中文版 | English
题名

单晶锗的横向外延生长与合并研究

其他题名
EPITAXIAL LATERAL OVERGROWTH AND COALESCENCE OF SINGLE CRYSTALLINE GERMANIUM
姓名
姓名拼音
ZHANG Yiwen
学号
11930920
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
温瑞涛
导师单位
材料科学与工程系
论文答辩日期
2024-05-07
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

半导体工业是发展新一代信息技术、纳米高新材料等创新产业的关键领域。在当今微电子、光电子和信息产业中,四族(硅、锗及其合金)和三五族(砷化镓、氮化镓等)半导体材料被广泛应用。硅上异质外延生长技术的优点在于可以充分利用其他半导体优异的光电特性,并保持与当下硅基主流半导体产业的兼容性。然而,由于异质外延层与硅基底之间存在晶格失配和热膨胀系数的差异,外延层中会产生高密度的缺陷,从而影响半导体器件的性能。选区外延生长利用外延材料在基底和介电层上完全不同的形核行为,实现外延层在图案化基底上的选择性外延生长。该方法使基底与外延层界面处产生的位错只能通过狭窄的窗口区域传播到外延层中,因此,外延层的位错密度能够被大幅度降低。

选区外延生长已经有六十多年的研究历史,但是由于器件的需求以及材料生长条件复杂,相关研究还存在许多亟待解决的问题。例如,如何调控外延层在掩模板(即介电层)上的横向外延行为;横向生长至完全合并后在外延层内部形成孔洞结构的机理;横向外延层位错密度的降低机制等。本文以锗在图案化硅基底上的横向外延生长为研究对象,围绕掩模板尺寸、几何形状、取向以及生长窗口尺寸等几个自由度进行系统化研究,首次表征了单晶锗内部空腔结构的三维形貌、形成机理以及调制方法。

我们在硅(0 0 1)晶面上设计了与Si <1 1 0>晶向不同夹角的长条状SiO2掩模板,在0°至45°的范围内逐渐改变掩模板与Si <1 1 0>晶向之间的夹角,系统地研究了锗横向外延生长和合并的角度依赖性。我们发现横向外延生长速度与掩模板的取向呈现强相关:随着掩模板与Si [1 1 0]方向的夹角从0°增加到7.5°,横向外延速度依次增大并在7.5°时达到最大值;继续增加到45°时横向外延速度逐渐减小。长条状掩模板上不同方向横向外延生长的竞争将导致三种合并模式,最终形成不同的孔洞结构。

针对不同形状的掩膜版,横向外延生长总是优先发生在曲率最大的地方。随着生长的进行,横向外延生长从各向异性逐渐转变成各向同性,且该转变过程对于不同形状的掩模板具有普适性。孔洞的形成来源于生长前端的差速生长,这个过程由锗原子在曲率驱动下的表面扩散过程主导。生长前端完全合并后在掩模版上方形成孔洞,且孔洞最终构型受表面能最小化调制。孔洞的尺寸可通过掩模板尺寸调控,在掩模板直径小于~2 μm时孔洞直径随掩模板尺寸单调增加;当掩模板直径超过~2 μm时,因动力学因素主导,孔洞直径趋近恒定。

生长窗口宽度也可以调控孔洞直径。我们设计了宽度和内径可调的硅圆环,并在其上进行锗的横向外延生长。孔洞直径随着生长窗口宽度的减小而增加,表明生长窗口受限时,生长前端原子迁移被曲率驱动,导致加速合并和孔洞尺寸增加。生长窗口足够大时,窗口左右两侧的横向外延生长前端相互独立,因此,继续增加生长窗口尺寸不再改变合并后生成的孔洞直径。

针对外延锗,我们揭示了穿透位错与表面热刻蚀坑的构效关系。外延锗表面热刻蚀坑的形成来源于在850 ℃下真空退火时穿透位错周围锗原子的率先脱附,此外,退火环境中的残余氧也参与了锗原子脱附过程。我们发现热刻蚀坑与穿透位错的一一对应关系表明真空退火可以作为检测外延锗穿透位错密度的新方法。

通过研究锗在图案化硅基底上横向外延生长的角度依赖性、掩模板形状对横向外延生长的影响、孔洞结构形成机理以及调控方法,我们首次发现横向外延生长速度由掩模板的曲率和取向协同调控,导致不同的孔洞结构形成;首次系统性地揭示了掩模板曲率变化时横向外延生长过程由各向异性转变至各向同性的普适性;通过调节掩模板尺寸及生长窗口实现了外延层中孔洞结构的可控构筑。研究结果对于理解和控制锗外延生长过程具有重要意义,对其他四族和三五族横向外延生长和合并也可以提供指导。同时,在外延层中构筑可控孔洞结构可以催生新型器件结构并派生出新的应用,为新型器件的研发奠定重要基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] CHEN G. Semiconductors – the next wave, Opportunities and winning strategies for semiconductor companies [R]: Deloitte, April 2019.
