中文版 | English
题名

镁基热电器件界面及稳定性研究

其他题名
RESEARCH ON MAGNESIUM-BASED THERMOELECTRIC DEVICE INTERFACE AND ITS STABILITY
姓名
姓名拼音
WU Xinzhi
学号
12031208
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
刘玮书
导师单位
材料科学与工程系
论文答辩日期
2024-04-25
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Mg基热电材料其组成元素地壳丰富度高,有望大规模应用。但在服役过程中,器件电极界面的可靠连接和稳定性仍存在挑战。高界面结合强度需要一定的界面元素互扩散,然而过度扩散又会导致界面电阻增加,甚至器件失效。为此,本文针对元素互扩散导致界面结合强度与界面电阻难以平衡的关键科学问题展开了系列工作,提出了多元合金热电界面材料设计策略,分别为Mg3Sb1.5Bi0.5、Mg2Sn0.75Ge0.25和MgAgSb三类热电材料设计了相应热电界面材料,并结合镀膜、掺杂和仿真等方法,得到了兼顾高效率、高功率密度和高稳定性的Mg基热电器件。

本文针对n型Mg3Sb1.5Bi0.5热电臂界面及热稳定性较差问题,通过多元合金策略,设计了FeCrTiMnMg热电界面材料,获得了高抗剪强度(> 40 MPa)和低界面电阻率(< 5 μΩ cm2)的稳定界面;通过降低化学势梯度、降低Mg饱和蒸气压和增加扩散激活能策略,设计了Mg合金防护涂层,提高了热学稳定性。针对n型Mg2Sn0.75Ge0.25热电臂界面及力学稳定性较差问题,设计了Cu2MgFe热电界面材料;通过理论计算筛选出有益掺杂元素钇,发现钇掺杂能提高Mg-Sn化学键结合强度,细化晶粒尺寸,并提高Mg2Sn0.75Ge0.25的力学稳定性。针对p型MgAgSb热电臂在相变温度附近热应力大的问题,设计了AgMgMn0.1热电界面材料,优化后的界面最大热应力降低至12 MPa,相较Ag/MgAgSb界面降低了36%。通过p、n热电臂的配对组合,对全Mg基p-n模块器件进行了全尺寸有限元模拟,获得了最优的p-n单臂尺寸比,优化后的全Mg基模块器件在温差325 °C下获得了0.9 W cm-2的功率密度和9.2%的转换效率,在不损失效率基础上,功率密度相较于尺寸未优化的器件提高了12%。进一步发现了界面结合强度与界面两侧材料熔点和热膨胀系数失配度之间的负相关关系,归纳出基于熔点及热膨胀系数匹配、扩散钝化和非活性掺杂的热电界面材料设计策略。

本文针对平衡热电器件界面结合强度和界面电阻关键工程难题,提出了多元合金热电界面材料设计策略,结合镀膜、掺杂、计算和仿真实现了高性能Mg基热电器件,为其他热电器件电极界面设计提供了理论指导。

 

其他摘要

Mg-based thermoelectric materials exhibit high elemental abundance, which is expected for large scalable applications; however, the challenges about the stability at the device electrode interfaces remain. Achieving high interfacial bond strength requires a certain elemental interdiffusion, while excessive diffusion leads to an increase in interfacial resistance and then results in a degradation of device performance. This thesis addresses the key scientific issues about the balance between interfacial bonding strength and interfacial resistance caused by the elemental interdiffusion and proposes a multi-element alloy design strategy for screening thermoelectric interface materials for the three types of thermoelectric materials, i.e., Mg3Sb1.5Bi0.5, Mg2Sn0.75Ge0.25, and MgAgSb. A series of Mg-based thermoelectric power generation devices with high efficiency, high power density, and high stability are obtained by coating, doping, and simulation strategies.

To address the poor interface and thermal stability of n-type Mg3Sb1.5Bi0.5 thermoelectric legs, FeCrTiMnMg thermoelectric interface materials were designed through a multi-alloy strategy, and a stable contact interface with high shear strength (> 40 MPa) and low interfacial resistivity (< 5 μΩ cm2) was obtained; the Mg alloy coatings were designed to improve the stability of the Mg3Sb1.5Bi0.5 by lowering the chemical potential gradient, lowering the Mg saturation vapor pressure, and increasing the diffusion activation energy. For the poor interface and mechanical stability of n-type Mg2Sn0.75Ge0.25 thermoelectric legs, Cu2MgFe thermoelectric interface materials were designed; the beneficial doping element yttrium was screened using DFT calculations; the yttrium dopant could improve the Mg-Sn chemical bonding strength, refine grain size, and improve the mechanical stability of Mg2Sn0.75Ge0.25. To address the challenge of high interfacial thermal stress in p-type MgAgSb thermoelectric legs near the phase transition temperature range, the AgMgMn0.1 thermoelectric interface material was designed, and the maximum interfacial thermal stress was reduced to 12 MPa, which is 36% less than that the value of using Ag as the thermoelectric interface material. The full-size simulation for the Mg-based p-n module device was carried out, and the optimal p-n leg size ratio was obtained. The optimized module device obtained a power density of 0.9 W cm-2 and a conversion efficiency of 9.2% under a temperature difference of 325 °C; the power density was improved by 12% compared with that of the non-size-optimized device. The negative correlation between the interface bonding strength and the mismatch between the melting point and thermal expansion coefficient of the materials on both sides of the interface was found. The thermoelectric interface materials design strategy based on the matching of melting point and thermal expansion coefficient, diffusion passivation, and inactive doping was summarized.

