[1] 国家自然基金委员会, 中国科学院未来 10 年中国学科发展战略: 工程科学[M]. 北京: 科学出版社, 2012.
[2] 肖勇. 局域共振型结构的带隙调控与减振降噪特性研究[D]. 国防科学技术大学, 2014.
[3] 何璞. 新型声学黑洞阻尼振子的设计及振动控制应用研究[D]. 南京航空航天大学, 2021.
[4] 张洪波. 声子晶体板的带隙调控及减振性能的研究[D]. 湖南大学, 2016.
[5] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics, 2010, 108(11): 114905.
[6] LIU Z, DURANT S, LEE H, et al. Far-Field Optical Superlens[J]. Nano Letters, 2007, 7(2): 403-408.
[7] PODOLSKIY V A, NARIMANOV E E. Near-sighted superlens[J]. Optics Letters, 2005, 30(1): 75.
[8] PARK C M, PARK J J, LEE S H, et al. Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs[J]. Physical Review Letters, 2011, 107(19): 194301.
[9] PARK J J, PARK C M, LEE K J B, et al. Acoustic superlens using membrane -based metamaterials[J]. Applied Physics Letters, 2015, 106(5): 051901.
[10] CLIMENTE A, TORRENT D, SÁNCHEZ-DEHESA J. Omnidirectional broadband acoustic absorber based on metamaterials[J]. Applied Physics Letters, 2012, 100(14): 144103.
[11] ZHANG S, XIA C, FANG N. Broadband Acoustic Cloak for Ultrasound Waves[J]. Physical Review Letters, 2011, 106(2): 024301.
[12] CHEN H, CHAN C T. Acoustic cloaking in three dimensions using acoustic metamaterials[J]. Applied Physics Letters, 2007, 91(18): 183518.
[13] CUMMER S A, SCHURIG D. One path to acoustic cloaking[J]. New Journal of Physics 2007, 9(3): 45-45.
[14] TORRENT D, SÁNCHEZ-DEHESA J. Acoustic cloaking in two dimensions: a feasible approach[J]. New Journal of Physics, 2008, 10(6): 063015.
[15] VESELAGO V G. THE ELECTRODYNAMICS OF SUBSTANCES WITH SIM LTANEO SLY NE ATIVE VAL ES OF AND μ[ ]. Soviet Physics spekhi, 1968, 10(4): 509.
[16] 祝雪丰, 梁彬, 程建春. 声超常材料与声隐身斗篷[J]. 现代物理知识, 2012, 24(2): 40-46.
[17] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773 -4776.
[18] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.
[19] SMITH D R, PADILLA W J, VIER D C, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.
[20] LIU H. The Research Progress of Acoustic Metamaterials[J]. Open Journal of Acoustics and Vibration, 2013, 01(02): 7-13.
[21] SIGALAS M, ECONOMOU E N. Band structure of elastic waves in two dimensional systems[J]. Solid State Communications, 1993, 86(3): 141-143.
[22] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025.
[23] MARTÍNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241-241.
[24] MONTERO DE ESPINOSA F R, JIMÉNEZ E, TORRES M. Ultrasonic Band Gap in a Periodic Two-Dimensional Composite[J]. Physical Review Letters, 1998, 80(6): 1208-1211.
[25] SHENG P, ZHANG X X, LIU Z, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2003, 338(1-4): 201-205.
[26] LI J, CHAN C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004, 70(5): 055602.
[27] CASADEI F, BERTOLDI K. Harnessing fluid-structure interactions to design self regulating acoustic metamaterials[J]. Journal of Applied Physics, 2014, 115(3): 034907.
[28] CASADEI F, DELPERO T, BERGAMINI A, et al. Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials[J]. Journal of Applied Physics, 2012, 112(6): 064902.
[29] TANG W, REN C, TONG S, et al. Sandwich-like space-coiling metasurfaces for weak dispersion high-efficiency transmission[J]. Applied Physics Letters, 2019, 115(13): 134102.
[30] LI X S, WANG Y F, CHEN A L, et al. Modulation of out-of-plane reflected waves by using acoustic metasurfaces with tapered corrugated holes[J]. Scientific Reports, 2019, 9(1): 15856.