[2] 中国先进半导体材料及辅助材料发展战略研究 [J].中国工程科学, 2020, 22(05): 10-9.
[3] 赵智彪, 许志, 利定东. 低介电常数材料在超大规模集成电路工艺中的应用 [J]. 半导体技术, 2004, (02): 4-6.
[4] LIU J. GeSi photodetectors and electro-absorption modulators for Si electronic-photonic integrated circuits [D]; Massachusetts Institute of Technology, 2007.
[5] HOEFFLINGER B. Interconnects, transmitters, and receivers [M] //HOEFFLINGER B. Chips 2020: A guide to the future of nanoelectronics. Berlin, Heidelberg; Springer Berlin Heidelberg. 2012: 131-141.
[6] BOSI M, ATTOLINI G. Germanium: Epitaxy and its applications [J]. Progress in Crystal Growth and Characterization of Materials, 2010, 56(3): 146-74.
[7] BRINKMAN W F, HAGGAN D E, TROUTMAN W W. A history of the invention of the transistor and where it will lead us [J]. IEEE journal of solid-state circuits, 1997, 32(12): 1858-1865.
[8] NISHI Y, DOERING R. Handbook of semiconductor manufacturing technology [M]. CRC Press, 2000.
[9] 孟令琴, 费元春. 硅锗技术及其在无线射频领域的应用研究 [J]. 兵工学报, 2004, 1:78-81.
[10] 龚大卫. 分子束外延锗硅材料的电学特性研究及红外探测器应用 [D]; 复旦大学, 1994.
[11] PILLARISETTY R. Academic and industry research progress in germanium nanodevices [J]. Nature, 2011, 479(7373): 324-328.
[12] NOCERINO E. The semiconductor multiplication system for photoelectrons in a vacuum silicon photomultiplier tube and related front end electronics [D]; Ph. D. dissertation, University of Naples Federico II, 2016.
[13] 董汝昆, 吴绍华, 王柯, et al. 锗单晶材料的发展现状 [J]. 红外技术, 2021, 43(05): 510-515.
[14] 茹丘旭, 马滋蔓. 锗的应用趋向及预测分析 [J]. 科技创新导报, 2018, 15(22): 68-69.
[15] 张小东, 赵飞燕. 金属锗在高新技术领域中的应用 [J]. 煤炭与化工, 2018, 41(02): 32-34,37
[16] 王俊, 杨晓飞. 光子芯片研究进展及展望 [J]. 世界科学, 2020, (12): 29-31.
[17] GHRIB A, KERSAUSON M D, KURDI M E, et al. Control of tensile strain in germanium waveguides through silicon nitride layers [J]. Applied Physics Letters, 2012, 100(20): 201104.
[18] SáNCHEZ-PéREZ J R, BOZTUG C, CHEN F, et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes [J]. Proceedings of the National Academy of Sciences, 2011, 108(47): 18893-18898.
[19] FADALY E M, DIJKSTRA A, SUCKERT J R, et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys [J]. Nature, 2020, 580(7802): 205-209.
[20] WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit [J]. Science, 2013, 339(6123): 1057-1060.
[21] ZHANG G, TAKIGUCHI M, TATENO K, et al. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature [J]. Science Advances, 2019, 5(2): eaat8896.
[22] COLEMAN J J. Metalorganic chemical vapor deposition for optoelectronic devices [J]. Proceedings of the IEEE, 1997, 85(11): 1715-1729.
[23] YI S S, KUECH T F. Selective Area Epitaxy on Structures and Surfaces, [J]. Encyclopedia of Materials: Science and Technology, 2001: 8295-8299.
[24] NIU G, CAPELLINI G, SCHUBERT M A, et al. Dislocation-free Ge nano-crystals via pattern independent selective Ge heteroepitaxy on Si nano-tip wafers [J]. Scientific Reports, 2016, 6: 22709.
[25] GAO F, WANG J-H, WATZINGER H, et al. Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling [J]. Advanced Materials, 2020, 32(16): 1906523.
[26] LI Z, WANG M, FANG X, et al. Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices [J]. Journal of Applied Physics, 2018, 123: 053102.
[27] LI S, ZHOU X, LI M, et al. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate [J]. Applied Physics Letters, 2016, 108: 021902.
[28] YU H, XUE Y, LAU K. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator [J]. Applied Physics Letters, 2019, 114: 192105.
[29] XU F J, ZHANG L S, XIE N, et al. Realization of low dislocation density AlN on a small-coalescence-area nano-patterned sapphire substrate [J]. CrystEngComm, 2019, 21(15): 2490-2494.
[30] KASPER E, HERZOG H, KIBBEL H. A one-dimensional SiGe superlattice grown by UHV epitaxy [J]. Applied physics, 1975, 8(3): 199-205.
