中文版 | English
题名

四足机器人折纸驱动软体尾肢研究及控制

其他题名
RESEARCH AND CONTROL OF SOFT ROBOTIC TAIL WITH ORIGAMI ACTUATORS FOR QUADRUPED ROBOTS
姓名
姓名拼音
CHEN Fang
学号
12132245
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
刘思聪
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

连续体软体机器人具有高自由度灵活性与安全人机交互能力,其作为软体仿生肢体与四足等移动机器人平台结合,在机器人软硬结合方面实现软体尾肢辅助机器人运动、软体肢体安全交互等有着广阔的应用前景。本文围绕四足机器人气动折纸驱动软体尾肢,结合当前相关研究成果,在小应变折纸高性能软体驱动器、脊椎构型高动态软体尾肢建模与控制、高自由度机器人的高效路径规划算法三方面开展了相关研究,并通过实验论证了软体尾肢集成于四足机器人的协同控制初步效果,为面向四足机器人平台的软体尾肢的这一前沿领域提供理论基础、创新应用和技术积累。
首先,在小应变折纸高性能软体驱动器的研究方面,对折纸驱动器进行参数化设计,应用悬臂梁简化模型对驱动器折面的小应变折展进行力学建模,结合有限元仿真与实验证明了折纸结构设计与高模量柔性材料使用对软体驱动器刚度、驱动线性度、能量效率和负载能力的显著提升。
其次,在脊椎构型高动态软体尾肢建模与控制方面,设计并搭建了气动驱动集成控制系统。对软体尾肢关节进行了理论运动学与动力学建模,应用LSTM深度神经网络实现了软体尾肢的正向运动状态感知与反向输入气压预测。
再次,实现了软体尾肢与四足机器人的集成,建立了平面简化二刚体模型并基于该系统进行了动力学建模,通过实验演示了软体尾肢四足机器人系统步态同步摆动和击球动作的协同运动控制初步效果。
最后,为了实现软体肢体结合四足机器人的高自由度复杂机器人系统的高效路径规划,提出了一种基于采样的改进RRT路径规划算法RBI-RRT*,在六轴机械臂仿真与真机中进行了验证,证明该算法有效提高了在高维状态空间下的路径规划成功率与最优路径收敛效率。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] PATEL A, BRAAE M. Rapid turning at high-speed: Inspirations from the cheetah's tail[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 5506-5511.
[2] ALEXANDER R M N, VERNON A. The mechanics of hopping by kangaroos (Macropodidae)[J]. Journal of Zoology, 1975, 177(2): 265-303.
[3] FUKUSHIMA T, SIDDALL R, SCHWAB F, et al. Inertial tail effects during righting of squirrels in unexpected falls: from behavior to robotics[J]. Integrative and Comparative Biology, 2021, 61(2): 589-602.
[4] JUSUFI A, GOLDMAN D I, REVZEN S, et al. Active tails enhance arboreal acrobatics in geckos[J]. Proceedings of the National Academy of Sciences, 2008, 105(11): 4215-4219.
[5] LIBBY T, MOORE T Y, CHANG-SIU E, et al. Tail-assisted pitch control in lizards, robots and dinosaurs[J]. Nature, 2012, 481(7380): 181-184.
[6] 王海涛, 彭熙凤, 林本末. 软体机器人研究进展[J]. 华南理工大学学报:自然科学版, 2020, 48(2): 13.
[7] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie, 2011, 123(8): 1930-1935.
[8] SU Y, FANG Z, ZHU W, et al. A High-Payload Proprioceptive Hybrid Robotic Gripper with Soft Origamic Actuators[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3003-3010.
[9] LIU S, LIU J, ZOU K, et al. A Six Degrees-of-Freedom Soft Robotic Joint With Tilt-Arranged Origami Actuator[J]. Journal of Mechanisms and Robotics, 2022, 14(6): 060912.
[10] LIU J, WANG X, LIU S, et al. Vertebraic Soft Robotic Joint Design With Twisting and Antagonism[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 658-665.
[11] LEE C, KIM M, KIM Y J, et al. Soft robot review[J]. International Journal of Control, Automation and Systems, 2017, 15: 3-15.
[12] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[13] WANG J, CHORTOS A. Control strategies for soft robot systems[J]. Advanced Intelligent Systems, 2022, 4(5): 2100165.
[14] LAVALLE S M, KUFFNER Jr J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378-400.
[15] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2014: 2997-3004.
[16] MACHAIRAS K, PAPADOPOULOS E. On quadruped attitude dynamics and control using reaction wheels and tails[C]//2015 European Control Conference (ECC). IEEE, 2015: 753-758.
[17] SAAB W, BEN-TZVI P. Maneuverability and heading control of a quadruped robot utilizing tail dynamics[C]//Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017, 58288: V002T21A010.
