中文版 | English
题名

薄膜声学超材料的结构优化与抗疲劳研究

其他题名
STRUCTURAL OPTIMIZATION AND FATIGUE RESISTANCE RESEARCH ON MEMBRANE TYPE ACOUSTIC METAMATERIALS
姓名
姓名拼音
PENG Liquan
学号
12132411
学位类型
硕士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
刘轶军
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

薄膜声学超材料,作为声学超材料中的一类,可以打破质量定律的限 制,不仅能有效的控制低频声波,还具有轻薄,可设计性强,易加工等特 点,在需要降噪的狭窄空间具有很大的工程应用潜力。然而在实际工程应 用中薄膜声学超材料具有使用寿命短的缺点。本文为了提高薄膜声学超材 料结构疲劳寿命与吸声性能,开展了吸声机制的研究以及结构轻量化优化 设计和结构疲劳寿命预测分析研究,提出了一种非对称轻量化薄膜声学超 材料结构优化设计方法。结果显示,这种方法使薄膜声学超材料结构的吸 声性能和疲劳寿命均得到有效提高。为薄膜声学超材料的实际工程应用提 供了理论和技术支撑。 本文具体采用有限元方法,建立了新构型在平面声波激励下的声固耦 合模型,分析其吸声机理,揭示了轻量化非对称布局对薄膜声学超材料吸 声性能的影响规律。通过 Dirlik 法建立了求解新构型随机声振疲劳寿命的 有限元模型。根据参数对吸声性能的影响规律,通过多目标智能算法控制 的有限元方法,针对吸声性能与疲劳寿命性能开展了联合优化。 为验证新结构优化设计方法在实际应用中的有效性,本研究搭设了无 背衬的双端口吸声系数测量平台,通过对比不同工况下的吸声曲线,归纳 了薄膜预应力对吸声性能的影响规律。另外,根据有无背衬以及对空气深 度的实验结果,分析得出了实验结果与仿真结果之间的误差来源。结果表 明,在不牺牲低频吸声性能的情况下,所提出的优化结构的质量总体上比 传统膜型声学超材料的质量降低 41.4%,厚度减小 46.52%,相应的最小疲 劳寿命增加了 10.27%。与未优化的结构相比,优化后结构的平均吸声性能 提高了 22.2%。

其他摘要

The “mass law” can be overcome by acoustic metamaterials, as one type of acoustic metamaterials, membrane-type acoustic metamaterials not only effectively control low-frequency sound wave, but also exhibit good characteristics such as lightweight, high design flexibility, and ease of processing. These materials hold great engineering potential for noise reduction in the confined space. However, the disadvantage of membrane-type acoustic metamaterial in practical engineering applications is that they always have short fatigue life. In order to improve the fatigue life and sound absorption performance of membrane-type acoustic metamaterial structures, sound absorption mechanisms, as well as structural lightweight optimization design and structural fatigue life prediction analysis research are carried out in this study. An asymmetric lightweight membrane-type acoustic metamaterial structures optimization design method is proposed. The results show that this method effectively improves the sound absorption performance and fatigue life of membrane-type acoustic metamaterial structures. This provides theoretical and technical support for the practical engineering application of membrane-type acoustic metamaterial. The acoustic-structure coupling model of the new configuration under plane acoustic excitation is constructed by using the finite element method. By analyzing the sound absorption mechanism of membrane-type acoustic metamaterial, the influence of lightweight asymmetric layout on the sound absorption performance of membrane-type acoustic metamaterials is revealed. A finite element model for the random acoustic vibration fatigue life of the new configuration is established by using the Dirlik method. The sound absorption performance and fa tigue life performance are jointly optimized through the finite element method controlled by multi-objective intelligent algorithm based on the influence of parameters on sound absorption performance. To verify the effectiveness of the new structural optimization design method in practical applications, a backless dual port sound absorption coefficient measurement platform is established. By comparing the sound absorption curves under different working conditions, the influence of membrane prestress on sound absorption performance is summarized. Furthermore, based on the presence or absence of backing and experimental results on air depth, the sources of error between the experimental and simulation results were analyzed. The results show that, without sacrificing low-frequency sound absorption performance, the proposed structure is globally 41.4% lighter and 46.52% thinner than the conventional membrane-type acoustic metamaterial. The corresponding minimum fatigue life is increased by 10.27%. The optimized configuration shows a 22.2% improvement in acoustic absorption performance compared to the unoptimized.

