[1]YEON P S, SEUNG Y O. Electronic Packaging Enhancement Engineered by Reducing the Bonding Temperature via Modified Cure Cycles[J]. ACS Appl. Mater. Interfaces, 2023, 15, 11024-11032.
[2]YANG S Y, JEON Y D, LEE S B, et al. Solder reflow process induced residual warpage measurement and its influence on reliability of flip-chip electronic packages[J]. Microelectron. Reliab, 2006, 46, 512-522.
[3]KIM C, LEE T, KIM M S. Warpage Analysis of Electroboardd Cu Films on Fiber-Reinforced Polymer Packaging Substrates[J]. Polymers, 2015, 7, 985-1004.
[4]SALEHIYAN R, NOFAR M, MAKWAKWA D, et al. Shear-Induced Carbon Nanotube Migration and Morphological Development in Polylactide/Poly(vinylidene fluoride) Blend Nanocomposites and Their Impact on Dielectric Constants and Rheological Properties[J]. The Journal of Physical Chemistry C, 2020, 124(17): 9536-9547.
[5]田民波, 林金堵, 祝大同. 高密度封装基板[M]. 清华大学出版社, 2003.
[6]CHUANG W C, HUANG Y, CHEN P E. Exploring the Influence of Material Properties of Epoxy Molding Compound on Wafer Warpage in Fan-Out Wafer-Level Packaging[J]. Materials, 2023, 16(9) .
[7]HOU F, LIN T, CAO L, et al. Experimental Verification and Optimization Analysis of Warpage for Panel-Level Fan-Out Package[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10): 1721-1728.
[8]LAU J H, LI M, YANG L, et al. Warpage Measurements and Characterizations of Fan-Out Wafer-Level Packaging With Large Chips and Multiple Redistributed Layers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(10): 1729-1737.
[9]SU M, CAO L, LIN T, et al. Warpage simulation and experimental verification for 320 mm × 320 mm panel level fan-out packaging based on die-first process[J]. Microelectronics Reliability, 2018, 83: 29-38.
[10]CHIU T-C, YEH E-Y. Warpage simulation for the reconstituted wafer used in fan-out wafer level packaging[J]. Microelectronics Reliability, 2018, 80: 14-23.
[11]CHEN C, YU D, WANG T, et al. Warpage Prediction and Optimization for Embedded Silicon Fan-Out Wafer-Level Packaging Based on an Extended Theoretical Model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(5): 845-853.
[12]CAI H, YAN J, MA S. Design, fabrication, and radio frequency property evaluation of a through-glassvia interposer for 2.5D radio frequency integration[J] Micromech. Microeng. 29(7), 075002 (2019).
[13]YU S, LI X, GUO X, et al. Curing and Characteristics of N,N,N,N-Tetraepoxypropyl-4,4′-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material[J]. Polymers, 2019, 11(7)
[14]MUSTATA F, TUDORACHI N. Curing kinetics and thermal characterization of epoxy resin cured with amidodicarboxylic acids[J]. Applied Thermal Engineering, 2017, 125: 285-296.
[15]BAO C W, WANG Y E. Preparation, characterization, and curing kinetics of elevated and cryogenic temperature-resistant epoxy resin composites[J]. Polymer Testing 116 (2022) 107783.
[16]JIN F J, LI X, PARK S J. Synthesis and application of epoxy resins: a review[J]. J. Ind. Eng.Chem. 29 (2015) 1-11.
[17]CHEN W C, CHEN Z Y, Double-Decker-Shaped Polyhedral Silsesquioxanes Reinforced Epoxy/Bismaleimide Hybrids Featuring High Thermal Stability[J]. Polymers, 2022, 14, 2380.
[18]WANG Y, LIU J, ZHANG T, et al. Effect of curing conversion on the water sorption, corrosion resistance and thermo-mechanical properties of epoxy resin[J]. RSC Adv.5 (15) (2015) 11358-11370.
[19]INAMDAR A, YANG Y H. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package[J]. Polymer Degradation and Stability 188 (2021) 109572.
[20]ALIG W, JENNINGER J. Curing kinetics of phase separating thermosets studied by DSC, TMDSC and dielectric relaxation spectroscopy[J]. Thermochim, Acta 330 (1999).
[21]LIU G, YANG H M, XIAO Q P, et al. Mechanical properties of cryogenic epoxy adhesives:effects of mixed curing agent content[J]. Int. J. Adhesion Adhes, 41 (2013)113–118.
[22]WANG H, LI S, YUAN Y, et al. Study of the epoxy/amine equivalent ratio on thermal properties, cryogenic mechanical properties, and liquid oxygen coMPatibility of the bisphenol A epoxy resin containing phosphorus[J]. High Perform. Polym, 32 (2020) 429-443.
