[1] PATEL A, BRAAE M. Rapid turning at high-speed: Inspirations from the cheetah's tail[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 5506-5511.
[2] ALEXANDER R M N, VERNON A. The mechanics of hopping by kangaroos (Macropodidae)[J]. Journal of Zoology, 1975, 177(2): 265-303.
[3] FUKUSHIMA T, SIDDALL R, SCHWAB F, et al. Inertial tail effects during righting of squirrels in unexpected falls: from behavior to robotics[J]. Integrative and Comparative Biology, 2021, 61(2): 589-602.
[4] JUSUFI A, GOLDMAN D I, REVZEN S, et al. Active tails enhance arboreal acrobatics in geckos[J]. Proceedings of the National Academy of Sciences, 2008, 105(11): 4215-4219.
[5] LIBBY T, MOORE T Y, CHANG-SIU E, et al. Tail-assisted pitch control in lizards, robots and dinosaurs[J]. Nature, 2012, 481(7380): 181-184.
[6] 王海涛, 彭熙凤, 林本末. 软体机器人研究进展[J]. 华南理工大学学报:自然科学版, 2020, 48(2): 13.
[7] ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie, 2011, 123(8): 1930-1935.
[8] SU Y, FANG Z, ZHU W, et al. A High-Payload Proprioceptive Hybrid Robotic Gripper with Soft Origamic Actuators[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3003-3010.
[9] LIU S, LIU J, ZOU K, et al. A Six Degrees-of-Freedom Soft Robotic Joint With Tilt-Arranged Origami Actuator[J]. Journal of Mechanisms and Robotics, 2022, 14(6): 060912.
[10] LIU J, WANG X, LIU S, et al. Vertebraic Soft Robotic Joint Design With Twisting and Antagonism[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 658-665.
[11] LEE C, KIM M, KIM Y J, et al. Soft robot review[J]. International Journal of Control, Automation and Systems, 2017, 15: 3-15.
[12] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[13] WANG J, CHORTOS A. Control strategies for soft robot systems[J]. Advanced Intelligent Systems, 2022, 4(5): 2100165.
[14] LAVALLE S M, KUFFNER Jr J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378-400.
[15] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2014: 2997-3004.
[16] MACHAIRAS K, PAPADOPOULOS E. On quadruped attitude dynamics and control using reaction wheels and tails[C]//2015 European Control Conference (ECC). IEEE, 2015: 753-758.
[17] SAAB W, BEN-TZVI P. Maneuverability and heading control of a quadruped robot utilizing tail dynamics[C]//Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017, 58288: V002T21A010.
[18] SAAB W, YANG J, BEN-TZVI P. Modeling and control of an articulated tail for maneuvering a reduced degree of freedom legged robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2695-2700.
[19] TANG Y, AN J, CHU X, et al. Towards safe landing of falling quadruped robots using a 3-dof morphable inertial tail[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 1141-1147.
[20] SANTIAGO J L C, GODAGE I S, GONTHINA P, et al. Soft robots and kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming[J]. Soft Robotics, 2016, 3(2): 54-63.
[21] BUTT J M, CHU X, ZHENG H, et al. Modeling and control of soft robotic tail based aerial maneuvering (STAM) system: Towards agile self-righting with a soft tail[C]//2021 20th International Conference on Advanced Robotics (ICAR). IEEE, 2021: 531-538.
[22] RONE W S, BEN-TZVI P. Continuum robotic tail loading analysis for mobile robot stabilization and maneuvering[C]//International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, 2014, 46360: V05AT08A009.
[23] CHOU C P, HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
[24] POLYGERINOS P, WANG Z, OVERVELDE J T B, et al. Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31(3): 778-789.
[25] SUH J E, KIM T H, HAN J H. New approach to folding a thin-walled Yoshimura patterned cylinder[J]. Journal of Spacecraft and Rockets, 2021, 58(2): 516-530.