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 国家自然基金委员会, 中国科学院未来 10 年中国学科发展战略: 工程科学[M]. 北京: 科学出版社, 2012.
[2] 肖勇. 局域共振型结构的带隙调控与减振降噪特性研究[D]. 国防科学技术大学, 2014.
[3] 何璞. 新型声学黑洞阻尼振子的设计及振动控制应用研究[D]. 南京航空航天大学, 2021.
[4] 张洪波. 声子晶体板的带隙调控及减振性能的研究[D]. 湖南大学, 2016.
[5] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics, 2010, 108(11): 114905.
[6] LIU Z, DURANT S, LEE H, et al. Far-Field Optical Superlens[J]. Nano Letters, 2007, 7(2): 403-408.
[7] PODOLSKIY V A, NARIMANOV E E. Near-sighted superlens[J]. Optics Letters, 2005, 30(1): 75.
[8] PARK C M, PARK J J, LEE S H, et al. Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs[J]. Physical Review Letters, 2011, 107(19): 194301.
[9] PARK J J, PARK C M, LEE K J B, et al. Acoustic superlens using membrane -based metamaterials[J]. Applied Physics Letters, 2015, 106(5): 051901.
[10] CLIMENTE A, TORRENT D, SÁNCHEZ-DEHESA J. Omnidirectional broadband acoustic absorber based on metamaterials[J]. Applied Physics Letters, 2012, 100(14): 144103.
[11] ZHANG S, XIA C, FANG N. Broadband Acoustic Cloak for Ultrasound Waves[J]. Physical Review Letters, 2011, 106(2): 024301.
[12] CHEN H, CHAN C T. Acoustic cloaking in three dimensions using acoustic metamaterials[J]. Applied Physics Letters, 2007, 91(18): 183518.
[13] CUMMER S A, SCHURIG D. One path to acoustic cloaking[J]. New Journal of Physics 2007, 9(3): 45-45.
[14] TORRENT D, SÁNCHEZ-DEHESA J. Acoustic cloaking in two dimensions: a feasible approach[J]. New Journal of Physics, 2008, 10(6): 063015.
[15] VESELAGO V G. THE ELECTRODYNAMICS OF SUBSTANCES WITH SIM LTANEO SLY NE ATIVE VAL ES OF AND μ[ ]. Soviet Physics spekhi, 1968, 10(4): 509.
[16] 祝雪丰, 梁彬, 程建春. 声超常材料与声隐身斗篷[J]. 现代物理知识, 2012, 24(2): 40-46.
[17] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773 -4776.
[18] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.
[19] SMITH D R, PADILLA W J, VIER D C, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.
[20] LIU H. The Research Progress of Acoustic Metamaterials[J]. Open Journal of Acoustics and Vibration, 2013, 01(02): 7-13.
[21] SIGALAS M, ECONOMOU E N. Band structure of elastic waves in two dimensional systems[J]. Solid State Communications, 1993, 86(3): 141-143.
[22] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025.
[23] MARTÍNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241-241.
[24] MONTERO DE ESPINOSA F R, JIMÉNEZ E, TORRES M. Ultrasonic Band Gap in a Periodic Two-Dimensional Composite[J]. Physical Review Letters, 1998, 80(6): 1208-1211.
[25] SHENG P, ZHANG X X, LIU Z, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2003, 338(1-4): 201-205.
[26] LI J, CHAN C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004, 70(5): 055602.
[27] CASADEI F, BERTOLDI K. Harnessing fluid-structure interactions to design self regulating acoustic metamaterials[J]. Journal of Applied Physics, 2014, 115(3): 034907.
[28] CASADEI F, DELPERO T, BERGAMINI A, et al. Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials[J]. Journal of Applied Physics, 2012, 112(6): 064902.
[29] TANG W, REN C, TONG S, et al. Sandwich-like space-coiling metasurfaces for weak dispersion high-efficiency transmission[J]. Applied Physics Letters, 2019, 115(13): 134102.
[30] LI X S, WANG Y F, CHEN A L, et al. Modulation of out-of-plane reflected waves by using acoustic metasurfaces with tapered corrugated holes[J]. Scientific Reports, 2019, 9(1): 15856.

