[1] SCUSSEL O, BRENNAN M, IWANAGA M, et al. Analysis of phase data from ground vibration measurements above a leaking plastic water pipe[J]. Journal of Sound and Vibration, 2023:117873.
[2] GARCÍA I F, NOVARA D, MC NABOLA A. A model for selecting the most cost-effective pressure control device for more sustainable water supply networks[J]. Water, 2019, 11(6):1297.
[3] The 11 cities most likely to run out of drinking water - like Cape Town[EB/OL]. 2018. https://www.bbc.com/news/world-42982959.
[4] LIU Y, HABIBI D, CHAI D, et al. A comprehensive review of acoustic methods for locating underground pipelines[J]. Applied Sciences, 2020, 10(3): 1031.
[5] 王俊岭, 邓玉莲, 李英, 等. 排水管道检测与缺陷识别技术综述[J]. 科学技术与工程, 2020,20(33): 13520-13528.
[6] 王毅, 邵磊. 管道检测机器人最新发展概况[J]. 石油管材与仪器, 2016(4): 6-10.
[7] PARK J, LUONG T, MOON H. Development of a wheel-type in-pipe robot using continuously variable transmission mechanisms for pipeline inspection[J]. Biomimetics, 2024, 9(2): 113.
[8] FANG D, JIA G, WU J, et al. A novel worm-like in-pipe robot with the rigid and soft structure [J]. Journal of Bionic Engineering, 2023, 20(6): 2559-2569.
[9] LEE D, PARK J, HYUN D, et al. Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types[J]. Mechanism and Machine Theory, 2012, 56:52-68.
[10] ROH S G, KIM D W, LEE J S, et al. In-pipe robot based on selective drive mechanism[J]. International Journal of Control, Automation and Systems, 2009, 7: 105-112.
[11] TOURAJIZADEH H, SEDIGH A, BOOMERI V, et al. Design of a new steerable in-pipe inspection robot and its robust control in presence of pipeline flow[J]. Journal of Mechanical Engineering and Sciences, 2020, 14(3): 6993-7016.
[12] 李鹏, 马书根, 李斌, 等. 具有自适应能力管道机器人的设计与运动分析[J]. 机械工程学报, 2009, 45(1): 154-161.
[13] ELANKAVI R S, DINAKARAN D, JOSE J. Developments in inpipe inspection robot: A review [J]. Journal of Mechanics of Continua and Mathematical Sciences, 2020, 15(5): 238-248.
[14] LIN Y, XU Y X, JUANG J Y. Single-actuator soft robot for in-pipe crawling[J]. Soft Robotics, 2023, 10(1): 174-186.
[15] 王殿君, 李润平, 黄光明. 管道机器人的研究进展[J]. 机床与液压, 2008, 36(4): 185-187.
[16] JANG H, KIM T Y, LEE Y C, et al. Autonomous navigation of in-pipe inspection robot using contact sensor modules[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4665-4674.
[17] KWON Y S, YI B J. Design and motion planning of a two-module collaborative indoor pipeline inspection robot[J]. IEEE Transactions on Robotics, 2012, 28(3): 681-696.
[18] MISHRA D, AGRAWAL K K, ABBAS A, et al. PIG [Pipe Inspection Gauge]: An artificial dustman for cross country pipelines[J]. Procedia Computer Science, 2019, 152: 333-340.
[19] KAKOGAWA A, MA S. Stiffness design of springs for a screw drive in-pipe robot to pass through curved pipes and vertical straight pipes[J]. Advanced Robotics, 2012, 26(3-4): 253-276.
[20] MOHD ARAS M S, MD ZAIN Z, KAMARUZAMAN A F, et al. Design and development of remotely operated pipeline inspection robot[C]//Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019: NUSYS’19. Springer, 2021: 15-23.
[21] 张学文. 管道机器人三轴差动式驱动单元设计与可靠性研究[D]. 长春: 吉林大学, 2008.
[22] ABIDIN A S Z, CHIE S C, ZAINI M H, et al. Development of in-pipe robot D300: Cornering mechanism[C]//MATEC Web of Conferences: Vol. 87. EDP Sciences, 2017: 02029.
[23] SAVIN S, JATSUN S, VOROCHAEVA L. State observer design for a walking in-pipe robot [C]//MATEC web of conferences: Vol. 161. EDP Sciences, 2018: 03012.
[24] YU H, MA P, CAO C. A novel in-pipe worming robot based on SMA[C]//IEEE International Conference Mechatronics and Automation, 2005: Vol. 2. IEEE, 2005: 923-927.
[25] TANG C, DU B, JIANG S, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale[J]. Science Robotics, 2022, 7(66): eabm8597.
[26] ARIARATNAM S T, CHANDRASEKARAN M. Development of an innovative freeswimming device for detection of leaks in oil and gas pipelines[C]//Construction Research Congress 2010: Innovation for Reshaping Construction Practice. 2010: 588-596.
[27] ZHENG J, WANG S, HAZIM A, et al. Pipeline leak detection swimming robot design and deployment[C]//2018 Annual American Control Conference (ACC). IEEE, 2018: 1166-1171.
[28] WU Y, NOEL A, KIM D D, et al. Design of a maneuverable swimming robot for in-pipe missions[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).2015: 4864-4871.
[29] WU Y, CHATZIGEORGIOU D, YOUCEF-TOUMI K, et al. Modeling and parameter estimation for in-pipe swimming robots[C]//2015 American Control Conference (ACC). 2015:2007-2013.
[30] GUO S, HU Y, GUO J, et al. Design of a novel micro robot in-pipe[C]//2020 IEEE InternationalConference on Mechatronics and Automation (ICMA). 2020: 1786-1791.
