中文版 | English
题名

氢原子对镍晶界位错发射的影响机制研究

其他题名
RESEARCH ON THE INFLUNENCE MECHANISM OF HYDROGEN ATOMS AT NICKEL GRIAN BOUNARY DISLOCATION EMISSION
姓名
姓名拼音
WEI Tingzhang
学号
12132302
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
王帅
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氢脆是指金属材料中溶解的氢原子导致其机械性能急剧下降,从而引发材料突然断裂失效的现象。该现象严重威胁石油化工、航空航天等行业设备的服役安全性,严重限制了相关行业的发展。然而氢脆机理经历一个世纪的研究仍然未形成统一认识,其主要原因在于实验研究中难以准确表征氢原子,同时氢原子与晶界之间的纳米级相互作用机理尚未完全明晰。本文以典型氢脆金属镍为研究对象,运用分子动力学方法深入研究氢原子对晶界处位错发射的作用机理。

现有算法无法准确计算晶界处氢原子的平衡偏析分布及其对位错发射的影响。此外,分子动力学模拟中的应变率通常过高。为了解决这些问题,本研究提出了一种基于晶格的粒子群算法,用于计算氢原子在镍晶界的偏析,并对一系列<110>轴晶界构型进行了计算。计算结果表明,随着氢原子的偏析,除了Σ3(111)晶界外,其他晶界的晶界能下降,而所有晶界自由体积上升。本研究主要对Σ3(111)、Σ9(221)、Σ11(113)与Σ27(115)晶界在不同氢覆盖率下进行单轴拉伸模拟,计算结果表明随着氢覆盖率的增加,晶界处原子应力升高,晶界处位错发射能垒降低,同时晶界处存在自由体积易使得原子可以重排以发射位错,氢原子促进了晶界处的位错形核发射。本文还将基于晶格的粒子群算法与分步应变策略相结合,实现了在分子动力学尺度下对镍晶界中氢原子的动态分布进行了拉伸模拟。随着应变的增加,氢原子在Σ3(111)晶界处形成了短程有序结构。氢-短程有序结构的形成降低了氢促进局部塑性所需的临界氢浓度,是低氢浓度下发生氢脆的一个重要促进因素。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen Embrittlement Understood[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1085-1103.
[2] 李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[3] 张慧云. 钢中氢脆的研究现状[J]. 山西冶金, 2020, 43(5): 1-3.
[4] 燕辉, 刘鸿彦, 郗运富, 等. TA10换热管氢脆腐蚀的失效分析[J]. 石油和化工设备, 2019, 22(9): 94-98.
[5] MARTIN M L, SOMERDAY B P, RITCHIE R O, et al. Hydrogen-induced intergranular failure in nickel revisited[J]. Acta Materialia, 2012, 60(6): 2739-2745.
[6] WANG S, MARTIN M L, ROBERTSON I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries[J]. Acta Materialia, 2016, 107: 279-288.
[7] CONNÉTABLE D, WANG Y, TANGUY D. Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities[J]. Journal of Alloys and Compounds, 2014, 614: 211-220.
[8] NYGREN K E, NAGAO A, WANG S, et al. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel[J]. Acta Materialia, 2021, 213: 116957.
[9] SAN-MARTIN A, MANCHESTER F D. The al-h (aluminum-hydrogen) system[J]. Journal of Phase Equilibria, 1992, 13(1): 17-21.
[10] SAN-MARTIN A, MANCHESTER F D. The Fe-H (Iron-Hydrogen) system[J]. Bulletin of Alloy Phase Diagrams, 1990, 11(2): 173-184.
[11] TURNBULL A. 4 - Hydrogen diffusion and trapping in metals[M]//GANGLOFF R P, SOMERDAY B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Vol. 1. Woodhead Publishing, 2012: 89-128.
[12] RAPAPORT D C. The Art of Molecular Dynamics Simulation[M]. 2 版. Cambridge: Cambridge University Press, 2004.