[26] YU M, YANG W, YU Y, et al. A crawling soft robot driven by pneumatic foldable actuators based on Miura-ori[C]//Actuators. MDPI, 2020, 9(2): 26.
[27] ZHANG Q, WANG X, CAI J, et al. Motion paths and mechanical behavior of origami-inspired tunable structures[J]. Materials Today Communications, 2021, 26: 101872.
[28] ZHANG C, ZHANG Z, PENG Y, et al. Plug & play origami modules with all-purpose deformation modes[J]. Nature Communications, 2023, 14(1): 4329.
[29] PAEZ L, AGARWAL G, PAIK J. Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement[J]. Soft Robotics, 2016, 3(3): 109-119.
[30] ZOU X, LIANG T, YANG M, et al. Paper-Based Robotics with Stackable Pneumatic Actuators[J]. Soft Robotics, 2022, 9(3): 542-551.
[31] KIM W, BYUN J, KIM J K, et al. Bioinspired dual-morphing stretchable origami[J]. Science Robotics, Science robotics, 2019, 4(36): eaay3493.
[32] KENETH S E, KAMYSHNY A, TOTARO M, et al. 3D printing materials for soft robotics[J]. Advanced Materials, 2021, 33(19): 2003387.
[33] ZHANG Z, FAN W, CHEN G, et al. A 3D printable origami vacuum pneumatic artificial muscle with fast and powerful motion[C]//2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021: 551-554.
[34] DE PASCALI C, NASELLI G A, PALAGI S, et al. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate[J]. Science Robotics, 2022, 7(68): eabn4155.
[35] DRURY R, SENCADAS V, ALICI G. 3D printed linear soft multi-mode actuators expanding robotic applications[J]. Soft Matter, 2022, 18(9): 1911-1919.
[36] LIU S, ZHU Y, ZHANG Z, et al. Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(5): 2747-2757.
[37] GUAN Y, ZHUANG Z, ZHANG Z, et al. Design, Analysis, and Experiment of the Origami Robot Based on Spherical-Linkage Parallel Mechanism[J]. Journal of Mechanical Design, 2023, 145(8): 081701.
[38] WANG R, SONG Y, DAI J S. Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms[J]. Mechanism and Machine Theory, 2021, 161: 104245.
[39] CAI J, ZHANG Y, XU Y, et al. The Foldability of Cylindrical Foldable Structures Based on Rigid Origami[J]. Journal of Mechanical Design, 2016, 138(3): 31401-31401.
[40] JIANGUO C, YANGQING L, RUIJUN M, et al. Nonrigidly Foldability Analysis of Kresling Cylindrical Origami[J]. Journal of Mechanisms & Robotics, 2017, 9(4): 041018.
[41] 冯慧娟、马家耀、陈焱. 广义Waterbomb折纸管的刚性折叠运动特性[J]. 机械工程学报, 2020, 56(19): 17.
[42] LANG R J, TOLMAN K A, CRAMPTON E B, et al. A review of thickness-accommodation techniques in origami-inspired engineering[J]. Applied Mechanics Reviews, 2018, 70(1): 010805.
[43] CHEN G, MAGLEBY S P, HOWELL L L. Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds[J]. Journal of Mechanical Design, 2018, 140(6): 062303.
[44] HANNA B H, LUND J M, LANG R J, et al. Waterbomb base: a symmetric single-vertex bistable origami mechanism[J]. Smart Materials and Structures, 2014, 23(9): 094009.
[45] LIU D, LIU S, YANG W, et al. Origami‐Patterned Rigidification for Soft Robotic Bifurcation[J]. Advanced Intelligent Systems, 2024: 2300767.
[46] GODAGE I S, MEDRANO-CERDA G A, BRANSON D T, et al. Dynamics for variable length multisection continuum arms[J]. The International Journal of Robotics Research, 2016, 35(6): 695-722.
[47] AZIZKHANI M, GODAGE I S, CHEN Y. Dynamic control of soft robotic arm: A simulation study[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3584-3591.