[31] CHEN J, XIAO J, LISEVYCH D, et al. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens[J]. Nature Communications, 2018, 9(1): 4920.

[32] JI G, FANG Y, ZHOU J. Porous acoustic metamaterials in an inverted wedge shape[J]. Extreme Mechanics Letters, 2020, 36: 100648.

[33] FANG Y, ZHANG X, ZHOU J, et al. Acoustic metaporous layer with composite structures for perfect and quasi-omnidirectional sound absorption[J]. Composite Structures, 2019, 223: 110948.

[34] FANG Y, ZHANG X, ZHOU J. Acoustic porous metasurface for excellent sound absorption based on wave manipulation[J]. Journal of Sound and Vibration, 2018, 434: 273-283.

[35] JI G, HUBER J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - A review[J]. Applied Materials Today, 2022, 26: 101260.

[36] YANG Z, MEI J, YANG M, et al. Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass[J]. Physical Review Letters, 2008, 101(20): 204301.

[37] MA F, XU Y, WU J H. Shell-type acoustic metasurface and arc-shape carpet cloak[J]. Scientific Reports, 2019, 9(1): 8076.

[38] PARK J J, KWAK J H, SONG K. Ultraslow medium with an acoustic membrane -like undamped dynamic vibration absorber for low-frequency isolation[J]. Extreme Mechanics Letters, 2021, 43: 101203.

[39] MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 2014, 13(9): 873-878.

[40] FANG N, XI D, XU J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456.

[41] LEE S H, PARK C M, SEO Y M, et al. Composite Acoustic Medium with Simultaneously Negative Density and Modulus[J]. Physical Review Letters, 2010, 104(5): 054301.

[42] KIM S, KIM Y H, JANG J H. A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array[J]. The Journal of the Acoustical Society of America, 2006, 119(4): 1933-1936.

[43] LU L, YAMAMOTO T, OTOMORI M, et al. Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance[J]. Finite Elements in Analysis and Design, 2013, 72: 1-12.

[44] REN S W, VAN BELLE L, CLAEYS C, et al. Improvement of the sound absorption of flexible micro-perforated panels by local resonances[J]. Mechanical Systems and Signal Processing, 2019, 117: 138-156.

[45] RUI LIU C, HUI WU J, YANG Z, et al. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance[J]. Composite Structures, 2020, 246: 112366.

[46] ZHAO H, ZHENG Q, WANG Y, et al. Acoustic absorption of a metamaterial panel: Mechanism, boundary effect and experimental demonstration[J]. Applied Acoustics, 2021, 184: 108369.

[47] WANG Y F, WANG Y S, ZHANG C. Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: Bandgap and simultaneously double negative properties[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3311-3319.

[48] LI J, SONG A, CUMMER S A. Bianisotropic Acoustic Metasurface for Surface -Wave Enhanced Wavefront Transformation[J]. Physical Review Applied, 2020, 14(4): 044012.

[49] PENG X, LI J, SHEN C, et al. Efficient scattering-free wavefront transformation with power flow conformal bianisotropic acoustic metasurfaces[J]. Applied Physics Letters, 2021, 118(6): 061902.

[50] CHEN Z, YAN F, NEGAHBAN M, et al. Resonator-based reflective metasurface for low-frequency underwater acoustic waves[J]. Journal of Applied Physics, 2020, 128(5): 055305.

[51] CHEN X, LIU P, HOU Z, et al. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range[J]. Applied Physics Letters, 2017, 110(16): 161909.

[52] TANG S T, LAU J, YEUNG K Y A, et al. Multiple-frequency perfect absorption by hybrid membrane resonators[J]. Applied Physics Letters, 2020, 116(16): 161902.

[53] MA G, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.

[54] ZHAO Z, CHEN Y, HU X, et al. Vibrations and waves in soft dielectric elastomer structures[J]. International Journal of Mechanical Sciences, 2023, 239: 107885.

[55] GAO Y, WANG L. Active multifunctional composite metamaterials with negative effective mass density and negative effective modulus[J]. Composite Structures, 2022, 291: 115586.

[56] HE Z H, WANG Y Z, WANG Y S. Active feedback control of effective mass density and sound transmission on elastic wave metamaterials[J]. International Journal of Mechanical Sciences, 2021, 195: 106221.

[57] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906.