This thesis proposes the multi-alloy thermoelectric interface materials design strategy for balancing interface bonding strength and interface resistance of thermoelectric devices and then realizes high-performance Mg-based thermoelectric devices by combining coating, doping, calculation, and simulation. This thesis could provide theoretical guidance for the electrode interface design of other thermoelectric devices.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] SCHIERNING G. Bring on the heat[J]. Nature Energy, 2018, 3(2): 92-93.
[2] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997.
[3] BU Z L, ZHANG X Y, HU Y X, et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery[J]. Nature Communications, 2022, 13(1): 27916.
[4] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
[5] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[6] LIU W S, KIM H S, JIE Q, et al. Importance of high power factor in thermoelectric materials for power generation application: A perspective[J]. Scripta Materialia, 2016, 111: 3-9.
[7] TOMITA M, OBA S, HIMEDA Y, et al. Modeling, simulation, fabrication, and characterization of a class Si-nanowire thermoelectric generator for IoT applications[J]. IEEE Transactions on Electron Devices, 2018, 65(11): 5180-5188.
[8] ZHUANG H-L, HU H H, PEI J, et al. High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores[J]. Energy & Environmental Science, 2022, 15(5): 2039-2048.
[9] LIN Y J, WU X Z, LI Y C, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique[J]. Nano Energy, 2022, 102: 107736.
[10] YAROSHEVSKY A A. Abundances of chemical elements in the earth's crust[J]. Geochemistry International, 2006, 44(1): 48-55.
[11] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 2017, 29(14): 1605884.
[12] LIU W S, GUO C F, YAO M L, et al. Bi2S3 nanonetwork as precursor for improved thermoelectric performance[J]. Nano Energy, 2014, 4: 113-122.
[13] KIRKHAM M J, DOS SANTOS A M, RAWN C J, et al. Determination of crystal structures of the thermoelectric material MgAgSb[J]. Physical Review B, 2012, 85(14): 144120.
[14] JIANG B B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830-834.
[15] ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al. Highly effective Mg2Si1−xSnx thermoelectrics[J]. Physical Review B, 2006, 74(4): 045207.
[16] CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications, 2020, 11(1): 2723.
[17] LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023, 380(6647): 841-846.
[18] LIU R H, XING Y F, LIAO J C, et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator[J]. Nature Communications, 2022, 13(1): 7738.
[19] JOSHI G, LEE H, LAN Y C, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J]. Nano Letters, 2008, 8(12): 4670-4674.
[20] HAN Z J, LI J-W, JIANG F, et al. Room-temperature thermoelectric materials: challenges and a new paradigm[J]. Journal of Materiomics, 2021, 8(2): 427-436.
[21] ZHAO L-D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance[J]. Energy & Environmental Science, 2013, 6(11): 3346-3355.
[22] OLVERA A A, MOROZ N A, SAHOO P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se[J]. Energy & Environmental Science, 2017, 10(7): 1668-1676.
[23] JOOD P, OHTA M, YAMAMOTO A, et al. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules[J]. Joule, 2018, 2(7): 1339-1355.
[24] DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT= 2.2 with Bi-doped n-type SnSe single crystals[J]. Nature Communications, 2016, 7(1): 13713.
[25] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[26] ZHAO L-D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[27] YIN L, YANG F, BAO X, et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design[J]. Nature Energy, 2023, 8: 665–674.
[28] 陈立东, 刘睿恒, 史讯. 热电材料与器件[M]. 北京: 科学出版社, 2018.
[29] LI J-F, LIU W-S, ZHAO L-D, et al. High-performance nanostructured thermoelectric materials[J]. NPG Asia Materials, 2010, 2(4): 152-158.
[30] IOFFE A F. Semiconductor Thermoelements and Thermoelectric Cooling[M]. Semiconductor Thermoelements and Thermoelectric Cooling. London, UK; Infosearch. 1956: 36-73.
[31] IOFFE A F. Physics of Semiconductors[M]. Moscow-Leningrad, Russian Izd. AN SSSR, 1957.
[32] LIU W S, YAN X, CHEN G, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1): 42-56.
[33] KIM H S, LIU W S, CHEN G, et al. Relationship between thermoelectric figure of merit and energy conversion efficiency[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8205-8210.
[34] KIM H S, LIU W S, REN Z F. The bridge between the materials and devices of thermoelectric power generators[J]. Energy & Environmental Science, 2017, 10(1): 69-85.
[35] WU W J, REN G K, CHEN X X, et al. Interfacial advances yielding high efficiencies for thermoelectric devices[J]. Journal of Materials Chemistry A, 2021, 9(6): 3209-3230.
[36] GAO M, ROWE D. Thermoelectrics Handbook: Macro to Nano Thermoelectric module design theories[M]. Boca Raton: CRC Press, 2006.
[37] LIU W S, WANG H Z, WANG L J, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1(42): 13093-13100.
[38] HUANG Z J, YIN L, HU C L, et al. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction[J]. Journal of Materials Science & Technology, 2020, 40: 113-118.
[39] MEJRI M, MALARD B, THIMONT Y, et al. Thermal stability of Mg2Si0.55Sn0.45 for thermoelectric applications[J]. Journal of Alloys and Compounds, 2020, 846: 156413.
[40] SHANG H J, LIANG Z X, XU C C, et al. N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation[J]. Acta Materialia, 2020, 201: 572-579.
