[1] Zheng, Y., Global solutions to a silent poison. Science, 2020. 368(6493): p. 818-819.
[2] Ma, R. and Wang, Y., Chapter 27 - Groundwater sustainability in cold and arid regions, Global Groundwater, 2021, Elsevier. p. 371-382.
[3] Fendorf, S., Michael, H.A., and van Geen, A., Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 2010. 328(5982): p. 1123-1127.
[4] Laaksoharju, M., Skårman, C., and Skårman, E., Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Applied Geochemistry, 1999. 14(7): p. 861-871.
[5] Nakaya, S., Uesugi, K., Motodate, Y., et al., Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers. Water Resources Research, 2007. 43(9).
[6] Radloff, K.A., Zheng, Y., Stute, M., et al., Reversible adsorption and flushing of arsenic in a shallow, Holocene aquifer of Bangladesh. Applied Geochemistry, 2017. 77: p. 142-157.
[7] Stute, M., Zheng, Y., Schlosser, P., et al., Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research, 2007. 43(9).
[8] van Geen, A., Zheng, Y., Goodbred, S., et al., Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environmental science & technology, 2008. 42: p. 2283-8.
[9] Sun, Y., Sun, J., Nghiem, A.A., et al., Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. Journal of Hazardous Materials, 2021. 406: p. 124615.
[10] Friedly, J.C., Davis, J.A., and Kent, D.B., Modeling Hexavalent Chromium Reduction in Groundwater in Field -Scale Transport and Laboratory Batch Experiments. Water Resources Research, 1995. 31(11): p. 2783-2794.
[11] Descourvières, C., Hartog, N., Patterson, B.M., et al., Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Applied Geochemistry, 2010. 25(2): p. 261-275.
[12] Shiklomanov, I., Appraisal and Assessment of World Water Resources. Water International, 2000. 25: p. 11-32.
[13] Scanlon, B.R., Jolly, I., Sophocleous, M., et al., Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 2007. 43(3).
[14] Harkness, J.S., McCarthy, P.M., Jurgens, B., et al., Salinity trends in a groundwater system supplemented by 50 years of imported Colorado River water. Environmental Science & Technology Water, 2023. 3(10): p. 3253-3264.
[15] Shah, T., Roy, A.D., Qureshi, A.S., et al., Sustaining Asia’s groundwater boom: An overview of issues and evidence. Natural Resources Forum, 2003. 27(2): p. 130-141.
[16] Gupta, S.K., Deshpande, R.D., Agarwal, M., et al., Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeology Journal, 2005. 13(4): p. 596-605.
[17] Chen, J., He, D., and Cui, S., The response of river water quality and quantity to the development of irrigated agriculture in the last 4 decades in the Yellow River Basin, China. Water Resources Research, 2003. 39(3).
[18] Khan, S., Tariq, R., Yuanlai, C., et al., Can irrigation be sustainable? Agricultural Water Management, 2006. 80(1): p. 87-99.
[19] Fang, S. and Chen, X., Rationally Utilizing Water Resources to Control Soil Salinity in Irrigation Districts. 2001.
[20] Qin, D., Qian, Y., Han, L., et al., Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. Journal of Hydrology, 2011. 405(1): p. 194-208.
[21] Zaidi, F.K., Nazzal, Y., Jafri, M.K., et al., Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environ Monit Assess, 2015. 187(10): p. 607.
[22] Zaidi, F.K., Nazzal, Y., Ahmed, I., et al., Hydrochemical processes governing groundwater quality of sedimentary aquifers in Central Saudi Arabia and its environmental implications. Environmental Earth Sciences, 2015. 74(2): p. 1555-1568.
[23] Deng, Y., Wang, Y., Ma, T., et al., Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environmental Geology, 2009. 56(7): p. 1467-1477.
[24] Guo, H., Zhang, B., Wang, G., et al., Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology, 2010. 270(1): p. 117-125.
[25] Smedley, P.L., Zhang, M., Zhang, G., et al., Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003. 18(9): p. 1453-1477.