[31] CHO A Y, ARTHUR J. Molecular beam epitaxy [J]. Progress in Solid State Chemistry, 1975, 10: 157-191.
[32] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用 [J]. 物理学报, 2021, 70(02): 199-213.
[33] 孙伟峰. UHV/CVD外延生长硅及锗硅单晶薄膜 [D]; 浙江大学, 2005.
[34] 刘国军. UHVCVD生长锗硅薄膜及其电学性能研究 [D]; 浙江大学, 2006.
[35] MEYERSON B S. Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition [J]. Applied Physics Letters, 1986, 48(12): 797-799.
[36] FALUB C V, VON KäNEL H, ISA F, et al. Scaling hetero-epitaxy from layers to three-dimensional crystals [J]. Science, 2012, 335(6074): 1330-1334.
[37] SALVALAGLIO M, BERGAMASCHINI R, BACKOFEN R, et al. Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film [J]. Applied Surface Science, 2017, 391: 33-38.
[38] YAMAMOTO Y, ZAUMSEIL P, SCHUBERT M A, et al. Influence of annealing conditions on threading dislocation density in Ge deposited on Si by reduced pressure chemical vapor deposition [J]. Semiconductor Science and Technology, 2018, 33(12): 124007.
[39] FIORENZA J G, PARK J S, HYDRICK J, et al. Aspect ratio trapping: A unique technology for integrating Ge and III-Vs with silicon CMOS [J]. ECS Transactions, 2010, 33(6): 963.
[40] YAKO M, ISHIKAWA Y, ABE E, et al. Defects and their reduction in Ge selective epitaxy and coalescence layer on Si with semicylindrical voids on SiO2 masks [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 8201007.
[41] BIOUD Y A, BOUCHERIF A, MYRONOV M, et al. Uprooting defects to enable high-performance III–V optoelectronic devices on silicon [J]. Nature Communications, 2019, 10(1): 4322.
[42] XIE Y-H, FITZGERALD E A, MONROE D, et al. From relaxed GeSi buffers to field effect transistors: Current status and future prospects [J]. Japanese Journal of Applied Physics, 1994, 33(4S): 2372.
[43] LEITZ C, CURRIE M, KIM A, et al. Dislocation glide and blocking kinetics in compositionally graded SiGe/Si [J]. Journal of Applied Physics, 2001, 90(6): 2730-2736.
[44] CURRIE M, SAMAVEDAM S, LANGDO T, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing [J]. Applied Physics Letters, 1998, 72(14): 1718-1720.
[45] LINDER K, ZHANG F, RIEH J-S, et al. Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer [J]. Applied Physics Letters, 1997, 70(24): 3224-3226.
[46] PENG C, ZHAO Z, CHEN H, et al. Relaxed Ge0.9Si0.1 alloy layers with low threading dislocation densities grown on low-temperature Si buffers [J]. Applied Physics Letters, 1998, 72(24): 3160-3162.
[47] KASPER E, LYUTOVICH K, BAUER M, et al. New virtual substrate concept for vertical MOS transistors [J]. Thin Solid Films, 1998, 336(1-2): 319-322.
[48] BAUER M, OEHME M, LYUTOVICH K, et al. Ion assisted MBE growth of SiGe nanostructures [J]. Thin Solid Films, 1998, 336(1-2): 104-108.
[49] HOLLäNDER B, MANTL S, LIEDTKE R, et al. Enhanced strain relaxation of epitaxial SiGe layers on Si (1 0 0) after H+ ion implantation [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 148(1-4): 200-205.
[50] LUYSBERG M, KIRCH D, TRINKAUS H, et al. Effect of helium ion implantation and annealing on the relaxation behavior of pseudomorphic Si1−xGex buffer layers on Si (100) substrates [J]. Journal of Applied Physics, 2002, 92(8): 4290-4295.
[51] BUCA D, MINAMISAWA R, TRINKAUS H, et al. Si+ ion implantation for strain relaxation of pseudomorphic Si1−xGex/Si (100) heterostructures [J]. Journal of Applied Physics, 2009, 105(11): 114905.
[52] PARK J-S, BAI J, CURTIN M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping [J]. Applied Physics Letters, 2007, 90(5): 052113.
[53] ZAUMSEIL P, SCHROEDER T, PARK J-S, et al. A complex x-ray structure characterization of Ge thin film heterostructures integrated on Si (0 0 1) by aspect ratio trapping and epitaxial lateral overgrowth selective chemical vapor deposition techniques [J]. Journal of Applied Physics, 2009, 106(9): 093524.
[54] BAI J, PARK J-S, CHENG Z, et al. Study of the defect elimination mechanisms in aspect ratio trapping Ge growth [J]. Applied Physics Letters, 2007, 90(10): 101902.
[55] YAKO M, ISHIKAWA Y, WADA K. Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification [J]. Journal of Applied Physics, 2018, 123(18): 185304.