[41] ZHAO D G, LI X Y, HE L, et al. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging[J]. Journal of Alloys and Compounds, 2009, 477(1-2): 425-431.
[42] ZHANG Q H, LIAO J C, TANG Y S, et al. Interface stability of skutterudite thermoelectric materials/Ti88Al12[J]. Journal of Inorganic Materials, 2018, 33(8): 889-894.
[43] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[44] LIU W S, BAI S Q. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module[J]. Journal of Materiomics, 2019, 5(3): 321-336.
[45] ZHANG Q H, HUANG X Y, BAI S Q, et al. Thermoelectric devices for power generation: recent progress and future challenges [J]. Advanced Engineering Materials, 2016, 18(2): 194-213.
[46] 高敏, 张景韶. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996.
[47] LIU W S, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: from materials to devices[J]. Acta Materialia, 2015, 87: 357-376.
[48] HAN Z J, GUI Z G, ZHU Y B, et al. The electronic transport channel protection and tuning in real space to boost the thermoelectric performance of Mg3+δSb2-yBiy near Room temperature[J]. Research, 2020, 2020: 1672051.
[49] SHU R, ZHOU Y C, WANG Q, et al. Mg3+δSbxBi2−x family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature[J]. Advanced Functional Materials, 2019, 29(4): 1807235.
[50] ZHU Y B, DONG E T, HAN Z J, et al. Maximized atomic disordering approach boost the thermoelectric performance of Mg2Sn through the self-compensation effect and steric effect[J]. Acta Materialia, 2021, 217: 117172.
[51] PEI Y Z, WANG H, SNYDER G J. Band engineering of thermoelectric materials[J]. Advanced Materials, 2012, 24(46): 6125-6135.
[52] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[53] QIN B C, ZHAO L-D. Carriers: the less, the faster[J]. Materials Lab, 2022, 1: 220004.
[54] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557.
[55] QIAN X, ZHOU J W, CHEN G. Phonon-engineered extreme thermal conductivity materials[J]. Nature Materials, 2021, 20(9): 1188-1202.
[56] MAO J, NIEDZIELA J L, WANG Y, et al. Self-compensation induced vacancies for significant phonon scattering in InSb[J]. Nano Energy, 2018, 48: 189-196.
[57] ROWE D M, SHUKLA V S, SAVVIDES N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys[J]. Nature, 1981, 290: 765-766.
[58] KIM W, ZIDE J, GOSSARD A, et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors[J]. Physical Review Letters, 2006, 96(4): 045901.
[59] SUN Y, YIN L, ZHANG Z W, et al. Low contact resistivity and excellent thermal stability of p-type YbMg0.8Zn1.2Sb2/Fe-Sb junction for thermoelectric applications[J]. Acta Materialia, 2022, 235: 118066.
[60] SUN Z, CHEN X, ZHANG J C, et al. Achieving reliable CoSb3 based thermoelectric joints with low contact resistivity using a high-entropy alloy diffusion barrier layer[J]. Journal of Materiomics, 2021, 8(4): 882-892.
[61] XING Y F, LIU R H, LIAO J C, et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule, 2020, 4(11): 2475-2483.
[62] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8): 1043-1053.
[63] MAO J, LIU Z H, REN Z F. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495–498.
[64] YANG J W, LI G D, ZHU H T, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material[J]. Joule, 2021, 6: 1-12.
[65] CHOWDHURY I, PRASHER R, LOFGREEN K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nature Nanotechnology, 2009, 4(4): 235-238.
[66] ZHANG Q H, DENG K F, WILKENS L, et al. Micro-thermoelectric devices[J]. Nature Electronics, 2022, 5(6): 333-347.
[67] XU Q, DENG B, WANG Y P, et al. Small, affordable, ultra-low-temperature vapor-compression and thermoelectric hybrid freezer for clinical applications[J]. Cell Reports Physical Science, 2023, 4(12): 101735.
[68] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys[J]. Science, 2008, 320(5876): 634-638.
[69] LIU W S, ZHANG Q Y, LAN Y C, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577-587.
[70] LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions[J]. Physical Review Letters, 2012, 108(16): 166601.
[71] ZHANG Q, HE J, ZHU T J, et al. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials[J]. Applied Physics Letters, 2008, 93(10): 102109.
[72] SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports[J]. Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
[73] LIU W-S, ZHANG B-P, ZHAO L-D, et al. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-Group elements for Sb[J]. Chemistry of Materials, 2008, 20(24): 7526-7531.
[74] WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n -type silicon germanium bulk alloy[J]. Applied Physics Letters, 2008, 93(19): 193121.
[75] XING Y F, LIU R H, LIAO J C, et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization[J]. Energy & Environmental Science, 2019, 12(11): 3390-3399.
[76] BU Z L, ZHANG X Y, SHAN B, et al. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys[J]. Science Advance, 2021, 7(19): eabf2738.
[77] QIN B C, WANG D Y, LIU X X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373(6554): 556-561.
[78] QIU P F, MAO T, HUANG Z F, et al. High-efficiency and stable thermoelectric module based on liquid-like materials[J]. Joule, 2019, 3(6): 1538-1548.
[79] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2[J]. Science, 2021, 371(6530): 722-727.
[80] TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered zintl compounds with high thermoelectric performance[J]. Advanced Materials, 2016, 28(46): 10182-10187.
[81] YING P J, LIU X H, FU C G, et al. High performance alpha-mgagsb thermoelectric materials for low temperature power generation[J]. Chemistry of Materials, 2015, 27(3): 909-913.