[13] LEJCEK P. Grain Boundary Segregation in Metals: Vol. 136[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
[14] HAN J, THOMAS S L, SROLOVITZ D J. Grain-boundary kinetics: A unified approach[J]. Progress in Materials Science, 2018, 98: 386-476.
[15] 刘梦迪. 杂质元素对fcc铁晶界力学性能影响的第一性原理研究[D]. 中国石油大学(北京), 2022.
[16] RITTNER J D, SEIDMAN D N. 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies[J]. Physical Review B, 1996, 54(10): 6999-7015.
[17] BECHTLE S, KUMAR M, SOMERDAY B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia, 2009, 57(14): 4148-4157.
[18] JOHNSON W H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids[J]. Nature, 1875, 11: 393.
[19] LI X, ZHANG J, ZHANG P, et al. Failure Analysis of High Strength Steel Bar Used in a Wind Turbine Foundation[J]. Journal of Failure Analysis and Prevention, 2015, 15(2): 295-299.
[20] 杨帮树. 超细贝氏体钢中氢扩散行为研究[D]. 武汉科技大学, 2022.
[21] REN X C, ZHOU Q J, SHAN G B, et al. A Nucleation Mechanism of Hydrogen Blister in Metals and Alloys[J]. Metallurgical & Materials Transactions A, 2008, 39(1): 87-97.
[22] DUTTON R, NUTTALL K, PULS M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials[J]. Metallurgical Transactions A, 1977, 8(10): 1553-1562.
[23] PFEIL L B. The effect of occluded hydrogen on the tensile strength of iron[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926, 112(760): 182-195.
[24] Troiano, ALEXANDER R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals[J]. Metallography Microstructure & Analysis, 2016, 5(6): 557-569.
[25] BEACHEM C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J]. 1972, 3(2): 441-455.
[26] BIRNBAUM H K, SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering: A, 1994, 176(1-2): 191-202.
[27] SHIH D S, ROBERTSON I M, BIRNBAUM H K. Hydrogen embrittlement of α titanium: In situ TEM studies[J]. Acta Metallurgica, 1988, 36(1): 111-124.
[28] FERREIRA P J, ROBERTSON I M, BIRNBAUM H K. Hydrogen effects on the interaction between dislocations[J]. Acta Materialia, 1998, 46(5): 1749-1757.
[29] ROBERTSON I M. The effect of hydrogen on dislocation dynamics[J]. Engineering Fracture Mechanics, 2001, 68(6): 671-692.
[30] NOVAK P, YUAN R, SOMERDAY B, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(2): 206-226.
[31] TANGUY D, WANG Y, CONNÉTABLE D. Stability of vacancy-hydrogen clusters in nickel from first-principles calculations[J]. Acta Materialia, 2014, 78: 135-143.
[32] FUKAI Y. The metal-hydrogen system: basic bulk properties: Vol. 21[M]. Springer Science & Business Media, 2006.
[33] FUKAI Y. Superabundant vacancies formed in metal–hydrogen alloys[J]. Physica Scripta, 2003, 2003(T103): 11.
[34] NAGUMO M, TAKAI K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview[J]. Acta Materialia, 2019, 165: 722-733.
[35] MWA B, MBD C. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2145-2156.
[36] WANG S, MARTIN M L, SOFRONIS P, et al. Hydrogen-induced intergranular failure of iron[J]. Acta Materialia, 2014, 69: 275-282.
[37] WANG S, NAGAO A, EDALATI K, et al. Influence of hydrogen on dislocation self-organization in Ni[J]. Acta Materialia, 2017, 135: 96-102.
[38] NAGAO A, SMITH C D, DADFARNIA M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J]. Acta Materialia, 2012, 60(13-14): 5182-5189.
[39] MARTIN M L, DADFARNIA M, NAGAO A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials[J]. Acta Materialia, 2019, 165: 734-750.
[40] MARTIN M. A new approach to discovering the fundamental mechanisms of hydrogen failure[D]. University of Illinois at Urbana-Champaign, 2013.