[56] WU Y, XU M, YE P, et al. Atomic-layer-deposited Al2O3/GaAs metal-oxide-semiconductor field-effect transistor on Si substrate using aspect ratio trapping technique [J]. Applied Physics Letters, 2008, 93(24): 242106.
[57] WANG N, YUAN X, ZHANG X, et al. Shape engineering of InP nanostructures by selective area epitaxy [J]. ACS Nano, 2019, 13(6): 7261-7269.
[58] SEIDL J, GLUSCHKE J G, YUAN X, et al. Regaining a spatial dimension: mechanically transferrable two-dimensional InAs nanofins grown by selective area epitaxy [J]. Nano Letters, 2019, 19(7): 4666-4677.
[59] TOMIOKA K, IZHIZAKA F, FUKUI T. Selective-area growth of InAs nanowires on Ge and vertical transistor application [J]. Nano Letters, 2015, 15(11): 7253-7257.
[60] LEE J S, CHOI S, PENDHARKAR M, et al. Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces [J]. Physical Review Materials, 2019, 3(8): 084606.
[61] STAUDINGER P, MOSELUND K E, SCHMID H. Exploring the size limitations of wurtzite III–V film growth [J]. Nano Letters, 2019, 20(1): 686-693.
[62] M. KHENNER R J B, M.G. MAUK. A model for isotropic crystal growth from vapor on a patterned substrate [J]. Journal of Crystal Growth, 2002, 235(1-4): 425–438.
[63] KHENNER M, BRAUN R J, MAUK M. A model for anisotropic epitaxial lateral overgrowth [J]. Journal of Crystal Growth, 2002, 241(3): 330-346.
[64] WEN R T, WANG B, MICHEL J. Unpredicted internal geometric reconfiguration of an enclosed space formed by heteroepitaxy [J]. Nano Letters, 2020, 20(1): 540-545.
[65] PARK J-S, BAI J, CURTIN M, et al. Facet formation and lateral overgrowth of selective Ge epitaxy on SiO2-patterned Si (001) substrates [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008, 26(1): 117-121.
[66] LEONHARDT D, GHOSH S, HAN S M. Defects in Ge epitaxy in trench patterned SiO2 on Si and Ge substrates [J]. Journal of Crystal Growth, 2011, 335(1): 62-65.
[67] BAYRAM C, OTT J A, SHIU K-T, et al. Cubic phase GaN on nano-grooved Si (1 0 0) via maskless selective area epitaxy [J]. Advanced Functional Materials, 2014, 24(28): 4492-4496.
[68] LI J, BAI J, MAJOR C, et al. Defect reduction of GaAs/Si epitaxy by aspect ratio trapping [J]. Journal of Applied Physics, 2008, 103(10): 106102.
[69] CHEN Y-A, KUO C-H, CHANG L-C, et al. Pulsed growth epitaxial method of GaN-based light-emitting diodes on patterned SiO2 AlN/sapphire template [J]. IEEE Journal of Quantum Electronics, 2014, 50(10): 1-6.
[70] YEH Y-H, SHEU J-K, LEE M-L, et al. InGaN flip-chip light-emitting diodes with embedded air voids as light-scattering layer [J]. IEEE Electron Device Letters, 2013, 34(12): 1542-1544.
[71] SHEU J-K, YEH Y-H, TU S-J, et al. Improved output power of GaN-based blue LEDs by forming air voids on Ar-implanted sapphire substrate [J]. Journal of Lightwave Technology, 2013, 31(8): 1318-1322.
[72] SHEU J-K, TU S-J, YEH Y-H, et al. Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate [J]. Applied Physics Letters, 2012, 101(15): 151103.
[73] CHANG L-C, CHEN Y-A, KUO C-H. Spatial correlation between efficiency and crystal structure in GaN-based light-emitting diodes prepared on high-aspect ratio patterned sapphire substrate with sputtered AlN nucleation layer [J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2443-2447.
[74] RUSSELL G J, HANEMAN D. Vacuum thermal etching of germanium and silicon surfaces [J]. Journal of The Electrochemical Society, 1967, 114(4): 398.
[75] PERSICHETTI L, FANFONI M, DE SETA M, et al. Formation of extended thermal etch pits on annealed Ge wafers [J]. Applied Surface Science, 2018, 462: 86-94.
[76] KIM T, JEONG M G, LEE B J, et al. Formation, evolution, and prevention of thermally induced defects on germanium and silicon upon high-temperature vacuum annealing [J]. Journal of Vacuum Science & Technology A, 2021, 39(6): 060403.
[77] MICHEL J, LIU J, KIMERLING L C. High-performance Ge-on-Si photodetectors [J]. Nature Photonics, 2010, 4(8): 527-534.