[31] CHEN J, XIAO J, LISEVYCH D, et al. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens[J]. Nature Communications, 2018, 9(1): 4920.
[32] JI G, FANG Y, ZHOU J. Porous acoustic metamaterials in an inverted wedge shape[J]. Extreme Mechanics Letters, 2020, 36: 100648.
[33] FANG Y, ZHANG X, ZHOU J, et al. Acoustic metaporous layer with composite structures for perfect and quasi-omnidirectional sound absorption[J]. Composite Structures, 2019, 223: 110948.
[34] FANG Y, ZHANG X, ZHOU J. Acoustic porous metasurface for excellent sound absorption based on wave manipulation[J]. Journal of Sound and Vibration, 2018, 434: 273-283.
[35] JI G, HUBER J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - A review[J]. Applied Materials Today, 2022, 26: 101260.
[36] YANG Z, MEI J, YANG M, et al. Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[37] MA F, XU Y, WU J H. Shell-type acoustic metasurface and arc-shape carpet cloak[J]. Scientific Reports, 2019, 9(1): 8076.
[38] PARK J J, KWAK J H, SONG K. Ultraslow medium with an acoustic membrane -like undamped dynamic vibration absorber for low-frequency isolation[J]. Extreme Mechanics Letters, 2021, 43: 101203.
[39] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9): 873-878.
[40] FANG N, XI D, XU J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456.
[41] LEE S H, PARK C M, SEO Y M, et al. Composite Acoustic Medium with Simultaneously Negative Density and Modulus[J]. Physical Review Letters, 2010, 104(5): 054301.
[42] KIM S, KIM Y H, JANG J H. A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array[J]. The Journal of the Acoustical Society of America, 2006, 119(4): 1933-1936.
[43] LU L, YAMAMOTO T, OTOMORI M, et al. Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance[J]. Finite Elements in Analysis and Design, 2013, 72: 1-12.
[44] REN S W, VAN BELLE L, CLAEYS C, et al. Improvement of the sound absorption of flexible micro-perforated panels by local resonances[J]. Mechanical Systems and Signal Processing, 2019, 117: 138-156.
[45] RUI LIU C, HUI WU J, YANG Z, et al. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance[J]. Composite Structures, 2020, 246: 112366.
[46] ZHAO H, ZHENG Q, WANG Y, et al. Acoustic absorption of a metamaterial panel: Mechanism, boundary effect and experimental demonstration[J]. Applied Acoustics, 2021, 184: 108369.
[47] WANG Y F, WANG Y S, ZHANG C. Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: Bandgap and simultaneously double negative properties[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3311-3319.
[48] LI J, SONG A, CUMMER S A. Bianisotropic Acoustic Metasurface for Surface -Wave Enhanced Wavefront Transformation[J]. Physical Review Applied, 2020, 14(4): 044012.
[49] PENG X, LI J, SHEN C, et al. Efficient scattering-free wavefront transformation with power flow conformal bianisotropic acoustic metasurfaces[J]. Applied Physics Letters, 2021, 118(6): 061902.
[50] CHEN Z, YAN F, NEGAHBAN M, et al. Resonator-based reflective metasurface for low-frequency underwater acoustic waves[J]. Journal of Applied Physics, 2020, 128(5): 055305.
[51] CHEN X, LIU P, HOU Z, et al. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range[J]. Applied Physics Letters, 2017, 110(16): 161909.
[52] TANG S T, LAU J, YEUNG K Y A, et al. Multiple-frequency perfect absorption by hybrid membrane resonators[J]. Applied Physics Letters, 2020, 116(16): 161902.
[53] MA G, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.
[54] ZHAO Z, CHEN Y, HU X, et al. Vibrations and waves in soft dielectric elastomer structures[J]. International Journal of Mechanical Sciences, 2023, 239: 107885.
[55] GAO Y, WANG L. Active multifunctional composite metamaterials with negative effective mass density and negative effective modulus[J]. Composite Structures, 2022, 291: 115586.