[82] KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds[J]. Energy & Environmental Science, 2018, 11(2): 429-434.
[83] XU C C, LIANG Z, SHANG H J, et al. Scalable synthesis of n-type Mg3Sb2-xBix for thermoelectric applications[J]. Materials Today Physics, 2021, 17: 100336.
[84] SHTERN M, SHERCHENKOV A, SHTERN Y, et al. Mechanical properties and thermal stability of nanostructured thermoelectric materials on the basis of PbTe and GeTe[J]. Journal of Alloys and Compounds, 2023, 946: 169364.
[85] SEPEHRI-AMIN H, IMASATO K, WOOD M, et al. Evolution of nanometer-scale microstructure within grains and in the intergranular region in thermoelectric Mg3(Sb, Bi)2 alloys[J]. ACS Applied Materials & Interfaces, 2022, 33(14): 37958–37966.
[86] YING P J, HE R, MAO J, et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat[J]. Nature Communications, 2021, 12(1): 1121.
[87] LIU Z H, GAO W H, OSHIMA H, et al. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling[J]. Nature Communications, 2022, 13(1): 1120.
[88] PEI J, CAI B W, ZHUANG H-L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges[J]. National Science Review, 2020, 7: 1856-1858.
[89] JIANG F, FENG T, ZHU Y B, et al. Structure, magnetic and thermoelectric properties of high entropy selenides Bi0.6Sb0.6In0.4Cr0.4Se3[J]. Materials Lab, 2022, 1(4): 220045.
[90] LI J-W, HAN Z J, YU J C, et al. Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values[J]. Nature Communications, 2023, 14(1): 7428.
[91] SHANG H J, LIANG Z X, XU C C, et al. N-type Mg3Sb2-xBix alloys as promising thermoelectric materials[J]. Research, 2020, 2020: 1219461.
[92] ZHANG J W, SONG L R, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.
[93] WOOD M, KUO J J, IMASATO K, et al. Improvement of low-temperature ZT in a Mg3Sb2 -Mg3Bi2 solid solution via Mg-vapor annealing[J]. Advanced Materials, 2019, 31(35): e1902337.
[94] IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J]. Energy & Environmental Science, 2019, 12(3): 965-971.
[95] SHI X M, SUN C, BU Z L, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics[J]. Advance Science, 2019, 6(16): 1802286.
[96] SHI X M, ZHAO T T, ZHANG X Y, et al. Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping[J]. Advanced Materials, 2019, 31(36): 1903387.
[97] CHEN X X, WU H J, CUI J, et al. Extraordinary thermoelectric performance in n-type manganese doped Zintl: high band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure[J]. Nano Energy, 2018, 52: 246-255.
[98] JIANG F, FENG T, ZHU Y B, et al. Extraordinary thermoelectric performance, thermal stability and mechanical properties of n-type Mg3Sb1.5Bi0.5 through multi-dopants at interstitial site[J]. Materials Today Physics, 2022, 27: 100835.
[99] LIANG J S, SHI X L, PENG Y, et al. Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n‐type Mg3(Sb, Bi)2 Zintls[J]. Advanced Energy Materials, 2022, 12: 2201086.
[100] OHNO S, IMASATO K, ANAND S, et al. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2(1): 141-154.
[101] IMASATO K, WOOD M, KUO J J, et al. Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5[J]. Journal of Materials Chemistry A, 2018, 6(41): 19941-19946.
[102] JøRGENSEN L R, ZHANG J W, ZEUTHEN C B, et al. Thermal stability of Mg3Sb1.475Bi0.475Te0.05 high performance n-type thermoelectric investigated through powder X-ray diffraction and pair distribution function analysis[J]. Journal of Materials Chemistry A, 2018, 6(35): 17171-17176.
[103] WOOD M, IMASATO K, ANAND S, et al. The importance of the Mg–Mg interaction in Mg3Sb2–Mg3Bi2 shown through cation site alloying[J]. Journal of Materials Chemistry A, 2020, 8(4): 2033-2038.
[104] LIU Z H, SATO N, GAO W H, et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting[J]. Joule, 2021, 5(5): 1196-1208.
[105] ZHU Q, SONG S W, ZHU H T, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials[J]. Journal of Power Sources, 2019, 414: 393-400.
[106] FU Y T, ZHANG Q H, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K[J]. Energy & Environmental Science, 2022, 15: 3265-3274.
[107] LIANG Z, XU C C, SHANG H, et al. High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3[J]. Materials Today Physics, 2021, 19: 100413.
[108] BU Z L, ZHANG X Y, HU Y X, et al. An over 10% module efficiency using non-Bi2Te3 thermoelectric materials for recovering heat of < 600 K[J]. Energy & Environmental Science, 2021, 14: 6506-6513.
[109] YIN L, CHEN C, ZHANG F, et al. Reliable n-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications[J]. Acta Materialia, 2020, 198: 25-34.
[110] SONG S W, LIANG Z X, XU C C, et al. Reliable metal alloy contact for Mg3+δBi1.5Sb0.5 thermoelectric devices[J]. Soft Science, 2022, 2(3): 13.
[111] WANG Y C, CHEN J, JIANG Y, et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33419-33428.
[112] YING P J, REITH H, NIELSCH K, et al. Geometrical Optimization and Thermal-Stability Characterization of Te-free Thermoelectric Modules Based on MgAgSb/Mg3(Bi,Sb)2[J]. Small, 2022, 18(24): e2201183.