[41] YAMAGUCHI M, KAMEDA J, EBIHARA K I, et al. Mobile effect of hydrogen on intergranular decohesion of iron: first-principles calculations[J]. Philosophical Magazine, 2012, 92(11): 1349-1368.
[42] TEHRANCHI A, ZHOU X, CURTIN W. A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction[J]. Acta Materialia, 2020, 185: 98-109.
[43] LU G, KAXIRAS E. Hydrogen embrittlement of aluminum: the crucial role of vacancies[J]. Physical review letters, 2005, 94(15): 155501.
[44] ZHOU X, MARCHAND D, MCDOWELL D L, et al. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals[J]. Physical Review Letters, 2016, 116(7): 075502.
[45] MAI H L, CUI X Y, SCHEIBER D, et al. An understanding of hydrogen embrittlement in nickel grain boundaries from first principles[J]. Materials & Design, 2021, 212: 110283.
[46] JENSEN I J T, OLDEN V, LØVVIK O M. Decohesion Energy of Σ5(012) Grain Boundaries in Ni as Function of Hydrogen Content[J]. Metallurgical and Materials Transactions A, 2019, 50(1): 451-456.
[47] Jun, Song, W., et al. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature materials, 2013, 12(2): 145-151.
[48] TEHRANCHI A, CURTIN W A. Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion[J]. Modelling and Simulation in Materials Science and Engineering, 2017, 25(7): 075013.
[49] DING Y, YU H, ZHAO K, et al. Hydrogen-induced transgranular to intergranular fracture transition in bi-crystalline nickel[J]. Scripta Materialia, 2021, 204: 114122.
[50] DING Y, YU H, LIN M, et al. Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular to intergranular fracture transition[J]. Acta Materialia, 2022, 239: 118279.
[51] Jiaqing Li, LU C, PEI L, et al. Influence of hydrogen environment on dislocation nucleation and fracture response of 〈1 1 0〉 grain boundaries in nickel[J]. Computational Materials Science, 2019, 165: 40-50.
[52] LI J, LU C, PEI L, et al. Atomistic simulations of hydrogen effects on tensile deformation behaviour of
[0 0 1] twist grain boundaries in nickel[J]. Computational Materials Science, 2019, 159: 12-23.
[53] LI J, LU C, PEI L, et al. Hydrogen-modified interaction between lattice dislocations and grain boundaries by atomistic modelling[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9174-9187.
[54] LI J, LU C, PEI L, et al. Atomistic investigation of hydrogen induced decohesion of Ni grain boundaries[J]. Mechanics of Materials, 2020, 150: 103586.
[55] CHEN J, ZHU Y, HUANG M, et al. Study on the effects of H on the plastic deformation behavior of grain boundaries in nickel by MD simulation[J]. Materials & Design, 2022, 215: 110472.
[56] CHEN J, ZHU Y, HUANG M, et al. Study on hydrogen-affected interaction between dislocation and grain boundary by MD simulation[J]. Computational Materials Science, 2021, 196: 110562.
[57] KUHR B, FARKAS D, ROBERTSON I M. Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni[J]. Computational Materials Science, 2016, 122: 92-101.
[58] CHANDLER M Q, HORSTEMEYER M F, BASKES M I, et al. Hydrogen effects on nanovoid nucleation at nickel grain boundaries[J]. Acta Materialia, 2008, 56(3): 619-631.
[59] WAN L, GENG W T, ISHII A, et al. Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron[J]. International Journal of Plasticity, 2019, 112: 206-219.
[60] HARRIS Z D, LAWRENCE S K, MEDLIN D L, et al. Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel[J]. Acta Materialia, 2018, 158: 180-192.
[61] MATSUI H, KIMURA H, MORIYA S. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation[J]. Materials Science and Engineering, 1979, 40(2): 207-216.
[62] KIRCHHEIM R. Interaction of hydrogen with dislocations in palladium—II. Interpretation of activity results by a fermi-dirac distribution[J]. Acta Metallurgica, 1981, 29(5): 845-853.