[58] HUANG H, CAO E, ZHAO M, et al. Spider Web-Inspired Lightweight Membrane Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation[J]. Polymers, 2021, 13(7): 1146.

[59] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications, 2012, 3(1): 756.

[60] CAI M, TIAN H, LIU H, et al. Low frequency sound insulation performance of asymmetric coupled-membrane acoustic metamaterials[J]. Multidiscipline Modeling in Materials and Structures, 2019, 15(5): 1006-1015.

[61] 王家声, 刘艳, 李秋彤, 等. 材料与几何参数对薄膜超材料吸声性能的影响[J]. 噪声与振动控制, 2021, 41(4): 54-59+175.

[62] CHEN Y, HUANG G, ZHOU X, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. The Journal of the Acoustical Society of America, 2014, 136(6): 2926-2934.

[63] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带吸声性能研究[J]. 应用声学, 2019, 38(5): 869-875.

[64] 牛嘉敏, 吴九汇. 非对称声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2018, 37(19): 45-49+68.

[65] LANGFELDT F, GLEINE W. Membrane and plate-type acoustic metamaterials with elastic unit cell edges[J]. Journal of Sound and Vibration, 2019, 453: 65-86.

[66] HU G, TANG L, CUI X. On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system[J]. Mechanical Systems and Signal Processing, 2019, 132: 595-608.

[67] ABBAD A, ATALLA N, OUISSE M, et al. Numerical and experimental investigations on the acoustic performances of membraned Helmholtz resonators embedded in a porous matrix[J]. Journal of Sound and Vibration, 2019, 459: 114873.

[68] CHEN X, XU X, AI S, et al. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields[J]. Applied Physics Letters, 2014, 105(7): 071913.

[69] ZHAO J, LI X, WANG Y, et al. Membrane acoustic metamaterial absorbers with magnetic negative stiffness[J]. The Journal of the Acoustical Society of America, 2017, 141(2): 840.

[70] XIAO S, MA G, LI Y, et al. Active control of membrane-type acoustic metamaterial by electric field[J]. Applied Physics Letters, 2015, 106(9): 091904.

[71] SAMPAIO L Y M, RODRIGUES G K, MOSQUERA-SÁNCHEZ J A, et al. Membrane smart metamaterials for unidirectional wave propagation problems[J]. Journal of Sound and Vibration, 2021, 512: 116374.

[72] NING S, YAN Z, CHU D, et al. Ultralow-frequency tunable acoustic metamaterials through tuning gauge pressure and gas temperature[J]. Extreme Mechanics Letters, 2021, 44: 101218.

[73] WANG Y X, GUO X, SHI S W, et al. Biaxial fatigue crack growth in proton exchange membrane of fuel cells based on cyclic cohesive finite element method[J]. International Journal of Mechanical Sciences, 2021, 189: 105946.

[74] 耿金茹. 基于共振吸声原理薄膜型结构低频吸声特性研究[D]. 哈尔滨工业大学, 2020.

[75] CHEN Y, HUANG G, ZHOU X, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. The Journal of the Acoustical Society of America, 2014, 136(6): 2926-2934.

[76] JIA X, LIANG J, ZHAO K, et al. Multi-parameters optimization for electromagnetic acoustic transducers using surrogate-assisted particle swarm optimizer[J]. Mechanical Systems and Signal Processing, 2021, 152: 107337.

[77] PENG W, ZHANG J, SHI M, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design, 2023, 225: 111491.

[78] 康晨辰. 飞机尾翼声振疲劳寿命分析[D]. 南京航空航天大学, 2017.

[79] 贺政康. 核电厂热管段与大型风电机组 片有限元分析[D]. 华北电力大学(北京), 2019.

[80] 曾献. 核电厂主蒸汽隔离阀疲劳寿命分析及监测技术研究[D]. 哈尔滨工程大学, 2018.

[81] LUO R K. Rubber fatigue evaluation for antivibration products and an S–N curve with a scatter band of 0.8[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235(10): 2382-2390.

所在学位评定分委会
力学
国内图书分类号
TM614
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766059
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
彭俐荃. 薄膜声学超材料的结构优化与抗疲劳研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132411-彭俐荃-力学与航空航天(5027KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭俐荃]的文章
百度学术
百度学术中相似的文章
[彭俐荃]的文章
必应学术
必应学术中相似的文章
[彭俐荃]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。