[78] WU S, ZHOU H, CHEN Q, et al. Suspended germanium membranes photodetector with tunable biaxial tensile strain and location-determined wavelength-selective photoresponsivity [J]. Applied Physics Letters, 2021, 119(19): 191106.
[79] LIN Y, MA D, HONG LEE K, et al. PIC-integrable, uniformly tensile-strained Ge-on-insulator photodiodes enabled by recessed SiNx stressor [J]. Photonics Research, 2021, 9(7): 1255-1263.
[80] ASSEFA S, XIA F, VLASOV Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects [J]. Nature, 2010, 464(7285): 80-84.
[81] CHAISAKUL P, MARRIS-MORINI D, FRIGERIO J, et al. Integrated germanium optical interconnects on silicon substrates [J]. Nature Photonics, 2014, 8(6): 482-488.
[82] ROTH J E, FIDANER O, SCHAEVITZ R K, et al. Optical modulator on silicon employing germanium quantum wells [J]. Optics Express, 2007, 15(9): 5851-5859.
[83] LISCHKE S, PECZEK A, MORGAN J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz [J]. Nature Photonics, 2021, 15(12): 925-931.
[84] HENDRICKX N W, LAWRIE W I L, RUSS M, et al. A four-qubit germanium quantum processor [J]. Nature, 2021, 591(7851): 580-585.
[85] HENDRICKX N, FRANKE D, SAMMAK A, et al. Gate-controlled quantum dots and superconductivity in planar germanium [J]. Nature Communications, 2018, 9(1): 2835.
[86] WANG K, XU G, GAO F, et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot [J]. Nature Communications, 2022, 13(1): 206.
[87] SCAPPUCCI G, KLOEFFEL C, ZWANENBURG F A, et al. The germanium quantum information route [J]. Nature Reviews Materials, 2020, 6(10): 926-943.
[88] FALUB C V, VON KANEL H, ISA F, et al. Scaling hetero-epitaxy from layers to three-dimensional crystals [J]. Science, 2012, 335(6074): 1330-1334.
[89] FADALY E M T, DIJKSTRA A, SUCKERT J R, et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys [J]. Nature, 2020, 580(7802): 205-209.
[90] WARBURTON R J. Single spins in self-assembled quantum dots [J]. Nature Materials, 2013, 12(6): 483-493.
[91] HIGGINBOTHAM A P, KUEMMETH F, LARSEN T W, et al. Antilocalization of coulomb blockade in a Ge/Si nanowire [J]. Physical Review Letters, 2014, 112(21): 216806.
[92] DIMOULAS A, TSIPAS P, SOTIROPOULOS A, et al. Fermi-level pinning and charge neutrality level in germanium [J]. Applied Physics Letters, 2006, 89(25): 252110.
[93] KREILIGER T, FALUB C V, TABOADA A G, et al. Individual heterojunctions of 3D germanium crystals on silicon CMOS for monolithically integrated X-ray detector [J]. Physica Status Solidi (a), 2014, 211(1): 131-135.
[94] ASSEFA S, XIA F, BEDELL S W, et al. CMOS-integrated high-speed MSM germanium waveguide photodetector [J]. Optics Express, 2010, 18(5): 4986-4999.
[95] CHUNG C-T, CHEN C-W, LIN J-C, et al. Epitaxial germanium on SOI substrate and its application of fabricating high Ion-Ioff ratio Ge FinFETs [J]. IEEE Transactions on Electron Devices, 2013, 60(6): 1878-1883.
[96] HUTIN L, LE ROYER C, DAMLENCOURT J F, et al. GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current [J]. IEEE Electron Device Letters, 2010, 31(3): 234-236.
[97] LE ROYER C, VINCENT B, CLAVELIER L, et al. High-κ and metal-gate pMOSFETs on GeOI obtained by Ge enrichment: Analysis of ON and OFF performances [J]. IEEE Electron Device Letters, 2008, 29(6): 635-637.
[98] YU H-Y, PARK J-H, OKYAY A K, et al. Selective-area high-quality germanium growth for monolithic integrated optoelectronics [J]. IEEE Electron Device Letters, 2012, 33(4): 579-581.
[99] NAM J H, ALKIS S, NAM D, et al. Lateral overgrowth of germanium for monolithic integration of germanium-on-insulator on silicon [J]. Journal of Crystal Growth, 2015, 416: 21-27.
[100]SAITO S, AL-ATTILI A Z, ODA K, et al. Towards monolithic integration of germanium light sources on silicon chips [J]. Semiconductor Science and Technology, 2016, 31(4): 043002.
[101]KAPOLNEK D, KELLER S, VETURY R, et al. Anisotropic epitaxial lateral growth in GaN selective area epitaxy [J]. Applied Physics Letters, 1997, 71(9): 1204-1206.
[102]ROBINSON J T, RASTELLI A, SCHMIDT O, et al. Global faceting behavior of strained Ge islands on Si [J]. Nanotechnology, 2009, 20(8): 085708.
