中文版 | English
题名

桨驱动小型智能水下管道机器人

其他题名
PROPELLER DRIVEN MINIATURE INTELLIGENT UNDERWATER PIPELINE ROBOT
姓名
姓名拼音
ZHU Xiyu
学号
12132326
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
胡程志
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

城市管道的维护对于保护社会资源和提升资源运输效率具有至关重要的作用。管道机器人是执行管道检查和维护任务的关键设备。其中,游泳式管道机器人以其结构紧凑和高度灵活性的特点,在城市自来水管道检查与维护中扮演着核心角色。然而,现有的游泳式管道机器人在集成度,操作性和环境感知能力方面仍存在不足。本文设计一种面向狭窄自来水管道的微型游泳式管道机器人(Miniature In-pipe Swimming Robot,MISR),MISR最大直径为5.62 cm,长度为12.88 cm,最高稳定速度可达10 cm/s,续航时间超过1.5 h。通过将MISR在水中的运动分解为水平和垂直运动,本文提出简化水下机器人动力学模型,并设计双环PID(Proportional Integral Derivative)控制器,以实现深度和偏航角的稳定控制。针对弱感知能力的小型管道机器人,提出基于特征的反应式导航策略,实现机器人在管道内自主巡检。在水箱和自建管道中实际测试MISR的运动能力,包括基础运动实验、偏航角控制实验、深度控制实验、直管道导航实验、管道岔口实验和反应式导航实验等。结果表明,MISR具备良好的运动能力,能在管道内根据人工特征实现自主巡检。本文创新点为设计一种面向狭窄自来水管道的微型游泳式管道机器人,利用人工特征实现城市自来水管道的自主巡检。

