[1] WAN W, WANG J, ZHANG Y, et al. A comprehensive survey on robust image watermarking [J]. Neurocomputing, 2022, 488: 226-247.
[2] 王翌妃, 周杨铭, 钱振兴, 等. 鲁棒视频水印研究进展[M]. 中国图象图形学报, 2022.
[3] VAN SCHYNDEL R G, TIRKEL A Z, OSBORNE C F. A digital watermark[C]//Proceedings of 1st international conference on image processing: volume 2. IEEE, 1994: 86-90.
[4] WANG R Z, LIN C F, LIN J C. Image hiding by optimal LSB substitution and genetic algorithm [J]. Pattern recognition, 2001, 34(3): 671-683.
[5] LEE G J, YOON E J, YOO K Y. A new LSB based digital watermarking scheme with random mapping function[C]//2008 International Symposium on Ubiquitous Multimedia Computing. IEEE, 2008: 130-134.
[6] DEHKORDI A B, ESFAHANI S N, AVANAKI A N. Robust LSB watermarking optimized for local structural similarity[C]//2011 19th Iranian Conference on Electrical Engineering. IEEE, 2011: 1-6.
[7] HEIDARI S, NASERI M. A novel LSB based quantum watermarking[J]. International Journal of Theoretical Physics, 2016, 55(10): 4205-4218.
[8] KUMAR A. A review on implementation of digital image watermarking techniques using LSB and DWT[J]. Information and Communication Technology for Sustainable Development, 2020: 595-602.
[9] FAZLI S, KHODAVERDI G. Trade-off between imperceptibility and robustness of LSB wa- termarking using SSIM quality metrics[C]//2009 Second International Conference on Machine Vision. IEEE, 2009: 101-104.
[10] HAMIDI M, HAZITI M E, CHERIFI H, et al. Hybrid blind robust image watermarking tech- nique based on DFT-DCT and Arnold transform[J]. Multimedia Tools and Applications, 2018, 77(20): 27181-27214.
[11] GUO H, GEORGANAS N D. Digital image watermarking for joint ownership verification without a trusted dealer[C]//2003 International Conference on Multimedia and Expo. ICME’03. Proceedings (Cat. No. 03TH8698): volume 2. IEEE, 2003: II-497.
[12] RUANAIDH J, DOWLING W, BOLAND F M. Phase watermarking of digital images[C]// Proceedings of 3rd IEEE International Conference on Image Processing: volume 3. IEEE, 1996: 239-242.
[13] CHEN B, WORNELL G W. Digital watermarking and information embedding using dither modulation[C]//1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No. 98EX175). IEEE, 1998: 273-278.
[14] CHEN B, WORNELL G W. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding[J]. IEEE Transactions on Information theory, 2001, 47(4): 1423-1443.
[15] LI Q, DOËRR G, COX I J. Spread transform dither modulation using a perceptual model[C]// 2006 IEEE Workshop on Multimedia Signal Processing. IEEE, 2006: 98-102.
[16] GIRI K J, QUADRI S, BASHIR R, et al. DWT based color image watermarking: a review[J]. Multimedia Tools and Applications, 2020, 79(43): 32881-32895.
[17] LI C, ZHANG Z, WANG Y, et al. Dither modulation of significant amplitude difference for wavelet based robust watermarking[J]. Neurocomputing, 2015, 166: 404-415.
[18] GOURRAME K, DOUZI H, HARBA R, et al. Robust print-cam image watermarking in fourier domain[C]//International Conference on Image and Signal Processing. Springer, 2016: 356- 365.
[19] ZHU J, KAPLAN R, JOHNSON J, et al. Hidden: Hiding data with deep networks[C]// Proceedings of the European conference on computer vision (ECCV). 2018: 657-672.
[20] JIA Z, FANG H, ZHANG W. Mbrs: Enhancing robustness of dnn-based watermarking by mini- batch of real and simulated jpeg compression[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 41-49.
[21] MA R, GUO M, HOU Y, et al. Towards Blind Watermarking: Combining Invertible and Non- invertible Mechanisms[C]//Proceedings of the 30th ACM International Conference on Multi- media. 2022: 1532-1542.
[22] LIU Y, GUO M, ZHANG J, et al. A novel two-stage separable deep learning framework for practical blind watermarking[C]//Proceedings of the 27th ACM International Conference on Multimedia. 2019: 1509-1517.
[23] AHMADI M, NOROUZI A, KARIMI N, et al. ReDMark: Framework for residual diffusion wa- termarking based on deep networks[J]. Expert Systems with Applications, 2020, 146: 113157.
[24] SHIN R, SONG D. Jpeg-resistant adversarial images[C]//NIPS 2017 Workshop on Machine Learning and Computer Security: volume 1. 2017: 8.