[103]GAI Z, YANG W S, ZHAO R G, et al. Macroscopic and nanoscale faceting of germanium surfaces [J]. Physical Review B, 1999, 59(23): 15230-15239.
[104]ZHOU T, ZENG C, MA Q, et al. Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars [J]. Nanoscale, 2014, 6(8): 3925-3929.
[105]JIANG Y, MO D, HU X, et al. Investigation on Ge surface diffusion via growing Ge quantum dots on top of Si pillars [J]. AIP Advances, 2016, 6(8): 085120.
[106]ZHAO X, WEN R-T, ALBERT B, et al. Trapping threading dislocations in germanium trenches on silicon wafer [J]. Journal of Crystal Growth, 2020, 543: 125701.
[107]USUI A, SUNAKAWA H, SAKAI A, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy [J]. Japanese Journal of Applied Physics Part 2 Letters, 1997, 36: L899-L902.
[108]NAM O-H, BREMSER M D, ZHELEVA T S, et al. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy [J]. Applied Physics Letters, 1997, 71(18): 2638-2640.
[109]HAN Y, XUE Y, LAU K M. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator [J]. Applied Physics Letters, 2019, 114(19): 192105.
[110]ŠURAN BRUNELLI S T, MARKMAN B, GOSWAMI A, et al. Selective and confined epitaxial growth development for novel nano-scale electronic and photonic device structures [J]. Journal of Applied Physics, 2019, 126(1): 015703.
[111]TOMIOKA K, YOSHIMURA M, FUKUI T. A III–V nanowire channel on silicon for high-performance vertical transistors [J]. Nature, 2012, 488(7410): 189-192.
[112]KROGSTRUP P, ZIINO N, CHANG W, et al. Epitaxy of semiconductor–superconductor nanowires [J]. Nature Materials, 2015, 14(4): 400-406.
[113]FONTCUBERTA I MORRAL A. Nanostructured alloys light the way to silicon-based photonics [J]. Nature, 2020, 580(7802): 188-189.
[114]XIE S, TU L, HAN Y, et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain [J]. Science, 2018, 359(6380): 1131-1136.
[115]MATSUBARA H, YOSHIMOTO S, SAITO H, et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths [J]. Science, 2008, 319(5862): 445-447.
[116]MCMAHON W E, VAISMAN M, ZIMMERMAN J D, et al. Perspective: Fundamentals of coalescence-related dislocations, applied to selective-area growth and other epitaxial films [J]. APL Materials, 2018, 6(12): 120903.
[117]JULIAN N, MAGES P, ZHANG C, et al. Coalescence of InP epitaxial lateral overgrowth by MOVPE with V/III ratio variation [J]. Journal of Electronic Materials, 2012, 41(5): 845-852.
[118]JULIAN N H, MAGES P A, ZHANG C, et al. Improvements in epitaxial lateral overgrowth of InP by MOVPE [J]. Journal of Crystal Growth, 2014, 402: 234-242.
[119]ZYTKIEWICZ Z, DOMAGALA J, DOBOSZ D, et al. Tilt and dislocations in epitaxial laterally overgrown GaAs layers [J]. Journal of Applied Physics, 2007, 101(1): 013508.
[120]ALBANI M, GHISALBERTI L, BERGAMASCHINI R, et al. Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment [J]. Physical Review Materials, 2018, 2(9): 093404.
[121]RAMANANDAN S P, TOMIĆ P, MORGAN N P, et al. Coherent hole transport in selective area grown Ge nanowire networks [J]. Nano Letters, 2022, 22 (10): 4269-4275.
[122]ASEEV P, FURSINA A, BOEKHOUT F, et al. Selectivity map for molecular beam epitaxy of advanced III–V quantum nanowire networks [J]. Nano Letters, 2019, 19(1): 218-227.
[123]BOLLANI M, FEDOROV A, ALBANI M, et al. Selective area epitaxy of GaAs/Ge/Si nanomembranes: a morphological study [J]. Crystals, 2020, 10(2): 57.
[124]BERGAMASCHINI R, ISA F, FALUB C V, et al. Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays [J]. Surface Science Reports, 2013, 68(3-4): 390-417.
[125]CAHN J W, HILLIARD J E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid [J]. The Journal of chemical physics, 1959, 31(3): 688-699.
[126]CAHN J W, ELLIOTT C M, NOVICK-COHEN A. The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature [J]. European Journal of Applied Mathematics, 1996, 7(3): 287-301.
[127]MULLINS W W. Theory of thermal grooving [J]. Journal of Applied Physics, 1957, 28(3): 333-339.
[128]YUE P. Thermodynamically consistent phase-field modelling of contact angle hysteresis [J]. Journal of Fluid Mechanics, 2020, 899: A15.
[129]THOMPSON C V. Solid-state dewetting of thin films [J]. Annual Review of Materials Research, 2012, 42(1): 399-434.