[56] HE Z H, WANG Y Z, WANG Y S. Active feedback control of effective mass density and sound transmission on elastic wave metamaterials[J]. International Journal of Mechanical Sciences, 2021, 195: 106221.
[57] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
[58] HUANG H, CAO E, ZHAO M, et al. Spider Web-Inspired Lightweight Membrane Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation[J]. Polymers, 2021, 13(7): 1146.
[59] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications, 2012, 3(1): 756.
[60] CAI M, TIAN H, LIU H, et al. Low frequency sound insulation performance of asymmetric coupled-membrane acoustic metamaterials[J]. Multidiscipline Modeling in Materials and Structures, 2019, 15(5): 1006-1015.
[61] 王家声, 刘艳, 李秋彤, 等. 材料与几何参数对薄膜超材料吸声性能的影响[J]. 噪声与振动控制, 2021, 41(4): 54-59+175.
[62] CHEN Y, HUANG G, ZHOU X, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. The Journal of the Acoustical Society of America, 2014, 136(6): 2926-2934.
[63] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带吸声性能研究[J]. 应用声学, 2019, 38(5): 869-875.
[64] 牛嘉敏, 吴九汇. 非对称声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2018, 37(19): 45-49+68.
[65] LANGFELDT F, GLEINE W. Membrane and plate-type acoustic metamaterials with elastic unit cell edges[J]. Journal of Sound and Vibration, 2019, 453: 65-86.
[66] HU G, TANG L, CUI X. On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system[J]. Mechanical Systems and Signal Processing, 2019, 132: 595-608.
[67] ABBAD A, ATALLA N, OUISSE M, et al. Numerical and experimental investigations on the acoustic performances of membraned Helmholtz resonators embedded in a porous matrix[J]. Journal of Sound and Vibration, 2019, 459: 114873.
[68] CHEN X, XU X, AI S, et al. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields[J]. Applied Physics Letters, 2014, 105(7): 071913.
[69] ZHAO J, LI X, WANG Y, et al. Membrane acoustic metamaterial absorbers with magnetic negative stiffness[J]. The Journal of the Acoustical Society of America, 2017, 141(2): 840.
[70] XIAO S, MA G, LI Y, et al. Active control of membrane-type acoustic metamaterial by electric field[J]. Applied Physics Letters, 2015, 106(9): 091904.
[71] SAMPAIO L Y M, RODRIGUES G K, MOSQUERA-SÁNCHEZ J A, et al. Membrane smart metamaterials for unidirectional wave propagation problems[J]. Journal of Sound and Vibration, 2021, 512: 116374.
[72] NING S, YAN Z, CHU D, et al. Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature[J]. Extreme Mechanics Letters, 2021, 44: 101218.
[73] WANG Y X, GUO X, SHI S W, et al. Biaxial fatigue crack growth in proton exchange membrane of fuel cells based on cyclic cohesive finite element method[J]. International Journal of Mechanical Sciences, 2021, 189: 105946.
[74] 耿金茹. 基于共振吸声原理薄膜型结构低频吸声特性研究[D]. 哈尔滨工业大学, 2020.
[75] CHEN Y, HUANG G, ZHOU X, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. The Journal of the Acoustical Society of America, 2014, 136(6): 2926-2934.
[76] JIA X, LIANG J, ZHAO K, et al. Multi-parameters optimization for electromagnetic acoustic transducers using surrogate-assisted particle swarm optimizer[J]. Mechanical Systems and Signal Processing, 2021, 152: 107337.
[77] PENG W, ZHANG J, SHI M, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491.
[78] 康晨辰. 飞机尾翼声振疲劳寿命分析[D]. 南京航空航天大学, 2017.
[79] 贺政康. 核电厂热管段与大型风电机组 片有限元分析[D]. 华北电力大学(北京), 2019.
[80] 曾献. 核电厂主蒸汽隔离阀疲劳寿命分析及监测技术研究[D]. 哈尔滨工程大学, 2018.
[81] LUO R K. Rubber fatigue evaluation for antivibration products and an S–N curve with a scatter band of 0.8[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235(10): 2382-2390.
修改评论