[18] SAAB W, YANG J, BEN-TZVI P. Modeling and control of an articulated tail for maneuvering a reduced degree of freedom legged robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2695-2700.
[19] TANG Y, AN J, CHU X, et al. Towards safe landing of falling quadruped robots using a 3-dof morphable inertial tail[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 1141-1147.
[20] SANTIAGO J L C, GODAGE I S, GONTHINA P, et al. Soft robots and kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming[J]. Soft Robotics, 2016, 3(2): 54-63.
[21] BUTT J M, CHU X, ZHENG H, et al. Modeling and control of soft robotic tail based aerial maneuvering (STAM) system: Towards agile self-righting with a soft tail[C]//2021 20th International Conference on Advanced Robotics (ICAR). IEEE, 2021: 531-538.
[22] RONE W S, BEN-TZVI P. Continuum robotic tail loading analysis for mobile robot stabilization and maneuvering[C]//International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, 2014, 46360: V05AT08A009.
[23] CHOU C P, HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
[24] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789.
[25] SUH J E, KIM T H, HAN J H. New approach to folding a thin-walled Yoshimura patterned cylinder[J]. Journal of Spacecraft and Rockets, 2021, 58(2): 516-530.
[26] YU M, YANG W, YU Y, et al. A crawling soft robot driven by pneumatic foldable actuators based on Miura-ori[C]//Actuators. MDPI, 2020, 9(2): 26.
[27] ZHANG Q, WANG X, CAI J, et al. Motion paths and mechanical behavior of origami-inspired tunable structures[J]. Materials Today Communications, 2021, 26: 101872.
[28] ZHANG C, ZHANG Z, PENG Y, et al. Plug & play origami modules with all-purpose deformation modes[J]. Nature Communications, 2023, 14(1): 4329.
[29] PAEZ L, AGARWAL G, PAIK J. Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement[J]. Soft Robotics, 2016, 3(3): 109-119.
[30] ZOU X, LIANG T, YANG M, et al. Paper-Based Robotics with Stackable Pneumatic Actuators[J]. Soft Robotics, 2022, 9(3): 542-551.
[31] KIM W, BYUN J, KIM J K, et al. Bioinspired dual-morphing stretchable origami[J]. Science Robotics, Science robotics, 2019, 4(36): eaay3493.
[32] KENETH S E, KAMYSHNY A, TOTARO M, et al. 3D printing materials for soft robotics[J]. Advanced Materials, 2021, 33(19): 2003387.
[33] ZHANG Z, FAN W, CHEN G, et al. A 3D printable origami vacuum pneumatic artificial muscle with fast and powerful motion[C]//2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021: 551-554.
[34] DE PASCALI C, NASELLI G A, PALAGI S, et al. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate[J]. Science Robotics, 2022, 7(68): eabn4155.
[35] DRURY R, SENCADAS V, ALICI G. 3D printed linear soft multi-mode actuators expanding robotic applications[J]. Soft Matter, 2022, 18(9): 1911-1919.
[36] LIU S, ZHU Y, ZHANG Z, et al. Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(5): 2747-2757.
[37] GUAN Y, ZHUANG Z, ZHANG Z, et al. Design, Analysis, and Experiment of the Origami Robot Based on Spherical-Linkage Parallel Mechanism[J]. Journal of Mechanical Design, 2023, 145(8): 081701.
[38] WANG R, SONG Y, DAI J S. Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms[J]. Mechanism and Machine Theory, 2021, 161: 104245.
[39] CAI J, ZHANG Y, XU Y, et al. The Foldability of Cylindrical Foldable Structures Based on Rigid Origami[J]. Journal of Mechanical Design, 2016, 138(3): 31401-31401.
[40] JIANGUO C, YANGQING L, RUIJUN M, et al. Nonrigidly Foldability Analysis of Kresling Cylindrical Origami[J]. Journal of Mechanisms & Robotics, 2017, 9(4): 041018.
[41] 冯慧娟、马家耀、陈焱. 广义Waterbomb折纸管的刚性折叠运动特性[J]. 机械工程学报, 2020, 56(19): 17.
[42] LANG R J, TOLMAN K A, CRAMPTON E B, et al. A review of thickness-accommodation techniques in origami-inspired engineering[J]. Applied Mechanics Reviews, 2018, 70(1): 010805.
[43] CHEN G, MAGLEBY S P, HOWELL L L. Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds[J]. Journal of Mechanical Design, 2018, 140(6): 062303.
[44] HANNA B H, LUND J M, LANG R J, et al. Waterbomb base: a symmetric single-vertex bistable origami mechanism[J]. Smart Materials and Structures, 2014, 23(9): 094009.