[26] Podgorski, J. and Berg, M., Global threat of arsenic in groundwater. Science, 2020. 368(6493): p. 845-850.
[27] O'Day, P.A., Vlassopoulos, D., Root, R., et al., The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences, 2004. 101(38): p. 13703-13708.
[28] Zheng, Y., van Geen, A., Stute, M., et al., Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implications for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta, 2005. 69(22): p. 5203-5218.
[29] Jung, H.B., Zheng, Y., Rahman, M.W., et al., Redox zonation and oscillation in the hyporheic zone of the Ganges-BrahmaputraMeghna Delta: Implications for the fate of groundwater arsenic during discharge. Applied Geochemistry, 2015. 63: p. 647-660.
[30] Berg, M., Trang, P.T.K., Stengel, C., et al., Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron -arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 2008. 249(1): p. 91-112.
[31] Postma, D., Larsen, F., Hue, N.T.M., et al., Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 2007. 71(21): p. 5054-5071.
[32] Lawson, M., Polya, D.A., Boyce, A.J., et al., Pond -derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environmental science & technology, 2013. 47(13): p. 7085-94.
[33] Lowers, H.A., Breit, G.N., Foster, A.L., et al., Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 2007. 71(11): p. 2699-2717.
[34] Buschmann, J. and Berg. M., Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Applied Geochemistry, 2009. 24(7): p. 1278-1286.
[35] Sun, J., Quicksall, A.N., Chillrud, S.N., et al., Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere, 2016. 153: p. 254-261.
[36] Schaefer, M.V., Guo, X., Gan, Y., et al., Redox controls on arsenic enrichment and release from aquifer sediments in central Yangtze River Basin. Geochimica et Cosmochimica Acta, 2017. 204: p. 104-119.
[37] Liu, W., Wang, Y., Li, J., et al., Indices of the dual roles of OM as electron donor and complexing compound involved in As and Fe mobilization in aquifer systems of the Datong Basin. Environmental Pollution, 2020. 262: p. 114305.
[38] Mladenov, N., Zheng, Y., Simone, B., et al., Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility. Environmental Science & Technology, 2015. 49(18): p. 10815-10824.
[39] Wang, Y., Pi, K., Fendorf, S., et al., Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene -Holocene aquifer systems. Earth-Science Reviews, 2019. 189: p. 79-98.
[40] Xie, X., Wang, Y., Duan, M., et al., Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China. Environmental Geochemistry and Health, 2009. 31(4): p. 493-502.
[41] Smedley, P.L. and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002. 17(5): p. 517-568.
[42] Goodbred, S.L. and Kuehl, S.A., The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology, 2000. 133(3): p. 227-248.
[43] Reza, A.H.M.S., Jean, J.S., Lee, M.K., et al., Arsenic enrichment and mobilization in the Holocene alluvial aquifers of the ChapaiNawabganj district, Bangladesh: A geochemical and statistical study. Applied Geochemistry, 2010. 25: p. 1280-1289.
[44] Guo, H., and Wang, Y., Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration, 2005. 87(3): p. 109-120.
[45] Xie, X., Ellis, A., Wang, Y., et al., Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of The Total Environment, 2009. 407(12): p. 3823-3835.
[46] Byrne, J.M., Klueglein, N., Pearce, C., et al., Redox cycling of Fe(II) and Fe(III) in magnetite by Fe -metabolizing bacteria. Science, 2015. 347(6229): p. 1473-1476.
[47] Sun, J., Chillrud, S.N., Mailloux, B.J., et al., In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions. Environmental Science & Technology, 2016. 50(18): p. 10162-71.
[48] Wan, L., Liu, H., and Wang, X., Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. Science of The Total Environment, 2022. 818: p. 151687.
[49] Xiu, W., Gai, R., Chen, S., et al., Ammonium-Enhanced Arsenic Mobilization from Aquifer Sediments. Environmental Science & Technology, 2024. 58(7): p. 3449-3461.
[50] Xia, D., Yi, X., Lu, Y., et al., Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors. Ecotoxicology and Environmental Safety, 2019. 174: p. 524-531.
