by hybridization of few-layered reduced graphene oxides[J]. Scripta Materialia, 2019, 162: 402-407.
[204] MAO J, WANG Y M, GE B H, et al. Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn[J]. Physical Chemistry Chemical Physics, 2016, 18(30): 20726-20737.
[205] TUMMINELLO S, AYACHI S, FRIES S G, et al. Applications of thermodynamic calculations to practical TEG design: Mg2(Si0.3Sn0.7)/Cu interconnections[J]. Journal of Materials Chemistry A, 2021, 9(36): 20436-20452.
[206] GU M, BAI S Q, WU J H, et al. A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules[J]. Journal of Materials Research, 2019, 34(7): 1179-1187.
[207] WANG Z Y, FU C G, XIA K, et al. Mo-Fe/NbFeSb thermoelectric junctions: anti-thermal aging interface and low contact resistivity[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7317-7323.
[208] LI J Q, ZHAO S Y, CHEN J L, et al. Al-Si alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical Strength[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18562-18569.
[209] GU M, BAI S Q, XIA X G, et al. Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints[J]. Applied Science, 2017, 7(9): 7090952.
[210] QIAN K, GAO L, CHEN X Y, et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition[J]. Advanced Materials, 2020, 32(19): 1908314.
[211] GAO F M, HE J L, WU E D, et al. Hardness of covalent crystals[J]. Physical Review Letters, 2003, 91(1): 015502.
[212] JIANG B B, WANG W, LIU S X, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics[J]. Science, 2022, 377(208): 208-213.
[213] HONG M, LYV W Y, LI M, et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives[J]. Joule, 2020, 4(9): 2030-2043.
[214] XIAO Y, ZHAO L-D. Seeking new, highly effective thermoelectrics[J]. Science, 2020, 367(6483): 1196-1197.
[215] MAYER J, GIANNUZZI L A, KAMINO T, et al. TEM sample preparation and FIB-induced damage[J]. MRS Bulletin, 2007, 32(5): 400-407.
[216] WILLIAMS D B, CARTER C B, WILLIAMS D B, et al. The transmission electron microscope[M]. Boston: Springer, 1996.
[217] OUELDNA N, PORTAVOCE A, BERTOGLIO M, et al. Phase transitions in thermoelectric Mg-Ag-Sb thin films[J]. Journal of Alloys and Compounds, 2022, 900: 163534.
[218] JIANG Q, YANG C C. Size effect on the phase stability of nanostructures[J]. Current Nanoscience, 2008, 4(2): 179-200.
[219] DENG R G, SU X L, HAO S Q, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe[J]. Energy & Environmental Science, 2018, 11(6): 1520-1535.
[220] XU B, TIAN Y J. Breaking a bottleneck for thermoelectric generators[J]. Science, 2023, 382(6673): 882-883.
[221] HE R, SCHIERNING G, NIELSCH K. Thermoelectric devices: a review of devices, architectures, and contact optimization[J]. Advanced Materials Technologies, 2018, 3(4): 1700256.
[222] HONG M, ZHENG K, LYV W Y, et al. Computer-aided design of high-efficiency GeTe-based thermoelectric devices[J]. Energy & Environmental Science, 2020, 13(6): 1856-1864.
[223] ZHU K, DENG B, ZHANG P X, et al. System efficiency and power: the bridge between the device and system of a thermoelectric power generator[J]. Energy & Environmental Science, 2020, 13(10): 3514-3526.
[224] BONFIGLIOLI G, MONTALENTI G. On linear expansion coefficient and melting point of metals[J]. Journal of Applied Physics, 1951, 22(8): 1089-1090.
修改评论