[45] LIU D, LIU S, YANG W, et al. Origami‐Patterned Rigidification for Soft Robotic Bifurcation[J]. Advanced Intelligent Systems, 2024: 2300767.
[46] GODAGE I S, MEDRANO-CERDA G A, BRANSON D T, et al. Dynamics for variable length multisection continuum arms[J]. The International Journal of Robotics Research, 2016, 35(6): 695-722.
[47] AZIZKHANI M, GODAGE I S, CHEN Y. Dynamic control of soft robotic arm: A simulation study[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3584-3591.
[48] AZIZKHANI M, GUNDERMAN A L, GODAGE I S, et al. Dynamic control of soft robotic arm: An experimental study[J]. IEEE Robotics and Automation Letters, 2023, 8(4): 1897-1904.
[49] SANTINA C D, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J]. The International Journal of Robotics Research, 2020, 39(4): 490-513.
[50] XU F, WANG H, AU K W S, et al. Underwater dynamic modeling for a cable-driven soft robot arm[J]. IEEE/ASME transactions on Mechatronics, 2018, 23(6): 2726-2738.
[51] GONG Z, FANG X, CHEN X, et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments[J]. The International Journal of Robotics Research, 2021, 40(1): 449-469.
[52] THURUTHEL T G, FALOTICO E, RENDA F, et al. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators[J]. IEEE Transactions on Robotics, 2019, 35(1): 124-134.
[53] MORIMOTO R, NISHIKAWA S, NIIYAMA R, et al. Model-free reinforcement learning with ensemble for a soft continuum robot arm[C]//2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021: 141-148.
[54] HUANG A, CAO Y, GUO J, et al. Foam-Embedded Soft Robotic Joint With Inverse Kinematic Modeling by Iterative Self-Improving Learning[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1756-1763.
[55] WANG L, LAM J, CHEN X, et al. Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network[J]. Soft Robot, 2023, 10(4): 825-837.
[56] DIJKSTRA E W. A note on two problems in connexion with graphs[M]//Edsger Wybe Dijkstra: His Life, Work, and Legacy. 2022: 287-290.
[57] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[58] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE transactions on Robotics and Automation, 1996, 12(4): 566-580.
[59] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894.
[60] KUFFNER J J, LAVALLE S M. RRT-connect: An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2000, 2: 995-1001.
[61] KLEMM S, OBERLÄNDER J, HERMANN A, et al. RRT*-Connect: Faster, asymptotically optimal motion planning[C]//2015 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, 2015: 1670-1677.
[62] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 3067-3074.
[63] BURGET F, BENNEWITZ M, BURGARD W. BI 2 RRT*: An efficient sampling-based path planning framework for task-constrained mobile manipulation[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 3714-3721.
[64] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-connect: An asymptotically optimal single-query path planning method[J]. IEEE Access, 2020, 8: 19842-19852.
[65] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Hybrid RRT: A semi-dual-tree RRT-based motion planner[J]. IEEE Access, 2020, 8: 18658-18668.
[66] BYRNE O, COULTER F, GLYNN M, et al. Additive manufacture of composite soft pneumatic actuators[J]. Soft robotics, 2018, 5(6): 726-736.
[67] VANHOUTTE G, VERHOYE M, RAMAN E, et al. In-vivo non-invasive study of the thermoregulatory function of the blood vessels in the rat tail using magnetic resonance angiography[J]. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 2002, 15(4): 263-269.
[68] PAYNE S L, PEACOCK H M, VICKARYOUS M K. Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius): the blastema is not avascular[J]. Journal of morphology, 2017, 278(3): 380-389.
[69] WADA N, NAKATA A, KOGA T, et al. Anatomical structure and action of the tail muscles in the cat[J]. Journal of Veterinary Medical Science, 1994, 56(6): 1107-1112.
[70] PERSONS IV W S, CURRIE P J. The tail of Tyrannosaurus: reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods[J]. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2011, 294(1): 119-131.
[71] PERSONS IV W S, CURRIE P J. Dinosaur speed demon: the caudal musculature of Carnotaurus sastrei and implications for the evolution of South American abelisaurids[J]. PloS one, 2011, 6(10): e25763.
[72] MESO J G, QIN Z, PITTMAN M, et al. Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications[J]. Cretaceous Research, 2021, 124: 104830.
[73] CHO H, KIM Y, LEE E, et al. Basic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networks[J]. IEEE access, 2020, 8: 52588-52608

所在学位评定分委会
电子科学与技术
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766061
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
陈放. 四足机器人折纸驱动软体尾肢研究及控制[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132245-陈放-机械与能源工程系(7120KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈放]的文章
百度学术
百度学术中相似的文章
[陈放]的文章
必应学术
必应学术中相似的文章
[陈放]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。