[51] Kocar, B.D., Borch, T., and Fendorf, S., Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica et Cosmochimica Acta, 2010. 74(3): p. 980-994.
[52] Kirk, M.F., Holm, T.R., Park, J., et al., Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology, 2004. 32(11): p. 953-956.
[53] Wang, F., Peng, S., Fan, L., et al., Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate -rich systems by acclimatization and multiple -grouting. Alexandria Engineering Journal, 2022. 61(12): p. 9993-10005.
[54] Zheng, T., Deng, Y., Wang, Y., et al., Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. Journal of Hazardous Materials, 2019. 367: p. 109-119.
[55] Schaefer, M.V., Ying, S.C., Benner, S.G., et al., Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 2016. 50(7): p. 3521-9.
[56] MacKay, A.A., Gan, P., Yu, R., et al., Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone. Environmental Science & Technology, 2014. 48(2): p. 920-9.
[57] Tufano, K.J., Reyes, C., Saltikov, C.W., et al., Reductive Processes Controlling Arsenic Retention: Revealing the Relative Importance of Iron and Arsenic Reduction. Environmental Science & Technology, 2008. 42(22): p. 8283-8289.
[58] Lin, X., McKinley, J., Resch, C.T., et al., Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. The ISME Journal, 2012. 6(9): p. 1665-1676.
[59] Zhou, A., Zhang, Y., Dong, T., et al., Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater. Environmental Science and Pollution Research, 2015. 22(13): p. 10094-10106.
[60] Emerson, D. and Moyer, C., Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl ied andEnvironmental Microbiology, 1997. 63(12): p. 4784-92.
[61] Emerson, D., Rentz, J.A., Lilburn, T.G., et al., A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe -Oxidizing Microbial Mat Communities. PLOS ONE, 2007. 2(8): p. e667.
[62] Coates, J.D., Ellis, D.J., Gaw, C.V., et al., Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic and Evolutionary Microbiology, 1999. 49 Pt 4: p. 1615-22.
[63] Shelobolina, E.S., Vrionis, H.A., Findlay, R.H., et al., Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. International Journal of Systematic and Evolutionary Microbiology, 2008. 58(Pt 5): p. 1075-8.
[64] Han, S., Zhang, F., Zhang, H., et al., Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China. Journal of Geochemical Exploration, 2013. 135: p. 71-78.
[65] Wang, J., Shen, M., Hu, J., et al., Magnetostratigraphy and its paleoclimatic significance of the PL02 borehole in the Yinchuan Basin. Journal of Asian Earth Sciences, 2015. 114: p. 258-265.
[66] Qian, H., Li, P., Howard, K.W.F., et al., Assessment of groundwater vulnerability in the Yinchuan Plain, Northwest China using OREADIC. Environmental Monitoring and Assessment, 2012. 184(6): p. 3613-3628.
[67] Guo, Q., Guo, H., Yang, Y., et al., Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P.R. China. Journal of Hydrology, 2014. 518: p. 464-476.
[68] Su, X., Lin, X.Y., Dong, W.H., et al., 14C age correction of deep groundwater in Yinchuan Plain. Journal of Jilin University (Earth Sicence Edition), 2006. 36: p. 830-836.
[69] Jung, H.B. and Zheng, Y., Enhanced recovery of arsenite sorbed onto synthetic oxides by l-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples. Water Research, 2006. 40(11): p. 2168-2180.
[70] Mizota, C. and Kusakabe, M., Spatial distribution of δD-δ18O values of surface and shallow groundwaters from Japan, south Korea and east China. Geochemical Journal, 1994. 28(5): p. 387-410.
[71] Craig, H., Isotopic Variations in Meteoric Waters. Science, 1961. 133(3465): p. 1702-1703.
[72] Weyhenmeyer, C.E., Burns, S.J., Waber, H.N., et al., Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman. Water Resources Research, 2002. 38(10): p. 2-1-2-22.
[73] Liu, F., Williams, M.W., and Caine, N., Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resources Research, 2004. 40(9).