其他摘要

The maintenance of urban pipelines plays a crucial role in protecting societal resources and enhancing the efficiency of resource transportation. Pipeline robots are key devices for performing inspections and maintenance tasks. Among these, swimming pipeline robots, with compact structures and high flexibility, play a central role in the inspection and maintenance of urban water pipelines. However, existing swimming pipeline robots still lack integration, operability, and environmental perception capabilities. This paper designs a miniature in-pipe swimming robot (MISR) for narrow water pipelines. MISR has a maximum diameter of 5.62 cm and a length of 12.88 cm, with a top stable speed of 10 cm/s and a battery life of over 1.5 hours. By decomposing MISR's movements in water into horizontal and vertical motions, this paper proposes a simplified underwater robot dynamics model and designs a dual-loop PID(Proportional Integral Derivative) controller to achieve stable depth and yaw angle control. For small pipeline robots with weak perception capabilities, a feature-based reactive navigation strategy is proposed to enable autonomous inspection within the pipelines. The motion capabilities of MISR were practically tested in water tanks and custom-built pipelines, including basic motion, yaw angle control, depth control, straight pipeline navigation, pipeline junction navigation, and reactive navigation experiments. The results show that MISR has excellent motion capabilities and can autonomously inspect within pipelines based on artificial features. The innovation of this article is to design a miniature in-pipe swimming robot for narrow water pipes, using artificial features to realize autonomous inspections in urban water pipelines.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SCUSSEL O, BRENNAN M, IWANAGA M, et al. Analysis of phase data from ground vibration measurements above a leaking plastic water pipe[J]. Journal of Sound and Vibration, 2023:117873.
[2] GARCÍA I F, NOVARA D, MC NABOLA A. A model for selecting the most cost-effective pressure control device for more sustainable water supply networks[J]. Water, 2019, 11(6):1297.
[3] The 11 cities most likely to run out of drinking water - like Cape Town[EB/OL]. 2018. https://www.bbc.com/news/world-42982959.
[4] LIU Y, HABIBI D, CHAI D, et al. A comprehensive review of acoustic methods for locating underground pipelines[J]. Applied Sciences, 2020, 10(3): 1031.
[5] 王俊岭, 邓玉莲, 李英, 等. 排水管道检测与缺陷识别技术综述[J]. 科学技术与工程, 2020,20(33): 13520-13528.
[6] 王毅, 邵磊. 管道检测机器人最新发展概况[J]. 石油管材与仪器, 2016(4): 6-10.
[7] PARK J, LUONG T, MOON H. Development of a wheel-type in-pipe robot using continuously variable transmission mechanisms for pipeline inspection[J]. Biomimetics, 2024, 9(2): 113.
[8] FANG D, JIA G, WU J, et al. A novel worm-like in-pipe robot with the rigid and soft structure [J]. Journal of Bionic Engineering, 2023, 20(6): 2559-2569.
[9] LEE D, PARK J, HYUN D, et al. Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types[J]. Mechanism and Machine Theory, 2012, 56:52-68.
[10] ROH S G, KIM D W, LEE J S, et al. In-pipe robot based on selective drive mechanism[J]. International Journal of Control, Automation and Systems, 2009, 7: 105-112.
[11] TOURAJIZADEH H, SEDIGH A, BOOMERI V, et al. Design of a new steerable in-pipe inspection robot and its robust control in presence of pipeline flow[J]. Journal of Mechanical Engineering and Sciences, 2020, 14(3): 6993-7016.
[12] 李鹏, 马书根, 李斌, 等. 具有自适应能力管道机器人的设计与运动分析[J]. 机械工程学报, 2009, 45(1): 154-161.
[13] ELANKAVI R S, DINAKARAN D, JOSE J. Developments in inpipe inspection robot: A review [J]. Journal of Mechanics of Continua and Mathematical Sciences, 2020, 15(5): 238-248.
[14] LIN Y, XU Y X, JUANG J Y. Single-actuator soft robot for in-pipe crawling[J]. Soft Robotics, 2023, 10(1): 174-186.
[15] 王殿君, 李润平, 黄光明. 管道机器人的研究进展[J]. 机床与液压, 2008, 36(4): 185-187.
[16] JANG H, KIM T Y, LEE Y C, et al. Autonomous navigation of in-pipe inspection robot using contact sensor modules[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4665-4674.
[17] KWON Y S, YI B J. Design and motion planning of a two-module collaborative indoor pipeline inspection robot[J]. IEEE Transactions on Robotics, 2012, 28(3): 681-696.
[18] MISHRA D, AGRAWAL K K, ABBAS A, et al. PIG [Pipe Inspection Gauge]: An artificial dustman for cross country pipelines[J]. Procedia Computer Science, 2019, 152: 333-340.
[19] KAKOGAWA A, MA S. Stiffness design of springs for a screw drive in-pipe robot to pass through curved pipes and vertical straight pipes[J]. Advanced Robotics, 2012, 26(3-4): 253-276.
[20] MOHD ARAS M S, MD ZAIN Z, KAMARUZAMAN A F, et al. Design and development of remotely operated pipeline inspection robot[C]//Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019: NUSYS’19. Springer, 2021: 15-23.
[21] 张学文. 管道机器人三轴差动式驱动单元设计与可靠性研究[D]. 长春: 吉林大学, 2008.
[22] ABIDIN A S Z, CHIE S C, ZAINI M H, et al. Development of in-pipe robot D300: Cornering mechanism[C]//MATEC Web of Conferences: Vol. 87. EDP Sciences, 2017: 02029.
[23] SAVIN S, JATSUN S, VOROCHAEVA L. State observer design for a walking in-pipe robot [C]//MATEC web of conferences: Vol. 161. EDP Sciences, 2018: 03012.
[24] YU H, MA P, CAO C. A novel in-pipe worming robot based on SMA[C]//IEEE International Conference Mechatronics and Automation, 2005: Vol. 2. IEEE, 2005: 923-927.
[25] TANG C, DU B, JIANG S, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale[J]. Science Robotics, 2022, 7(66): eabm8597.
[26] ARIARATNAM S T, CHANDRASEKARAN M. Development of an innovative freeswimming device for detection of leaks in oil and gas pipelines[C]//Construction Research Congress 2010: Innovation for Reshaping Construction Practice. 2010: 588-596.
[27] ZHENG J, WANG S, HAZIM A, et al. Pipeline leak detection swimming robot design and deployment[C]//2018 Annual American Control Conference (ACC). IEEE, 2018: 1166-1171.