[113] YING P J, WILKENS L, REITH H, et al. A robust thermoelectric module based on MgAgSb/Mg3(Sb,Bi)2 with a conversion efficiency of 8.5% and a maximum cooling of 72 K[J]. Energy & Environmental Science, 2022, 15(6): 2557-2566.
[114] XU C C, LIANG Z X, REN W Y, et al. Realizing high energy conversion efficiency in a novel segmented-Mg3(Sb, Bi)2/Cubic-GeTe thermoelectric module for power generation[J]. Advanced Energy Materials, 2022, 12(45): 2202392.
[115] LI A R, NAN P F, WANG Y C, et al. Chemical stability and degradation mechanism of Mg3Sb2-xBix thermoelectrics towards room-temperature applications[J]. Acta Materialia, 2022, 239: 118301.
[116] XU C C, JIAN M M, LIANG Z X, et al. Enhancing the thermal stability of n-type Mg3+xSb1.5Bi0.49Te0.01 by defect manipulation[J]. Nano Energy, 2023, 106: 108036.
[117] WANG L Q, SATO N, PENG Y, et al. Realizing high thermoelectric performance in n-type Mg3(Sb, Bi)2-based materials via synergetic Mo addition and Sb–Bi ratio refining[J]. Advanced Energy Materials, 2023, 13(35): 2301667.
[118] LIU X H, ZHU T J, WANG H, et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence[J]. Advanced Energy Materials, 2013, 3(9): 1238-1244.
[119] LIU W S, KIM H S, CHEN S, et al. n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3269-3274.
[120] MAO J, KIM H S, SHUAI J, et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system[J]. Acta Materialia, 2016, 103: 633-642.
[121] XIN J Z, ZHANG Y, WU H J, et al. Multiscale defects as strong phonon scatters to enhance thermoelectric performance in Mg2Sn1-xSbx solid solutions[J]. Small Methods, 2019, 3(12): 1900412.
[122] YASSERI M, SANKHLA A, KAMILA H, et al. Solid solution formation in Mg2(Si,Sn) and shape of the miscibility gap[J]. Acta Materialia, 2020, 185: 80-88.
[123] DONG E T, ZHU Y B, TAN S H, et al. Bistructural pseudocontinuous solid solution with hierarchical microstructures from Ab initio study: application to the Mg2Sn−Mg3Sb2 system[J]. Acta Materialia, 2022, 236: 118139.
[124] SAPARAMADU U, DE BOOR J, MAO J, et al. Comparative studies on thermoelectric properties of p-type Mg2Sn0.75Ge0.25 doped with lithium, sodium, and gallium[J]. Acta Materialia, 2017, 141: 154-162.
[125] SAPARAMADU U, MAO J, DAHAL K, et al. The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25[J]. Acta Materialia, 2017, 124: 528-535.
[126] HIRAYAMA N, IIDA T, SAKAMOTO M, et al. Substitutional and interstitial impurity p-type doping of thermoelectric Mg2Si: a theoretical study[J]. Science and Technology of Advanced Materials, 2019, 20(1): 160-172.
[127] YASSERI M, MITRA K, SANKHLA A, et al. Influence of Mg loss on the phase stability in Mg2X (X=Si, Sn) and its correlation with coherency strain[J]. Acta Materialia, 2021, 208: 116737.
[128] SANKHLA A, KAMILA H, NAITHANI H, et al. On the role of Mg content in Mg2(Si,Sn): assessing its impact on electronic transport and estimating the phase width by in-situ characterization and modelling[J]. Materials Today Physics, 2021, 21: 100471.
[129] YIN K, ZHANG Q, ZHENG Y, et al. Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions[J]. Journal of Materials Chemistry C, 2015, 3(40): 10381-10387.
[130] ZHANG L B, CHEN X, TANG Y L, et al. Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating[J]. Journal of Materials Chemistry A, 2016, 4(45): 17726-17731.
[131] PRASANTH B, JAYACHANDREN B, HEBALKAR N, et al. Improved thermal stability of thermoelectric Mg2Si0.4Sn0.6[J]. Materials Letters, 2020, 276: 128204.
[132] CHEN J, FAN W H, WANG Y C, et al. Improvement of stability in a Mg2Si-based thermoelectric single-leg device via Mg50Si15Ni50 barrier[J]. Journal of Alloys and Compounds, 2022, 926: 166888.
[133] CHENG K, BU Z L, TANG J, et al. Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600 K[J]. Materials Today Physics, 2022, 28: 100887.
[134] MUTHIAH S, CHOUDHARY S, SANGWAN P, et al. High-performance functionalized Mg2Si0.9Sn0.1 thermoelectric leg synthesis by a single-step reactive SPS process[J]. ACS Applied Energy Materials, 2022, 5(12): 15710-15718.
[135] CAMUT J, ZIOLKOWSKI P, PONNUSAMY P, et al. Efficiency measurement and modeling of a high-performance Mg2(Si,Sn)-based thermoelectric generator[J]. Advanced Engineering Materials, 2023, 25(1): 2200776.
[136] M.H. I, ROMANJEK K, MEJRI M, et al. Manufacturing and performances of silicide-based thermoelectric modules[J]. Energy Conversion and Management, 2021, 242: 114304.
[137] OHKUBO I, MURATA M, LIMA M S L, et al. Miniaturized in-plane π-type thermoelectric device composed of a II–IV semiconductor thin film prepared by microfabrication[J]. Materials Today Energy, 2022, 28: 101075.