[74] Gao, H., Yang, L., Song, X., et al., Sources and hydrogeochemical processes of groundwater under multiple water source recharge condition. Science of The Total Environment, 2023. 903: p. 166660.
[75] Xia, Q., He, J., Li, B., et al., Hydrochemical evolution characteristics and genesis of groundwater under long -term infiltration (2007—2018) of reclaimed water in Chaobai River, Beijing. Water Research, 2022. 226: p. 119222.
[76] Ma, B., Huang, X., Cui, X., et al., Characterizing the water –rock interactions and groundwater flow processes in the Paleozoic to Cenozoic strata aquifer systems with contrasting mineralogy at basin scale: Qingyi river, east China. Journal of Hydrology, 2 023. 625: p. 129991.
[77] Karroum, M., Elgettafi, M., Elmandour, A., et al., Geochemical processes controlling groundwater quality under semi arid environment: A case study in central Morocco. Science of The Total Environment, 2017. 609: p. 1140-1151.
[78] Thorslund, J., Bierkens, M.F.P., Oude Essink, G.H.P., et al., Common irrigation drivers of freshwater salinisation in river basins worldwide. Nature Communications, 2021. 12(1): p. 4232.
[79] Medjani, F., Djidel, M., Labar, S., et al., Groundwater physico -chemical properties and water quality changes in shallow aquifers in arid saline wetlands, Ouargla, Algeria. Applied Water Science, 2021. 11(5): p. 82.
[80] Wang, H., Guo, H., Xiu, W., et al., Indications that weathering of evaporite minerals affects groundwater salinity and As mobilization in aquifers of the northwestern Hetao Basin, China. Applied Geochemistry, 2019. 109: p. 104416.
[81] Sami, K., Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 1992. 139(1): p. 27-48.
[82] Su, Y, Feng, Q., Zhu, G, et al., Identification and Evolution of Groundwater Chemistry in the Ejin Sub -Basin of the Heihe River, Northwest China. Pedosphere, 2007. 17(3): p. 331-342.
[83] Chen, X., Zhang, H., and Cai, Y., Hydrochemical characteristics and processes of groundwater in the Cenozoic pore aquifer under coal mining. Environmental Science and Pollution Research, 2023. 30(12): p. 33334-33348.
[84] Abascal, E., Gómez-Coma, L., Ortiz, I., et al., Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Science of The Total Environment, 2022. 810: p. 152233.
[85] Gu, B., Ge, Y., Chang, S.X., et al., Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 2013. 23(5): p. 1112-1121.
[86] Bourceau, O.M., Ferdelman, T., Lavik, G., et al., Simultaneous sulfate and nitrate reduction in coastal sediments. ISME Communications, 2023. 3(1): p. 17.
[87] Grigoryan A.A., Cornish S.L., Buziak, B., et al., Competitive Oxidation of Volatile Fatty Acids by Sulfate - and Nitrate-Reducing Bacteria from an Oil Field in Argentina. Applied and Environmental Microbiology, 2008. 74(14): p. 4324-4335.
[88] Hubert, C., Nemati, M., Jenneman, G., et al., Containment of Biogenic Sulfide Production in Continuous Up -Flow Packed-Bed Bioreactors with Nitrate or Nitrite. Biotechnology Progress, 2003. 19(2): p. 338-345.
[89] Zheng, Y., Stute, M., van Geen, A., et al., Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 2004. 19(2): p. 201-214.
[90] Welch, A.H. and Lico, M.S., Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 1998. 13(4): p. 521-539.
[91] Keon, N.E., Swartz, C.H., Brabander, D.J., et al., Validation of an Arsenic Sequential Extraction Method for Evaluating Mobility in Sediments. Environmental Science & Technology, 2001. 35(13): p. 2778-2784.
[92] Huang, J. and Kretzschmar, R., Sequential Extraction Method for Speciation of Arsenate and Arsenite in Mineral Soils. Analytical Chemistry, 2010. 82(13): p. 5534-5540.