[48] AZIZKHANI M, GUNDERMAN A L, GODAGE I S, et al. Dynamic control of soft robotic arm: An experimental study[J]. IEEE Robotics and Automation Letters, 2023, 8(4): 1897-1904.
[49] SANTINA C D, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J]. The International Journal of Robotics Research, 2020, 39(4): 490-513.
[50] XU F, WANG H, AU K W S, et al. Underwater dynamic modeling for a cable-driven soft robot arm[J]. IEEE/ASME transactions on Mechatronics, 2018, 23(6): 2726-2738.
[51] GONG Z, FANG X, CHEN X, et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments[J]. The International Journal of Robotics Research, 2021, 40(1): 449-469.
[52] THURUTHEL T G, FALOTICO E, RENDA F, et al. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators[J]. IEEE Transactions on Robotics, 2019, 35(1): 124-134.
[53] MORIMOTO R, NISHIKAWA S, NIIYAMA R, et al. Model-free reinforcement learning with ensemble for a soft continuum robot arm[C]//2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021: 141-148.
[54] HUANG A, CAO Y, GUO J, et al. Foam-Embedded Soft Robotic Joint With Inverse Kinematic Modeling by Iterative Self-Improving Learning[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1756-1763.
[55] WANG L, LAM J, CHEN X, et al. Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network[J]. Soft Robot, 2023, 10(4): 825-837.
[56] DIJKSTRA E W. A note on two problems in connexion with graphs[M]//Edsger Wybe Dijkstra: His Life, Work, and Legacy. 2022: 287-290.
[57] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[58] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE transactions on Robotics and Automation, 1996, 12(4): 566-580.
[59] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The international journal of robotics research, 2011, 30(7): 846-894.
[60] KUFFNER J J, LAVALLE S M. RRT-connect: An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2000, 2: 995-1001.
[61] KLEMM S, OBERLÄNDER J, HERMANN A, et al. RRT*-Connect: Faster, asymptotically optimal motion planning[C]//2015 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, 2015: 1670-1677.
[62] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 3067-3074.
[63] BURGET F, BENNEWITZ M, BURGARD W. BI 2 RRT*: An efficient sampling-based path planning framework for task-constrained mobile manipulation[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 3714-3721.
[64] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-connect: An asymptotically optimal single-query path planning method[J]. IEEE Access, 2020, 8: 19842-19852.
[65] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Hybrid RRT: A semi-dual-tree RRT-based motion planner[J]. IEEE Access, 2020, 8: 18658-18668.
[66] BYRNE O, COULTER F, GLYNN M, et al. Additive manufacture of composite soft pneumatic actuators[J]. Soft robotics, 2018, 5(6): 726-736.
[67] VANHOUTTE G, VERHOYE M, RAMAN E, et al. In-vivo non-invasive study of the thermoregulatory function of the blood vessels in the rat tail using magnetic resonance angiography[J]. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 2002, 15(4): 263-269.
[68] PAYNE S L, PEACOCK H M, VICKARYOUS M K. Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius): the blastema is not avascular[J]. Journal of morphology, 2017, 278(3): 380-389.
[69] WADA N, NAKATA A, KOGA T, et al. Anatomical structure and action of the tail muscles in the cat[J]. Journal of Veterinary Medical Science, 1994, 56(6): 1107-1112.
[70] PERSONS IV W S, CURRIE P J. The tail of Tyrannosaurus: reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods[J]. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2011, 294(1): 119-131.
[71] PERSONS IV W S, CURRIE P J. Dinosaur speed demon: the caudal musculature of Carnotaurus sastrei and implications for the evolution of South American abelisaurids[J]. PloS one, 2011, 6(10): e25763.
[72] MESO J G, QIN Z, PITTMAN M, et al. Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications[J]. Cretaceous Research, 2021, 124: 104830.
[73] CHO H, KIM Y, LEE E, et al. Basic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networks[J]. IEEE access, 2020, 8: 52588-52608
修改评论