[138] ARAI K, MATSUBARA M, SAWADA Y, et al. Improvement of electrical contact between Te material and Ni electrode interfaces by application of a buffer layer[J]. Journal of Electronic Materials, 2012, 41(6): 1771-1777.
[139] SAKAMOTO T, IIDA T, HONDA Y, et al. The use of transition-metal silicides to reduce the contact resistance between the electrode and sintered n-type Mg2Si[J]. Journal of Electronic Materials, 2012, 41(6): 1805-1810.
[140] THIMONT Y, LOGNONE Q, GOUPIL C, et al. Design of apparatus for Ni/Mg2Si and Ni/MnSi1.75 contact resistance determination for thermoelectric legs[J]. Journal of Electronic Materials, 2014, 43(6): 2023-2028.
[141] BOOR J D, GLOANEC C, KOLB H, et al. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators[J]. Journal of Alloys and Compounds, 2015, 632: 348-353.
[142] LONG Y, CHEN S P, ZHANG H, et al. Microstructure and properties of interface between Mg2Si thermoelectric materials and Cu/Ni combined electrode[J]. Rare Metal Materials and Engineering, 2017, 46(12): 3983-3988.
[143] YANG R Y, CHEN S P, FAN W H, et al. Interfacial properties of Cu/Ni/Mg2Si joints prepared in one step by the spark plasma sintering method[J]. Journal of Alloys and Compounds, 2017, 704: 545-551.
[144] MITRA K, MAHAPATRA S, DASGUPTA T. Fabrication of nickel contacts for Mg2Si based thermoelectric generators via an induction assisted rapid monoblock sintering technique[J]. Journal of Electronic Materials, 2019, 48(3): 1754-1757.
[145] PHAM N H, FARAHI N, KAMILA H, et al. Ni and Ag electrodes for magnesium silicide based thermoelectric generators[J]. Materials Today Energy, 2019, 11: 97-105.
[146] JAYACHANDRAN B, PRASANTH B, GOPALAN R, et al. Thermally stable, low resistance Mg2Si0.4Sn0.6/Cu thermoelectric contacts using SS 304 interlayer by one step sintering[J]. Materials Research Bulletin, 2021, 136: 111147.
[147] CAMUT J, PHAM N H, NHI TRUONG D Y, et al. Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices[J]. Materials Today Energy, 2021, 21: 100718.
[148] CAMUT J, AYACHI S, CASTILLO-HERNáNDEZ G, et al. Overcoming asymmetric contact resistances in Al-contacted Mg2(Si,Sn) thermoelectric legs[J]. Materials, 2021, 14(22): 6774.
[149] AYACHI S, CASTILLO HERNANDEZ G, PHAM N H, et al. Developing contacting solutions for Mg2Si1-xSnx-based thermoelectric generators: Cu and Ni45Cu55 as potential contacting electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40769-40780.
[150] CHEN S P, CHEN Y Z, OHNO S, et al. Enhancing interfacial properties of Mg2Si‐based thermoelectric joint with Mg2SiNi3 compound as electrodes[J]. Physica Status Solidi A: Applications and Materials Science, 2020, 217(15): 1901035.
[151] CHEN S P, CHEN J, FAN W H, et al. Improvement of contact and bonding performance of Mg2Si/Mg2SiNi3 thermoelectric joints by optimizing the concentration gradient of Mg[J]. Journal of Electronic Materials, 2022, 51(5): 2256-2265.
[152] GOYAL G K, DASGUPTA T. Generic approach for contacting thermoelectric solid solutions: case study in n- and p-type Mg2Si0.3Sn0.7[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20754-20762.
[153] CAI L L, LI P, WANG P, et al. Duration of thermal stability and mechanical properties of Mg2Si/Cu thermoelectric joints[J]. Journal of Electronic Materials, 2018, 47(5): 2591-2599.
[154] JAYACHANDRAN B, DASGUPTA T, SINGH A. A constant properties model for the performance estimation in segmented thermoelectric generator elements and its experimental validation using an n-type Mg2Si0.3Sn0.7–Bi2Te2.7Se0.3 segmented leg[J]. ACS Applied Energy Materials, 2023, 11(6): 6157–6170.
[155] PENG H, WANG C L, LI J C, et al. Elastic and vibrational properties of Mg2Si1-xSnx alloy from first principles calculations[J]. Solid State Communications, 2012, 152(9): 821-824.
[156] LIU W, YIN K, ZHANG Q J, et al. Eco-friendly high-performance silicide thermoelectric materials[J]. National Science Review, 2017, 4(4): 611-626.
[157] GAO P, BERKUN I, SCHMIDT R D, et al. Transport and mechanical properties of high-ZT Mg2.08Si0.4−xSn0.6Sbx thermoelectric materials[J]. Journal of Electronic Materials, 2014, 43: 1790-1803.
[158] ISHIKAWA M, NAKAMURA T, HIRATA S, et al. Mechanical properties of Mg2Si with metallic binders[J]. Japanese Journal of Applied Physics, 2015, 54(7S2): 07JC03.
[159] HUANG H M, WEN P F, DENG S, et al. The thermoelectric and mechanical properties of Mg2(Si0.3Sn0.7)0.99Sb0.01 prepared by one-step solid state reaction combined with hot-pressing[J]. Journal of Alloys and Compounds, 2021, 881: 160546.
[160] SKOMEDAL G, HOLMGREN L, MIDDLETON H, et al. Design, assembly and characterization of silicide-based thermoelectric modules[J]. Energy Conversion and Management, 2016, 110: 13-21.