[23]INAMDAR A, YANG Y H. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package[J]. Polymer Degradation and Stability, 188 (2021) 109572.
[24]ZARRELLI N, PARTRIDGE I K, AMORE A D. Warpage induced in bi-material specimens: coefficient of thermal expansion,chemical shrinkage and viscoelastic modulus evolution during cure[J]. Compos. Appl. Sci. Manuf, 37 (4) (2006) 565-570.
[25]DENG S S, HWANG S J, LEE H H. Warpage prediction and experiments of fan-out waferlevel package during encapsulation process[J]. IEEE Trans. Compon. Packag. Manuf. Technol, 3(3) (2013) 452-458.
[26]CHIU T C, HUANG H W. Warpage evolution of overmolded ball grid array package during post-mold curing thermal process[J]. Microelectron. Reliab, 2011, 51, 2263-2273.
[27]BAEK J H, PARK W D. Effect of cure shrinkage of epoxy molding compound on warpage behavior of semiconductor package[J]. Materials Science in Semiconductor Processing, 148 (2022) 106758.
[28]HONG J, GAO S, PARK S. Parametric design study for minimized warpage of WL-CSP[J]. In 2008 2nd Electronics System-Integration Technology Conference; 2008,IEEE: pp. 187-192.
[29]KIM Y K, PARK I S, CHOI J. Warpage mechanism analyses of strip panel type PBGA chip packaging[J]. Microelectron. Reliab, 2010, 50, 398–406.
[30]CHOU T L, YANG S Y, CHIANG K N. Overview and applicability of residual stress estimation of film substrate structure[J]. Thin Solid Films, 2011, 519, 7883-7894.
[31]ZHU C, NING W, LEE H, et al. Experimental identification of warpage origination during the wafer level packaging process[J]. In Electronic Components and Technology Conference (ECTC), 2014, pp. 815-820.
[32]HONG J, GAO S, PARK S. Parametric design study for minimized warpage of WL-CSP[J]. In 2008 2nd Electronics System-Integration Technology Conference, 2008, IEEE: pp. 187−192.
[33]GHOLINEZHAD F, GOLHOSSEINI R, JAZANI O M. Non-isothermal DSC curing kinetics study of siliconemodified epoxy/ABS/GO nanocomposite[J]. Polymer Composites, 2022, 43:3794–3808.
[34]BAO C W, WANG Y N. Preparation, characterization, and curing kinetics of elevated and cryogenic temperature-resistant epoxy resin composites[J]. Polymer Testing, 116 (2022) 107783.
[35]GRANADO L, KEMPA S. Isothermal DSC Study of the Curing Kinetics of an Epoxy/Silica Composite for Microelectronics[J]. Journal of Microelectronics and Electronic Packaging, 2017,Vol. 14, No. 2.
[36]KARTHIKEYAN L, DESAKUMARAN D, MATHEW D, et al. Non-isothermal cure and decomposition kinetics of hydroxyl and propargyl functional poly (ether ether ketone): epoxy resins[J]. Therm. Anal. Calorim,147 (2022) 6793–6805.
[37]27VYAZOVKIN S, ALAN K, BURNHAM B, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta 520 (2011) 1-19.
[38]SELVANAYAGAMA C, MANDALA R, RAGHAVANB N. CoMParison of experimental, analytical and simulation methods to estimate substrate material properties for warpage reliability analysis[J]. Microelectronics Reliability 88-90 (2018) 817-82.
[39]WANG M, WELLS B. Substrate Trace Modeling for Package Warpage Simulation[J]. IEEE, 2016, pp. 516-523.
[40]YADDANAPUDI V K, KRISHNASWAMY S, RATH R, et al. Validation of New Approach of Modelling Traces by Mapping Mechanical Properties for a Printed Circuit Board Mechanical Analysis[J]. IEEE, 2015, pp. 1-6.
[41]SHIH M, CHEN K, LEE T. FE Simulation Model for Warpage Evaluation of Glass Interposer Substrate Packages[J]. IEEE Transactions On Components, Packaging And Manufacturing Technology , Vol. No. April 2021.
[42]LIN Y J, HSIEH C C, TUNG C H, et al. Study of the thermo-mechanical behavior of glass interposer for flip chip packaging applications[J]. Proc. Electron. Compon. Technol. Conf,May 2011, pp. 634-638.
[43]DUAN Y X, LIU G D, WANG W H. Finite element modeling and analysis method for predicting and optimizing the warpage of construction before flip chip bonding in System-on-Wafer process flow[J]. Microelectronics Reliability, 151 (2023) 115260.