[63] WANG S, HASHIMOTO N, WANG Y, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron[J]. Acta Materialia, 2013, 61(13): 4734-4742.
[64] DJUKIC M, BAKIC G, ŠIJAČKI-ŽERAVČIĆ V, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion[J]. Engineering Fracture Mechanics, 2019, 216: 106528.
[65] DADFARNIA M, NAGAO A, WANG S, et al. Recent advances on hydrogen embrittlement of structural materials[J]. International Journal of Fracture, 2015, 196(1-2): 223-243.
[66] WANG S, NAGAO A, SOFRONIS P, et al. Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel[J]. Acta Materialia, 2018, 144: 164-176.
[67] SOFRONIS P, BIRNBAUM H K. Mechanics of the hydrogen-dislocation-impurity interactions—I. Increasing shear modulus[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(1): 49-90.
[68] VAN SWYGENHOVEN H, DERLET P M, HASNAOUI A. Atomic mechanism for dislocation emission from nanosized grain boundaries[J]. Physical Review B, 2002, 66(2): 024101.
[69] WOLF D, YAMAKOV V, PHILLPOT S R, et al. Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments?[J]. Acta Materialia, 2005, 53(1): 1-40.
[70] ZHANG M, RAO Z, XU T, et al. Quantifying the influence of grain boundary activities on Hall-Petch relation in nanocrystalline Cu by using phase field and atomistic simulations[J]. International Journal of Plasticity, 2020, 135.
[71] 黄丹. 纳米金属单晶力学行为和力学性能及其尺度效应的分子动力学研究[D]. 浙江大学, 2005.
[72] 张宁. 纳米双晶铜单向拉伸力学行为的分子动力学模拟[D]. 华中科技大学, 2010.
[73] 马德鹏. 固体材料中裂纹扩展模拟研究[D]. 吉林大学, 2008.
[74] 张滔. 基于流处理器的分子动力学模拟的优化方法研究[D]. 昆明理工大学, 2013.
[75] ALDER B J, WAINWRIGHT T E. Phase Transition for a Hard Sphere System[J]. The Journal of Chemical Physics, 1957, 27(5): 1208-1209.
[76] VERLET L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1): 98-103.
[77] 王千. 基于分子动力学模拟的Al0.3CoCrFeNi高熵合金纳米压痕研究[D]. 西南科技大学, 2024.
[78] DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453.
[79] TEHRANCHI A, CURTIN W A. Atomistic study of Hydrogen embrittlement of grain boundaries in Nickel: I. Fracture[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 150-165.
[80] WEN M. A new interatomic potential describing Fe-H and H-H interactions in bcc iron[J]. Computational Materials Science, 2021, 197: 110640.
[81] PLIMPTON S. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[82] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.
[83] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics[J]. Computational Materials Science, 1994, 2(2): 279-286.
[84] SURBLYS D, MATSUBARA H, KIKUGAWA G, et al. Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions[J]. Physical Review E, 2019, 99(5): 051301.
[85] DI STEFANO D, MROVEC M, ELSÄSSER C. First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel[J]. Acta Materialia, 2015, 98: 306-312.
[86] YAMAGUCHI M, SHIGA M, KABURAKI H. First-Principles Study on Segregation Energy and Embrittling Potency of Hydrogen in NiΣ5(012) Tilt Grain Boundary[J]. Journal of the Physical Society of Japan, 2004, 73(2): 441-449.
[87] URAZALIEV M G, STUPAK M E, POPOV V V. Structure and Energy of Symmetric Tilt Boundaries with the 〈110〉 Axis in Ni and the Energy of Formation of Vacancies in Grain Boundaries[J]. Physics of Metals and Metallography, 2021, 122(7): 665-672.
[88] 于旭东. 剪切应变对镍对称倾斜晶界稳定性的影响机制研究[D]. 兰州理工大学, 2022.
[89] PAIDAR V. A classification of symmetrical grain boundaries[J]. Acta Metallurgica, 1987, 35(8): 2035-2048.