[161] ZHAO H Z, SUI J, TANG Z J, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7: 97-103.
[162] LIU Z H, SHUAI J, MAO J, et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency[J]. Acta Materialia, 2016, 102: 17-23.
[163] SHUAI J, KIM H S, LAN Y C, et al. Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaAg0.97Sb0.99[J]. Nano Energy, 2015, 11: 640-646.
[164] ZHENG Y Y, LIU C Y, MIAO L, et al. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity[J]. Nano Energy, 2019, 59: 311-320.
[165] LIU Z H, MAO J, SUI J H, et al. High thermoelectric performance of α-MgAgSb for power generation[J]. Energy & Environmental Science, 2018, 11(1): 23-44.
[166] KRAEMER D, SUI J, MCENANEY K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[J]. Energy & Environmental Science, 2015, 8(4): 1299-1308.
[167] XIE L J, YANG J W, LIU Z Y, et al. Highly efficient thermoelectric cooling performance of ultrafine-grained and nanoporous materials[J]. Materials Today, 2023, 65: 5-13.
[168] XIE L J, YIN L, YU Y, et al. Screening strategy for developing thermoelectric interface materials[J]. Science, 2023, 382(6673): 921-928.
[169] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[170] BLöCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[171] SHANG H J, ZOU Q, ZHANG L, et al. Improving thermal stability and revealing physical mechanism in n-type Mg3Sb2-xBix for practical applications[J]. Nano Energy, 2023: 108270.
[172] ZHANG Q H, LIAO J C, TANG Y S, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science, 2017, 10(4): 956-963.
[173] JIANG M, FU Y T, ZHANG Q H, et al. High-efficiency and reliable same-parent thermoelectric modules using Mg3Sb2-based compounds[J]. National Science Review, 2023: nwad095.
[174] LI A R, FU C G, ZHAO X B, et al. High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective[J]. Research, 2020, 2020: 1934848.
[175] IMASATO K, WOOD M, ANAND S, et al. Understanding the high thermoelectric performance of Mg3Sb2-Mg3Bi2 alloys[J]. Advanced Energy and Sustainability Research, 2022, 3: 2100208.
[176] XING T, SONG Q F, QIU P F, et al. High efficiency GeTe-based materials and modules for thermoelectric power generation[J]. Energy & Environmental Science, 2021, 14(2): 995-1003.
[177] CUI Y Y, ZHANG X L, DUAN B, et al. Band structure and thermoelectric properties of Al-doped Mg3−xAlxSb2 compounds[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15206-15213.
[178] SONG L R, ZHANG J W, IVERSEN B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials[J]. Journal of Materials Chemistry A, 2017, 5(10): 4932-4939.
[179] XIN H X, QIN X Y, JIA J H, et al. Thermoelectric properties of nanocrystalline (Mg1−xZnx)3Sb2 isostructural solid solutions fabricated by mechanical alloying[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165403.
[180] PETZOW G, SUGA T, ELSSNER G, et al. Bond strength of vacuum brazed Mg-PSZ/steel joints[J]. Materials Research Bulletin, 1987, 22(9): 1187-1193.
[181] REUSS A. Berechnung der flie grenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58.
[182] KUO J J, YU Y, KANG S D, et al. Mg deficiency in grain boundaries of n-type Mg3Sb2 identified by atom probe tomography[J]. Advanced Materials Interfaces, 2019, 6(13): 1900429.
[183] KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg-Sb single crystals[J]. Journal of Materials Chemistry A, 2014, 2(31): 12311-12316.
[184] ZHANG J W, SONG L R, IVERSEN B B. Improved thermoelectric properties of n-type Mg3Sb2 through cation-site doping with Gd or Ho[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 10964-10971.
[185] ZHU W Y, ZHENG P P, SHAO Y M, et al. Enhanced average thermoelectric properties of n‑type Mg3Sb2 based materials by mixed-valence Ni doping[J]. Journal of Alloys and Compounds, 2022, 924: 166598.
[186] LUO T, KUO J J, GRIFFITH K J, et al. Nb‐mediated grain growth and grain‐boundary engineering in Mg3Sb2‐based thermoelectric materials[J]. Advanced Functional Materials, 2021, 31(28): 2100258.
[187] SHUAI J, MAO J, SONG S W, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10(3): 799-807.
[188] SHUAI J, WANG Y M, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2[J]. Acta Materialia, 2015, 93: 187-193.
[189] LI B, LONG W, ZHOU X P. The effect of Ti on the microstructure and mechanical properties of (Ti+Mg3Sb2)/Mg composites[J]. Advanced Composites Letters, 2020, 29: 1-8.
[190] MAO T, QIU P F, DU X L, et al. Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions[J]. Advanced Functional Materials, 2019, 30(6): 1908315.
[191] ZHANG J W, JORGENSEN L R, SONG L, et al. Insight into the strategies for improving the thermal stability of efficient n-type Mg3Sb2-based thermoelectric materials[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31024-31034.
[192] DEHOFF R T. Thermodynamics in materials science[M]. 2nd Edition. Boca Raton: CRC Press, 2006.
[193] MAO J, SHUAI J, SONG S W, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10548-10553.
[194] SONG S W, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δ Y0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25-33.
[195] ZHANG J W, SONG L R, IVERSEN B B. Rapid one-step synthesis and compaction of high-performance n-type Mg3Sb2 thermoelectrics[J]. Angewandte Chemie-international Edition, 2020, 59(11): 4278-4282.