[93] Wallmann, K., Hennies, K., König, I., et al., New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments. Limnology and Oceanography, 1993. 38: p. 1803-1812.
[94] Huerta-Diaz, M.A. and Morse, J.W., Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 1992. 56(7): p. 2681-2702.
[95] Neumann, R.B., Ashfaque, K.N., Badruzzaman, A.B.M., et al., Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 2010. 3(1): p. 46-52.
[96] Zsolnay, A., Baigar, E., Jimenez, M., et al., Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 1999. 38(1): p. 45-50.
[97] Radu, T., Subacz, J.L., Phillippi, J.M., et al., Effects of Dissolved Carbonate on Arsenic Adsorption and Mobility. Environmental Science & Technology, 2005. 39(20): p. 7875-7882.
[98] Wallis, I., Prommer, H., Berg, M., et al., The river –groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020. 13(4): p. 288-295.
[99] Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., et al., Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 2002. 298(5598): p. 1602-1606.
[100] Natasha, Irshad, B., Muhammad, S., et al., Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. Journal of Hazardous Materials, 2021. 402: p. 124074.
[101] Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., et al., Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 2005. 20(5): p. 989-1016.
[102] Xing, S., Guo, H., and Hu, X., Sources and enrichment processes of groundwater arsenite and arsenate in fissured bedrock aquifers in the Xunhua-Hualong basin, China. Applied Geochemistry, 2023. 155: p. 105708.
[103] van Geen, A., Zheng, Y., Cheng, Z., et al., A transect of groundwater and sediment properties in Araihazar, Bangladesh: Further evidence of decoupling between As and Fe mobilization. Chemical Geology, 2006. 228(1): p. 85-96.
[104] Swartz, C.H., Blute, N.K., Badruzzman, B., et al., Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta, 2004. 68(22): p. 4539-4557.
[105] Coker, V.S., Gault, A.G., Pearce, C.I., et al., XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. EnvironmentalScience & Technology, 2006. 40(24): p. 7745-50.
[106] Radloff, K.A., Cheng, Z., Rahman, M.W., et al., Mobilization of Arsenic During One-Year Incubations of Grey Aquifer Sands from Araihazar, Bangladesh. Environmental Science & Technology, 2007. 41(10): p. 3639-3645.
[107] Yadav, M.K., Saidulu, D., Gupta, A.K., et al., Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. Journal of Environmental Chemical Engineering, 2021. 9(3): p. 105203.
[108] Postma, D., Larsen, F., Thai, N.T., et al., Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nature Geoscience, 2012. 5(9): p. 656-661.
[109] van Geen, A., Zheng, Y., Stute, M., et al., Comment on "Arsenic Mobility and Groundwater Extraction in Bangladesh" (II). Science, 2003. 300(5619): p. 584-584.
[110] Michael, H.A. and Voss, C.I., Evaluation of the sustainability of deep groundwater as an arsenic -safe resource in the Bengal Basin. Proceedings of the National Academy of Sciences, 2008. 105(25): p. 8531-8536.
[111] Datta, S., Neal, A.W., Mohajerin, T.J., et al., Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentrations in West Bengal, India. Geophysical Research Letters, 2011. 38(20).
[112] Bruneel, O., Volant, A., Gallien, S., et al., Characterization of the Active Bacterial Community Involved in Natural Attenuation Processes in Arsenic-Rich Creek Sediments. Microbial Ecology, 2011. 61(4): p. 793-810.
[113] Sultana, M., Härtig, C., Planer-Friedrich, B., et al., Bacterial Communities in Bangladesh Aquifers Differing in Aqueous Arsenic Concentration. Geomicrobiology Journal, 2011. 28(3): p. 198-211.
[114] Lu, X., Zhang, Y., Liu, C., et al., Characterization of the antimonite- and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal. Journal of Hazardous Materials, 2018. 359: p. 527-534.
[115] Jia, F., Lei, X., Yan, Y., et al., Sulphate -reducing bacteria-mediated pyrite formation in the Dachang Tongkeng tin polymetallic deposit, Guangxi, China. Scientific Reports, 2023. 13(1): p. 11650.