[31] 谢广明, 李卫京, 刘甜甜, 等. 水中仿生机器人导论[M]. 北京: 清华大学出版社, 2017.
[32] ZHOU J, SI Y, CHEN Y. A review of subsea AUV technology[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1119.
[33] BRUTZMAN D, BURNS M, CAMPBELL M, et al. NPS Phoenix AUV software integration and in-water testing[C]//Proceedings of Symposium on Autonomous Underwater Vehicle Technology.IEEE, 1996: 99-108.
[34] 封锡盛, 等. 从有缆遥控水下机器人到自治水下机器人[D]. 2000.
[35] EVERS D C, BURGESS N M, CHAMPOUX L, et al. Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America[J]. Ecotoxicology,2005, 14: 193-221.
[36] 潜行创新官网[EB/OL]. 2023. https://www.chasing.com/zh.
[37] 鳍源科技FIFISH E-GO[EB/OL]. 2024. https://www.qysea.com/cn/products/fifish-e-go/.
[38] KIM Y G, SHIN D H, MOON J I, et al. Design and implementation of an optimal in-pipe navigation mechanism for a steel pipe cleaning robot[C]//2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2011: 772-773.
[39] LIM H, CHOI J Y, KWON Y S, et al. SLAM in indoor pipelines with 15mm diameter[C]//2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 4005-4011.
[40] KIM D Y, KIM J, KIM I, et al. Artificial landmark for vision-based slam of water pipe rehabilitation robot[C]//2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2015: 444-446.
[41] WU T, LU S, TANG Y. An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor[C]//2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015: 2637-2641.
[42] THIELEMANN J T, BREIVIK G M, BERGE A. Pipeline landmark detection for autonomous robot navigation using time-of-flight imagery[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2008: 1-7.
[43] LEE D H, MOON H, CHOI H R. Autonomous navigation of in-pipe working robot in unknown pipeline environment[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 1559-1564.
[44] MURTRA A C, TUR J M M. IMU and cable encoder data fusion for in-pipe mobile robot localization[C]//2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 2013: 1-6.
[45] 闫雪娇, 谢哲, 付宏文, 等. 一种基于惯性测量单元和里程计的油气管道定位方法[J]. 导航与控制, 2022, 21(1): 57-65.
[46] XIANGKAI G, SHUQIN G, XIN Z, et al. Design and realization of underground pipeline location system based on RFID technology[C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments. IEEE, 2017: 242-246.
[47] 军锋林. 探析自来水管道工程施工的通病及防治[J]. 工程建设, 2020, 3(4): 136-137.
[48] KARIMI H R, LU Y. Guidance and control methodologies for marine vehicles: A survey[J].Control Engineering Practice, 2021, 111: 104785.
[49] ZHANG W, WANG N, WU W. A hybrid path planning algorithm considering AUV dynamic constraints based on improved A* algorithm and APF algorithm[J]. Ocean Engineering, 2023, 285: 115333.
[50] BAI G, HU X, SHI Y, et al. Multi-AUV dynamic trajectory optimization and collaborative search combined with task urgency and energy consumption scheduling in 3-D underwater environment with random ocean currents and uncertain obstacles[J]. Ocean Engineering, 2023,275: 113841.
[51] ZHANG K, LU K, CHAI S, et al. Dynamic modeling and parameter sensitivity analysis of AUV by using the POD method and the HB-AFT method[J]. Ocean Engineering, 2024, 293:116693.
[52] FOSSEN T I. Guidance and control of ocean vehicles[D]. University of Trondheim, Norway,1999.
[53] WANG H, XIANG X, XIANG G, et al. An improved body force method for simulation of self-propulsion AUV with ducted propeller[J]. Ocean Engineering, 2023, 281: 114731.
[54] HERLAMBANG T, RAHMALIA D, NURHADI H, et al. Optimization of linear quadratic regulator with tracking applied to autonomous underwater vehicle (AUV) using cuckoo search[J].Nonlinear Dynamics and Systems Theory: An International Journal of Research and Surveys,2020, 20(3): 282-298.
[55] OLALLA C, LEYVA R, EL AROUDI A, et al. Robust LQR control for PWM converters: An LMI approach[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2548-2558.
[56] ARGENTIM L M, REZENDE W C, SANTOS P E, et al. PID, LQR and LQR-PID on aquadcopter platform[C]//2013 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2013: 1-6.
[57] PASSINO K M, YURKOVICH S, REINFRANK M. Fuzzy control: Vol. 42[M]. Addisonwesley Reading, MA, 1998.
[58] WANG X, XU B, GUO Y. Fuzzy logic system-based robust adaptive control of AUV with target tracking[J]. International Journal of Fuzzy Systems, 2023, 25(1): 338-346.
[59] SHRIVAKSHAN G, CHANDRASEKAR C. A comparison of various edge detection techniques used in image processing[J]. International Journal of Computer Science Issues (IJCSI),2012, 9(5): 269.
[60] GAO W, ZHANG X, YANG L, et al. An improved Sobel edge detection[C]//2010 3rd International Conference on Computer Science and Information Technology: Vol. 5. IEEE, 2010: 67-71.
[61] YANG L, WU X, ZHAO D, et al. An improved Prewitt algorithm for edge detection based on noised image[C]//2011 4th International Congress on Image and Signal Processing: Vol. 3. IEEE, 2011: 1197-1200.
[62] BURGER W, BURGE M J. Digital image processing: an algorithmic introduction[M]. Springer Nature, 2022.
[63] TOV O, ALALUF Y, NITZAN Y, et al. Designing an encoder for stylegan image manipulation [J]. ACM Transactions on Graphics, 2021, 40(4): 1-14.
修改评论