[44]CHEN W C, CHEN Z Y, BA Y X. Double-Decker-Shaped Polyhedral Silsesquioxanes Reinforced Epoxy/Bismaleimide Hybrids Featuring High Thermal Stability[J]. Polymers 2022, 14, 2380.
[45]GHOLINEZHAD F, GOLHOSSEINI R, JAZANI O M. Non-isothermal DSC curing kinetics study of silicone-modified epoxy/ABS/GO nanocomposite[J]. Polymer Composites,2022;43:3794-3808.
[46]AMUTHA N, SAROJADEVI M. Bismaleimides, Bisnadimides, and Polyaspartimides Containing Ether and Ester Linkages and Pyridine[J]. Journal of Applied Polymer Science, 2008, Vol. 110, 1905-1914.
[47]MUSTO E, MARTUSCELLI G. FTIR spectroscopy and physical properties of an epoxy/bismaleimide IPN system[J].Journal of Materials Science, 33 (1998) 4595-4601.
[48]YUAN Z G,WANG L, LIU C Z. Bismaleimide resins modified by a novel vanillin-derived allyl compounds: Synthesis, curing behavior, and thermal properties[J]. Polym Eng Sci, 2023, 63:1668-1677.
[49]VIJAYAKUMAR C T, SURENDER R, RAJAKUMAR K. Synthesis and thermal studies of bisphenol-A based bismaleimide[J]. Therm Anal Calorim (2011) 103:693-699.
[50]INAMDAR A, YANG Y H, PRISACARU A. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package[J]. Polymer Degradation and Stability 188 (2021) 109572.
[51]WANG Y, YAN L W, LING Y Q, et al. Enhanced mechanical and adhesive properties of PDMS coatings via in-situ formation of uniformly dispersed epoxy reinforcing phase[J]. Prog. Org. Coat. 2023, 174, 107319.
[52]LIU X Y, YU Y F, LI S J. Study on cure reaction of the blends of bismaleimide and dicyanate ester[J]. Polymer, 47 (2006) 3767-3773.
[53]GAO F, SHI J H, ZHANG X R. Mechanical and thermal properties of synergistic modification of bismaleimide polymer composites with nano-SiO2 and hyperbranched polyimide[J]. Polymer Composites, 2022, 43:7200-7210.
[54]YUAN J K, YAO S H, DANG Z M, et al. Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction[J]. Phys. Chem. C 2011, 115, 5515-5521.
[55]THAKUR V K, GUPTA R K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects[J]. Chem. Rev. 2016, 116, 4260-4317.
[56]ZHU L. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics[J]. Phys. Chem. Lett. 2014, 5, 3677-3687.
[57]ZHU L, WANG Q. Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics[J]. Macromolecules, 2012, 45, 2937-2954.
[58]WANG G, CHE J B, WU W F. Contributing Factors of Dielectric Properties for Polymer Matrix[J]. Composites Polymers, 2023, 15, 590.
[59]CHEN C, LI Y, GU Y, et al. An improved simplified approach for curing kinetics of epoxy resins by nonisothermal differential scanning calorimetry[J]. High Perform. Polym. 30 (2018).
[60]朱以文, 蔡元奇. 有限元软件入门指南[M]. 2003:13-15.
[61]KIM C, LEE T, CHOI H, et al. Methodology Development of Warpage Analysis of Polymer Based Packaging Substrate[J]. 2014 Electronic Components & Technology Conference, 1004-1009.
[62]LAN Z B, DENG J G, XU Z L. Study of Heat Treatment Effect on Mechanical Properties of Epoxy Resin Reinforced with Fiber Glass[J]. Polymers 2023, 15, 2734.
[63]CHIU T C, KUNG C L, HUANG H W. Effects of Curing and Chemical Aging on Warpage-Characterization and Simulation[J]. IEEE Transactions On Device And Materials Reliability, Vol. No. June 2011.
[64]HUTAPEA P, JOACHIM L, MODI M. Prediction of microelectronic substrate warpage using homogenized finite element models[J]. Microelectronic Engineering 83 (2006) 557–569.
[65]ABOUHAMZEH N, SINKE J, JANSEN K. Closed form expression for residual stresses and warpage during cure of composite laminates[J]. Composite Structures 133 (2015) 902–910.
[66]KIM J, LEE S, LEE J, et al. Warpage Issues and Assembly Challenges Using Coreless Package Substrate. Unit Process Development of Advanced Circuit Interconnect,1-12.
[67]ZARRELLIA M, IVANA K, PARTRIDGEB A. Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure[J]. Composites: Part A 37 (2006) 565-570.
[68]TALLEDO J S, REAL R A, CADAG A D. Overcoming high strip warpage in extremely thin substrate-based packages[J]. 29th ASEMEP National Technical Symposium,1-7.
修改评论