[28] WU Y, NOEL A, KIM D D, et al. Design of a maneuverable swimming robot for in-pipe missions[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).2015: 4864-4871.
[29] WU Y, CHATZIGEORGIOU D, YOUCEF-TOUMI K, et al. Modeling and parameter estimation for in-pipe swimming robots[C]//2015 American Control Conference (ACC). 2015:2007-2013.
[30] GUO S, HU Y, GUO J, et al. Design of a novel micro robot in-pipe[C]//2020 IEEE InternationalConference on Mechatronics and Automation (ICMA). 2020: 1786-1791.
[31] 谢广明, 李卫京, 刘甜甜, 等. 水中仿生机器人导论[M]. 北京: 清华大学出版社, 2017.
[32] ZHOU J, SI Y, CHEN Y. A review of subsea AUV technology[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1119.
[33] BRUTZMAN D, BURNS M, CAMPBELL M, et al. NPS Phoenix AUV software integration and in-water testing[C]//Proceedings of Symposium on Autonomous Underwater Vehicle Technology.IEEE, 1996: 99-108.
[34] 封锡盛, 等. 从有缆遥控水下机器人到自治水下机器人[D]. 2000.
[35] EVERS D C, BURGESS N M, CHAMPOUX L, et al. Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America[J]. Ecotoxicology,2005, 14: 193-221.
[36] 潜行创新官网[EB/OL]. 2023. https://www.chasing.com/zh.
[37] 鳍源科技FIFISH E-GO[EB/OL]. 2024. https://www.qysea.com/cn/products/fifish-e-go/.
[38] KIM Y G, SHIN D H, MOON J I, et al. Design and implementation of an optimal in-pipe navigation mechanism for a steel pipe cleaning robot[C]//2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2011: 772-773.
[39] LIM H, CHOI J Y, KWON Y S, et al. SLAM in indoor pipelines with 15mm diameter[C]//2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 4005-4011.
[40] KIM D Y, KIM J, KIM I, et al. Artificial landmark for vision-based slam of water pipe rehabilitation robot[C]//2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2015: 444-446.
[41] WU T, LU S, TANG Y. An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor[C]//2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015: 2637-2641.
[42] THIELEMANN J T, BREIVIK G M, BERGE A. Pipeline landmark detection for autonomous robot navigation using time-of-flight imagery[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2008: 1-7.
[43] LEE D H, MOON H, CHOI H R. Autonomous navigation of in-pipe working robot in unknown pipeline environment[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 1559-1564.
[44] MURTRA A C, TUR J M M. IMU and cable encoder data fusion for in-pipe mobile robot localization[C]//2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 2013: 1-6.
[45] 闫雪娇, 谢哲, 付宏文, 等. 一种基于惯性测量单元和里程计的油气管道定位方法[J]. 导航与控制, 2022, 21(1): 57-65.
[46] XIANGKAI G, SHUQIN G, XIN Z, et al. Design and realization of underground pipeline location system based on RFID technology[C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments. IEEE, 2017: 242-246.
[47] 军锋林. 探析自来水管道工程施工的通病及防治[J]. 工程建设, 2020, 3(4): 136-137.
[48] KARIMI H R, LU Y. Guidance and control methodologies for marine vehicles: A survey[J].Control Engineering Practice, 2021, 111: 104785.
[49] ZHANG W, WANG N, WU W. A hybrid path planning algorithm considering AUV dynamic constraints based on improved A* algorithm and APF algorithm[J]. Ocean Engineering, 2023, 285: 115333.
[50] BAI G, HU X, SHI Y, et al. Multi-AUV dynamic trajectory optimization and collaborative search combined with task urgency and energy consumption scheduling in 3-D underwater environment with random ocean currents and uncertain obstacles[J]. Ocean Engineering, 2023,275: 113841.
[51] ZHANG K, LU K, CHAI S, et al. Dynamic modeling and parameter sensitivity analysis of AUV by using the POD method and the HB-AFT method[J]. Ocean Engineering, 2024, 293:116693.
[52] FOSSEN T I. Guidance and control of ocean vehicles[D]. University of Trondheim, Norway,1999.
[53] WANG H, XIANG X, XIANG G, et al. An improved body force method for simulation of self-propulsion AUV with ducted propeller[J]. Ocean Engineering, 2023, 281: 114731.
[54] HERLAMBANG T, RAHMALIA D, NURHADI H, et al. Optimization of linear quadratic regulator with tracking applied to autonomous underwater vehicle (AUV) using cuckoo search[J].Nonlinear Dynamics and Systems Theory: An International Journal of Research and Surveys,2020, 20(3): 282-298.
[55] OLALLA C, LEYVA R, EL AROUDI A, et al. Robust LQR control for PWM converters: An LMI approach[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2548-2558.
[56] ARGENTIM L M, REZENDE W C, SANTOS P E, et al. PID, LQR and LQR-PID on aquadcopter platform[C]//2013 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2013: 1-6.
[57] PASSINO K M, YURKOVICH S, REINFRANK M. Fuzzy control: Vol. 42[M]. Addisonwesley Reading, MA, 1998.
[58] WANG X, XU B, GUO Y. Fuzzy logic system-based robust adaptive control of AUV with target tracking[J]. International Journal of Fuzzy Systems, 2023, 25(1): 338-346.
[59] SHRIVAKSHAN G, CHANDRASEKAR C. A comparison of various edge detection techniques used in image processing[J]. International Journal of Computer Science Issues (IJCSI),2012, 9(5): 269.
[60] GAO W, ZHANG X, YANG L, et al. An improved Sobel edge detection[C]//2010 3rd International Conference on Computer Science and Information Technology: Vol. 5. IEEE, 2010: 67-71.
[61] YANG L, WU X, ZHAO D, et al. An improved Prewitt algorithm for edge detection based on noised image[C]//2011 4th International Congress on Image and Signal Processing: Vol. 3. IEEE, 2011: 1197-1200.
[62] BURGER W, BURGE M J. Digital image processing: an algorithmic introduction[M]. Springer Nature, 2022.
[63] TOV O, ALALUF Y, NITZAN Y, et al. Designing an encoder for stylegan image manipulation [J]. ACM Transactions on Graphics, 2021, 40(4): 1-14.

所在学位评定分委会
力学
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766072
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
朱西玉. 桨驱动小型智能水下管道机器人[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132326-朱西玉-机械与能源工程(32466KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱西玉]的文章
百度学术
百度学术中相似的文章
[朱西玉]的文章
必应学术
必应学术中相似的文章
[朱西玉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。