[25] LUO X, ZHAN R, CHANG H, et al. Distortion agnostic deep watermarking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13548-13557.
[26] ZHANG C, KARJAUV A, BENZ P, et al. Towards Robust Deep Hiding Under Non- Differentiable Distortions for Practical Blind Watermarking[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 5158-5166.
[27] TANCIK M, MILDENHALL B, NG R. Stegastamp: Invisible hyperlinks in physical pho- tographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog- nition. 2020: 2117-2126.
[28] FANG H, JIA Z, MA Z, et al. PIMoG: An Effective Screen-shooting Noise-Layer Simulation for Deep-Learning-Based Watermarking Network[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022: 2267-2275.
[29] WENGROWSKI E, DANA K. Light field messaging with deep photographic steganography [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 1515-1524.
[30] LUO X, LI Y, CHANG H, et al. DVMark: a deep multiscale framework for video watermarking [A]. 2021.
[31] WENG X, LI Y, CHI L, et al. High-capacity convolutional video steganography with tempo- ral residual modeling[C]//Proceedings of the 2019 on international conference on multimedia retrieval. 2019: 87-95.
[32] ZHANG K A, XU L, CUESTA-INFANTE A, et al. Robust invisible video watermarking with attention[A]. 2019.
[33] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
[34] ALMOHAMMAD A, GHINEA G. Stego image quality and the reliability of PSNR[C]//2010 2nd International Conference on Image Processing Theory, Tools and Applications. IEEE, 2010: 215-220.
[35] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
[36] SHENSA M J, et al. The discrete wavelet transform: wedding the a trous and Mallat algorithms [J]. IEEE Transactions on signal processing, 1992, 40(10): 2464-2482.
[37] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE confer- ence on computer vision and pattern recognition. 2018: 7132-7141.
[38] DINH L, KRUEGER D, BENGIO Y. Nice: Non-linear independent components estimation[A]. 2014.
[39] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
[40] ARDIZZONE L, LÜTH C, KRUSE J, et al. Guided image generation with conditional invertible neural networks[A]. 2019.
[41] XIAO M, ZHENG S, LIU C, et al. Invertible image rescaling[C]//European Conference on Computer Vision. Springer, 2020: 126-144.
[42] JING J, DENG X, XU M, et al. HiNet: deep image hiding by invertible network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 4733-4742.
[43] LU S P, WANG R, ZHONG T, et al. Large-capacity image steganography based on invertible neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 10816-10825.
[44] XU H B, WANG R, WEI J, et al. A Compact Neural Network-based Algorithm for Robust Image Watermarking[A]. 2021.
[45] ZEBBICHE K, KHELIFI F. Efficient wavelet-based perceptual watermark masking for robust fingerprint image watermarking[J]. IET Image Processing, 2014, 8(1): 23-32.
[46] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]// European conference on computer vision. Springer, 2014: 740-755.
[47] COLLOBERT R, KAVUKCUOGLU K, FARABET C. Torch7: A matlab-like environment for machine learning[C]//BigLearn, NIPS workshop: CONF. 2011.
[48] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]//proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6299-6308.
[49] LIU S, XU D, ZHOU S K, et al. 3d anisotropic hybrid network: Transferring convolutional features from 2d images to 3d anisotropic volumes[A]. 2017.
[50] TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: Full training or fine tuning?[J]. IEEE transactions on medical imaging, 2016, 35(5): 1299-1312.
[51] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. Advances in neural information processing systems, 2014, 27.
[52] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018: 6450-6459.
[53] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[A]. 2017.
[54] TRAN D, WANG H, TORRESANI L, et al. Video classification with channel-separated con- volutional networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 5552-5561.
[55] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition [J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 35(1): 221-231.
[56] FANG H, CHEN K, QIU Y, et al. DeNoL: A Few-Shot-Sample-Based Decoupling Noise Layer for Cross-channel Watermarking Robustness[C]//Proceedings of the 31st ACM International Conference on Multimedia. 2023: 7345-7353.
[57] CHEN D, YUAN L, LIAO J, et al. Stylebank: An explicit representation for neural image style transfer[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1897-1906.
[58] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[59] CARREIRA J, NOLAND E, BANKI-HORVATH A, et al. A short note about kinetics-600[A]. 2018.
[60] STERGIOU A, POPPE R. Adapool: Exponential adaptive pooling for information-retaining downsampling[J]. IEEE Transactions on Image Processing, 2022, 32: 251-266.
[61] THE OBS PROJECT CONTRIBUTORS. OBS Studio[M]. 2023.
[62] JIN X, DANG F, FU Q A, et al. StreamingTag: a scalable piracy tracking solution for mo- bile streaming services[C]//Proceedings of the 28th Annual International Conference on Mobile Computing And Networking. 2022: 596-608.
修改评论