[90] HAN J, VITEK V, SROLOVITZ D J. The grain-boundary structural unit model redux[J]. Acta Materialia, 2017, 133: 186-199.
[91] FRIEDEL J. Electronic structure of primary solid solutions in metals[J]. Advances in Physics, 1954.
[92] MCLEAN D. Grain Boundaries in Metals[M]. Clarendon Press, 1957.
[93] SEAH M P. Adsorption-induced interface decohesion[J]. Acta Metallurgica, 1980, 28(7): 955-962.
[94] UDLER D, SEIDMAN D. Solute segregation at
[001] tilt boundaries in dilute fcc alloys[J]. Acta materialia, 1998, 46(4): 1221-1233.
[95] NIE J F, ZHU Y, LIU J, et al. Periodic segregation of solute atoms in fully coherent twin boundaries[J]. Science, 2013, 340(6135): 957-960.
[96] WHITE C, COGHLAN W. Spectrum of binding energies approach to grain boundary segregation[J]. Metall. Trans., A;(United States), 1977, 8(9).
[97] GUAN H Q, JING Y M, HUANG S S. Atomic study of hydrogen behaviors at ∑3(111) grain boundary in equiatomic CoCrNi and CoCrNiFe alloys[J]. Tungsten, 2022, 4(3): 239-247.
[98] O’BRIEN C J, FOILES S M. Hydrogen segregation to inclined twin grain boundaries in nickel[J]. Philosophical Magazine, 2016, 96(26): 2808-2828.
[99] RITTNER J, SEIDMAN D. Solute-atom segregation to< 110> symmetric tilt grain boundaries[J]. Acta Materialia, 1997, 45(8): 3191-3202.
[100] LEZZAR B, KHALFALLAH O, LARERE A, et al. Detailed analysis of the segregation driving forces for Ni (Ag) and Ag (Ni) in the Σ= 11 {1 1 3} and Σ= 11 {3 3 2} grain boundaries[J]. Acta Materialia, 2004, 52(9): 2809-2818.
[101] DUPARC O H, LARERE A, LEZZAR B, et al. Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′{332} tilt grain boundary[J]. Journal of materials science, 2005, 40: 3169-3176.
[102] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks: Vol. 4. Perth, WA, Australia: IEEE, 1995: 1942-1948.
[103] 居凤霞. 粒子群优化算法的改进及应用[D]. 华南理工大学, 2015.
[104] HUANG M, YANG X, XUE Y, et al. Enhancing the hydrogen embrittlement resistance of 304 steel by grain boundary engineering[J]. International Journal of Materials Research, 2020, 111(12): 995-1001.
[105] DINGREVILLE R, AKSOY D, SPEAROT D E. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations[J]. Scientific Reports, 2017, 7(1): 8332.
[106] TSCHOPP M A, MCDOWELL D L. Dislocation nucleation in Σ3 asymmetric tilt grain boundaries[J]. International Journal of Plasticity, 2008, 24(2): 191-217.
[107] SPEAROT D E. Evolution of the E structural unit during uniaxial and constrained tensile deformation[J]. Mechanics Research Communications, 2008, 35(1): 81-88.
[108] DU J P, WANG Y J, LO Y C, et al. Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study[J]. Physical Review B, 2016, 94(10): 104110.
[109] HALLIL A, METSUE A, OUDRISS A, et al. Segregation energy of the hydrogen at Ni Σ3 grain boundaries: some implications of the atomic volume and the interstitial self-stress[J]. Journal of Materials Science, 2018, 53(7): 5356-5363.
[110] SEITA M, HANSON J P, GRADEČAK S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement[J]. Nature Communications, 2015, 6(1): 6164.

所在学位评定分委会
力学
国内图书分类号
TG174
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766077
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
魏廷璋. 氢原子对镍晶界位错发射的影响机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132302-魏廷璋-机械与能源工程(6848KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[魏廷璋]的文章
百度学术
百度学术中相似的文章
[魏廷璋]的文章
必应学术
必应学术中相似的文章
[魏廷璋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。