[196] ZENG Z R, ZHOU M R, ESMAILY M, et al. Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing[J]. Communications Materials, 2022, 3(1): 1-10.
[197] WANG T L, LIU F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook[J]. Journal of Magnesium and Alloys, 2022, 10(2): 326-355.
[198] FUJIMOTO S, NAGASE K, OHSHIMA H, et al. Thermoelectric module of SiGe bulk alloys forming p‐n junction at the hot side[J]. Advanced Engineering Materials, 2022, 24(8): 2101520.
[199] LIU W S, ZHOU J W, JIE Q, et al. New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby[J]. Energy & Environmental Science, 2016, 9(2): 530-539.
[200] KIM G, LEE H, KIM J, et al. Enhanced fracture toughness of Al and Bi co-doped Mg2Si by metal nanoparticle decoration[J]. Ceramics International, 2017, 43(15): 12979-12982.
[201] KIM G, RIM H J, LEE H, et al. Mg2Si-based thermoelectric compounds with enhanced fracture toughness by introduction of dual nanoinclusions[J]. Journal of Alloys and Compounds, 2019, 801: 234-238.
[202] YIN K, SU X L, YAN Y G, et al. Morphology modulation of SiC nano-additives for mechanical robust high thermoelectric performance Mg2Si1−xSnx/SiC nano-composites[J]. Scripta Materialia, 2017, 126: 1-5.
[203] KIM G, KIM S W, RIM H J, et al. Improved trade-off between thermoelectric performance and mechanical reliability of Mg2Si by hybridization of few-layered reduced graphene oxides[J]. Scripta Materialia, 2019, 162: 402-407.
[204] MAO J, WANG Y M, GE B H, et al. Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn[J]. Physical Chemistry Chemical Physics, 2016, 18(30): 20726-20737.
[205] TUMMINELLO S, AYACHI S, FRIES S G, et al. Applications of thermodynamic calculations to practical TEG design: Mg2(Si0.3Sn0.7)/Cu interconnections[J]. Journal of Materials Chemistry A, 2021, 9(36): 20436-20452.
[206] GU M, BAI S Q, WU J H, et al. A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules[J]. Journal of Materials Research, 2019, 34(7): 1179-1187.
[207] WANG Z Y, FU C G, XIA K, et al. Mo-Fe/NbFeSb thermoelectric junctions: anti-thermal aging interface and low contact resistivity[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7317-7323.
[208] LI J Q, ZHAO S Y, CHEN J L, et al. Al-Si alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical Strength[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18562-18569.
[209] GU M, BAI S Q, XIA X G, et al. Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints[J]. Applied Science, 2017, 7(9): 7090952.
[210] QIAN K, GAO L, CHEN X Y, et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition[J]. Advanced Materials, 2020, 32(19): 1908314.
[211] GAO F M, HE J L, WU E D, et al. Hardness of covalent crystals[J]. Physical Review Letters, 2003, 91(1): 015502.
[212] JIANG B B, WANG W, LIU S X, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics[J]. Science, 2022, 377(208): 208-213.
[213] HONG M, LYV W Y, LI M, et al. Rashba effect maximizes thermoelectric performance of GeTe derivatives[J]. Joule, 2020, 4(9): 2030-2043.
[214] XIAO Y, ZHAO L-D. Seeking new, highly effective thermoelectrics[J]. Science, 2020, 367(6483): 1196-1197.
[215] MAYER J, GIANNUZZI L A, KAMINO T, et al. TEM sample preparation and FIB-induced damage[J]. MRS Bulletin, 2007, 32(5): 400-407.
[216] WILLIAMS D B, CARTER C B, WILLIAMS D B, et al. The transmission electron microscope[M]. Boston: Springer, 1996.
[217] OUELDNA N, PORTAVOCE A, BERTOGLIO M, et al. Phase transitions in thermoelectric Mg-Ag-Sb thin films[J]. Journal of Alloys and Compounds, 2022, 900: 163534.
[218] JIANG Q, YANG C C. Size effect on the phase stability of nanostructures[J]. Current Nanoscience, 2008, 4(2): 179-200.
[219] DENG R G, SU X L, HAO S Q, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe[J]. Energy & Environmental Science, 2018, 11(6): 1520-1535.
[220] XU B, TIAN Y J. Breaking a bottleneck for thermoelectric generators[J]. Science, 2023, 382(6673): 882-883.
[221] HE R, SCHIERNING G, NIELSCH K. Thermoelectric devices: a review of devices, architectures, and contact optimization[J]. Advanced Materials Technologies, 2018, 3(4): 1700256.
[222] HONG M, ZHENG K, LYV W Y, et al. Computer-aided design of high-efficiency GeTe-based thermoelectric devices[J]. Energy & Environmental Science, 2020, 13(6): 1856-1864.
[223] ZHU K, DENG B, ZHANG P X, et al. System efficiency and power: the bridge between the device and system of a thermoelectric power generator[J]. Energy & Environmental Science, 2020, 13(10): 3514-3526.
[224] BONFIGLIOLI G, MONTALENTI G. On linear expansion coefficient and melting point of metals[J]. Journal of Applied Physics, 1951, 22(8): 1089-1090.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766058
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
吴新志. 镁基热电器件界面及稳定性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031208-吴新志-材料科学与工程(21138KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴新志]的文章
百度学术
百度学术中相似的文章
[吴新志]的文章
必应学术
必应学术中相似的文章
[吴新志]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。