[130]NAFFOUTI M, BACKOFEN R, SALVALAGLIO M, et al. Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures [J]. Science Advances, 2017, 3(11): eaao1472.
[131]CAHN J W, CARTER W C. Crystal shapes and phase equilibria: A common mathematical basis [J]. Metallurgical and Materials Transactions A, 1996, 27(6): 1431-1440.
[132]ROOSEN A R, CARTER W C. Simulations of microstructural evolution: anisotropic growth and coarsening [J]. Physica A: Statistical Mechanics and its Applications, 1998, 261(1-2): 232-247.
[133]RASTELLI A, KUMMER M, VON KANEL H. Reversible shape evolution of Ge islands on Si(001) [J]. Physical Review Letters, 2001, 87(25): 256101.
[134]KHENNER M, BRAUN R J, MAUK M G. A model for anisotropic epitaxial lateral overgrowth [J]. Journal of Crystal Growth, 2002, 241(3): 330-346.
[135]LIN Y, YAMAGUCHI H, CHANG E Y, et al. Growth of very-high-mobility AlGaSb/In as high-electron-mobility transistor structure on Si substrate for high speed electronic applications [J]. Applied Physics Letters, 2007, 90(2): 023509.
[136]XIANG J, LU W, HU Y, et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors [J]. Nature, 2006, 441(7092): 489-493.
[137]LIU J, SUN X, CAMACHO-AGUILERA R, et al. Ge-on-Si laser operating at room temperature [J]. Optics Letters, 2010, 35(5): 679-681.
[138]MIYAI E, SAKAI K, OKANO T, et al. Lasers producing tailored beams [J]. Nature, 2006, 441(7096): 946.
[139]MCKENZIE A F, KING B C, RAE K J, et al. Void engineering in epitaxially regrown GaAs-based photonic crystal surface emitting lasers by grating profile design [J]. Applied Physics Letters, 2021, 118(2): 021109.
[140]CHEN Y-A, KUO C-H, CHANG L-C, et al. Void shapes controlled by using interruption-free epitaxial lateral overgrowth of GaN films on patterned SiO2 AlN/sapphire template [J]. International Journal of Photoenergy, 2014, 2014: 621789.
[141]TAYLOR R J, WILLIAMS D M, ORCHARD J R, et al. Band structure and waveguide modelling of epitaxially regrown photonic crystal surface-emitting lasers [J]. Journal of Physics D: Applied Physics, 2013, 46(26): 264005.
[142]KUROSAKA Y, SAKAI K, MIYAI E, et al. Controlling vertical optical confinement in two-dimensional surface-emitting photonic-crystal lasers by shape of air holes [J]. Optics Express, 2008, 16(22): 18485-18494.
[143]FRAJTAG P, EL-MASRY N A, NEPAL N, et al. Embedded voids approach for low defect density in epitaxial GaN films [J]. Applied Physics Letters, 2011, 98(2): 023115.
[144]WANG J, XIE N, XU F, et al. Group-III nitride heteroepitaxial films approaching bulk-class quality [J]. Nature Materials, 2023, 22:853–859.
[145]REILLY K J, KALAPALA A, YEOM S, et al. Epitaxial regrowth and hole shape engineering for photonic crystal surface emitting lasers (PCSELs) [J]. Journal of Crystal Growth, 2020, 535:125531.
[146]BENYOUCEF M, KUBALL M, HILL G, et al. Finite element analysis of epitaxial lateral overgrown GaN: Voids at the coalescence boundary [J]. Applied Physics Letters, 2001, 79(25): 4127-4129.
[147]DIMASTRODONATO V, PELUCCHI E, VVEDENSKY D D. Self-limiting evolution of seeded quantum wires and dots on patterned substrates [J]. Physical Review Letters, 2012, 108(25): 256102.
[148]WENG X, YANG J, LI D, et al. Review of the preparation and structures of Si nanowires, Ge quantum dots and their composites [J]. NANO, 2019, 14(04): 1930004.
[149]KATSAROS G, SPATHIS P, STOFFEL M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon [J]. Nature Nanotechnology, 2010, 5(6): 458-464.
[150]JUNG D, CALLAHAN P G, SHIN B, et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001) [J]. Journal of Applied Physics, 2017, 122(22): 225703.
[151]SOREF R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497.
[152]PILLARISETTY R. Academic and industry research progress in germanium nanodevices [J]. Nature, 2011, 479(7373): 324-328.
[153]LIU C, MA W, CHEN M, et al. A vertical silicon-graphene-germanium transistor [J]. Nature Communications, 2019, 10(1): 4873.
[154]KING R R, LAW D C, EDMONDSON K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Applied Physics Letters, 2007, 90(18): 183516.
[155]HEKMATSHOAR B, SHAHRJERDI D, HOPSTAKEN M, et al. High-efficiency heterojunction solar cells on crystalline germanium substrates [J]. Applied Physics Letters, 2012, 101(3): 032102.
