题名 | 端到端图像压缩空间区域优化研究 |
其他题名 | SPATIAL REGION OPTIMIZATION FOR END-TO-END LEARNED IMAGE COMPRESSION
|
姓名 | |
姓名拼音 | HAI Bowen
|
学号 | 12232164
|
学位类型 | 硕士
|
学位专业 | 085410 人工智能
|
学科门类/专业学位类别 | 08 工学
|
导师 | |
导师单位 | 电子与电气工程系
|
论文答辩日期 | 2024-05-08
|
论文提交日期 | 2024-06-25
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 随着信息技术时代的持续深化和智能终端设备的广泛普及,各种可视化交互终端的数量不断增加。图像作为重要的信息载体,以直观且生动的方式呈现复杂的数据和信息,满足了人们对高质量信息获取和快速理解的需求。在此过程中,图像数据的生成速度呈现出爆炸式增长,进而引发了存储压力和传输难题。 本文针对现有的端到端深度学习图像压缩框架存在的空间区域特征提取能力较差,无法兼顾局部特征提取与非局部特征提取能力,感受野受限以及泛化性较差的问题进行深入研究,重点分析了端到端深度学习图像压缩网络中的核心变换与编码方法。 为解决现有模型无法兼顾局部与非局部特征提取的问题,本文提出了一种基于保留注意力-卷积模块的端到端深度学习图像压缩框架。网络的核心保留注意力-卷积模块,创新性地结合了卷积神经网络和保留注意力机制,构建了一个统一的局部与非局部特征提取能力的网络架构,实现了更优的图像空间特征提取。 除此之外,本文通过融合传统图像压缩方法,在深度学习图像压缩框架中引入小波变换,使用二维哈尔小波变换对其进行优化,扩大了模型的有效感受野,进一步提升模型的压缩重建能力。 通过在四种多尺寸多样式的测试集上进行测试,本文提出的深度学习图像压缩框架在图像压缩重建的客观指标与主观视觉效果、感受野可视化中都取得了明显的提升,加大了模型的有效感受野,实现了端到端深度学习图像压缩框架在空间区域上的特征提取能力优化。 |
其他摘要 | As the era of information technology continues to deepen and intelligent terminal devices become increasingly widespread, the number of various visual interactive terminals is on the rise. Images, as a critical medium for conveying information, present complex data and information in an intuitive and vivid manner, satisfying the public's demand for high-quality information acquisition and rapid comprehension. In this process, the generation speed of image data has shown exponential growth, giving rise to storage pressures and transmission challenges. Traditional image compression techniques, after years of development, have encountered bottlenecks, gradually failing to meet the current demands for image transmission in terms of compression ratio and fidelity. Especially when confronted with higher quality image compression requirements, traditional methods prove inadequate. Thus, deep learning technology has been introduced into the field of image compression, emerging as the new frontier for the next-generation image compression frameworks. This paper focus on end-to-end learned image compression frameworks, which exhibit poor spatial region feature extraction capabilities, struggling to balance both local and non-local feature extraction, suffer from limited receptive fields, and demonstrate inferior generalization performance. The paper particularly focuses on analyzing the core transformations and encoding methods within end-to-end learned image compression networks. To address the inability of current models to effectively handle both local and non-local feature extraction, this paper proposes an end-to-end learned image compression framework based on a novel Retention-Convolution module. The core module innovatively combines Convolutional Neural Networks (CNNs) with a retention mechanism, constructing a unified network architecture capable of extracting both local and non-local features, thereby achieving enhanced spatial feature extraction in images. Moreover, this paper integrates traditional image compression methods by introducing wavelet transformation into the learned image compression framework, specifically optimizing it using two-dimensional Haar wavelet transformation. This expansion broadens the model's effective receptive field, further enhancing the model's compression and reconstruction capabilities. Upon rigorous testing across four diverse test sets proposed learned image compression framework demonstrates significant improvements in both objective metrics for image compression and reconstruction, subjective visual quality assessments, and receptive field visualizations. It effectively expands the model's receptive field and realizes optimized feature extraction capability over spatial regions within an end-to-end learned image compression framework. |
关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2022
|
学位授予年份 | 2024-06
|
参考文献列表 | [1] 胡晨昱, 韩申生. 信息光学成像研究回顾、现状与展望 (特邀)[J]. 红外与激光工程, 2022, 51 (43-64). |
所在学位评定分委会 | 电子信息
|
国内图书分类号 | TP18
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/766068 |
专题 | 工学院_电子与电气工程系 |
推荐引用方式 GB/T 7714 |
海博文. 端到端图像压缩空间区域优化研究[D]. 深圳. 南方科技大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12232164-海博文-电子与电气工程(8320KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[海博文]的文章 |
百度学术 |
百度学术中相似的文章 |
[海博文]的文章 |
必应学术 |
必应学术中相似的文章 |
[海博文]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论