[116] Qiu, G., Gao, T., Hong, J., et al., Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. Geochimica et Cosmochimica Acta, 2018. 228: p. 205-219.
[117] Raven, K.P., Jain, A., and Loeppert, R.H., Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes. Environmental Science & Technology, 1998. 32(3): p. 344-349.
[118] Amalfitano, S., Del Bon, A., Zoppini, A., et al., Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas. Water Research, 2014. 65: p. 384-394.
[119] Vanbroekhoven, K., Van Roy, S., Gielen, C., et al., Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone. Environmental Pollution, 2007. 148(3): p. 759-769.
[120] Humphreys, W.F., Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeology Journal, 2009. 17(1): p. 5-21.
[121] Zhang, Z., Zhang, C., Yang, Y., et al., A review of sulfate -reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, 2022. 376: p. 134109.
[122] Wakeman, K.D., Erving, L., Riekkola -Vanhanen, M.L., et al., Silage supports sulfate reduction in the treatment of metals- and sulfate- containing waste waters. Water Research, 2010. 44(17): p. 4932-4939.
[123] McNichol, S.M., Sanchez-Quete, F., Loeb, S.K., et al., Dynamics of carbon substrate competition among heterotrophic microorganisms. The ISME Journal, 2024. 18(1): p. wrae018.
[124] Freilich, S., Zarecki, R., Eilam, O., et al., Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications, 2011. 2(1): p. 589.
[125] Huang, S. and Jaffé, P.R., Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLOS ONE, 2018. 13(4): p. e0194007.
[126] Bongoua-Devisme, A.J., Cebron, A., Kassin, K.E., et al., Microbial Communities Involved in Fe Reduction and Mobility During Soil Organic Matter (SOM) Mineralization in Two Contrasted Paddy Soils. Geomicrobiology Journal, 2013. 30(4): p. 347-361.
[127] Wang, X., Yang, J., Chen, X., et al., Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments, 2009. 9(6): p. 568-577.
[128] Zhang, M., Kolton, M., Häggblom, M.M., et al., Anaerobic ammonium oxidation coupled to arsenate reduction, a novel biogeochemical process observed in arsenic -contaminated paddy soil. Geochimica et Cosmochimica Acta, 2022. 335: p. 11-22.
[129] Yang, W.H., Weber, K.A., and Silver, W.L., Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 2012. 5(8): p. 538-541.
[130] Barron, A., Sun, J., Passaretti, S., et al., In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. Applied Geochemistry, 2022. 136: p. 105155.
[131] Omoregie Enoma, O., Couture, R.-M., Van Cappellen, P., et al., Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides. Applied and Environmental Microbiology, 2013. 79(14): p. 4325-4335.
[132] Zhang, M., Zhao, B., Yan, Y., et al., Comamonas-dominant microbial community in carbon poor aquitard sediments revealed by metagenomic-based growth rate investigation. Science of The Total Environment, 2024. 912: p. 169203.
[133] Duckworth, O.W., Holmström, S.J.M., Peña, J., et al., Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chemical Geology, 2009. 260(3): p. 149-158.
[134] Lovley, D.R., Ueki, T., Zhang, T., et al., Geobacter: The Microbe Electric's Physiology, Ecology, and Practical Applications,Advances in Microbial Physiology, 2011, Academic Press. p. 1 -100.
[135] Wang, Z., Guo, H., Liu, H., et al., Enrichment mechanism of arsenic in deep confined aquifers of Guide Basin under the influence of geothermal activities. Applied Geochemistry, 2023. 159: p. 105812.
[136] Planer-Friedrich, B., Sulfur being an overlooked promoter of groundwater arsenic contamination. Nature Water, 2023. 1(2): p. 134-135.
[137] Zhang, J., Ma, T., Feng, L., et al., Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Science of The Total Environment, 2017. 584-585: p. 458-468.
[138] Borch, T., Kretzschmar, R., Kappler, A., et al., Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environmental Science & Technology, 2010. 44(1): p. 15-23.
修改评论