[156]ALHOMOUDI I A. Growth and strain evaluation of InGaP/InGaAs/Ge triple-junction solar cell structures [J]. Journal of Electronic Materials, 2016, 45(10): 4823-4832.
[157]LEE J H, LEE E K, JOO W J, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium [J]. Science, 2014, 344(6181): 286-289.
[158]KIRALY B, JACOBBERGER R M, MANNIX A J, et al. Electronic and mechanical properties of graphene-germanium interfaces grown by chemical vapor deposition [J]. Nano Letters, 2015, 15(11): 7414-7420.
[159]DAI L, ZHAO J, LI J, et al. Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge [J]. Nature Communications, 2022, 13(1): 2990.
[160]KATAMAWARI R, KAWASHITA K, HIZAWA T, et al. Si-capping-induced surface roughening on the strip structures of Ge selectively grown on an Si substrate [J]. Journal of Vacuum Science & Technology B, 2021, 39(4): 042204.
[161]YE H, YU J. Germanium epitaxy on silicon [J]. Science and Technology of Advanced Materials, 2014, 15(2): 024601.
[162]BOLKHOVITYANOV Y B, PCHELYAKOV O P, CHIKICHEV S I. Silicon-germanium epilayers: physical fundamentals of growing strained and fully relaxed heterostructures [J]. Physics-Uspekhi, 2001, 44(7): 655-680.
[163]JUNG D, CALLAHAN P G, SHIN B, et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001) [J]. Journal of Applied Physics, 2017, 122(22): 225703.
[164]TERAJI T, FIORI A, KIRITANI N, et al. Mechanism of reverse current increase of vertical-type diamond Schottky diodes [J]. Journal of Applied Physics, 2017, 122(13): 135304.
[165]GEIGER R, FRIGERIO J, SüESS M J, et al. Excess carrier lifetimes in Ge layers on Si [J]. Applied Physics Letters, 2014, 104(6): 062106.
[166]WONG L H, FERRARIS C, WONG C C, et al. Threading dislocation reduction by SiGeC domains in SiGe/SiGeC heterostructure: Role of pure edge dislocations [J]. Applied Physics Letters, 2006, 89(23): 231906.
[167]RAMANANDAN S P, TOMIĆ P, MORGAN N P, et al. Coherent hole transport in selective area grown Ge nanowire networks [J]. Nano Letters, 2022, 22(10): 4269-4275.
[168]SHALAV A, COLLIN G H, YANG Y, et al. GeOx and SiOx nanowires grown via the active oxidation of Ge and Si substrates [J]. Journal of Materials Research, 2011, 26(17): 2240-2246.
[169]OTT J B, BOERIO-GOATES J. Chapter 8 - The equilibrium condition applied to phase equilibria [M] //OTT J B, BOERIO-GOATES J. Chemical Thermodynamics: Principles and Applications. London; Academic Press. 2000: 383-433.
[170]STEKOLNIKOV A, FURTHMüLLER J, BECHSTEDT F. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction [J]. Physical Review B, 2002, 65(11): 115318.
[171]ZHAO X, WEN R-T, ALBERT B, et al. Trapping threading dislocations in germanium trenches on silicon wafer [J]. Journal of Crystal Growth, 2020, 543: 125701.
[172]MARZEGALLI A, ISA F, GROISS H, et al. Unexpected dominance of vertical dislocations in high-misfit Ge/Si(0 0 1) films and their elimination by deep substrate patterning [J]. Advanced Materials, 2013, 25(32): 4408-4412.
[173]ALBERT B R. Germanium on silicon heteroepitaxy for high efficiency photovoltaic devices [D]. Massachusetts Institute of Technology, 2016.
[174]ZHANG Y, ZHOU C, ZHU Y, et al. Thermally induced surface faceting on heteroepitaxial layers [J]. Journal of Applied Physics, 2023, 133(7): 075703.
[175]KRESSE G, HAFNER J. ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium [J]. Physical Review B, 1994, 49(20): 14251.
[176]KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15-50.
[177]TRUSHIN O, MARAS E, STUKOWSKI A, et al. Minimum energy path for the nucleation of misfit dislocations in Ge/Si(0 0 1) heteroepitaxy [J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(3): 035007.
[178]BARBISAN L, MARZEGALLI A, MONTALENTI F. Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si (0 0 1) films via molecular dynamics simulations [J]. Scientific Reports, 2022, 12(1): 3235.

所在学位评定分委会
材料科学与工程
国内图书分类号
O781
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766070
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
张亦文. 单晶锗的横向外延生长与合并研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930920-张亦文-材料科学与工程(19593KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张亦文]的文章
百度学术
百度学术中相似的文章
[张亦文]的文章
必应学术
必应学术中相似的文章
[张亦文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。