中文版 | English
题名

面向分类任务的高效脉冲神经网络算法

其他题名
EFFICIENT SPIKING NEURAL NETWORKS FOR CLASSIFICATION
姓名
姓名拼音
SHEN Shuaijie
学号
12132355
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
张建国
导师单位
计算机科学与工程系
外机构导师
冷卢子未
外机构导师单位
华为技术有限公司
论文答辩日期
2024-05-12
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

人工神经网络在各个领域已经展示出超越人类能力的潜力,但这种进步离不开图像处理单元(GPU)高并行计算的支持。传统人工神经网络依赖于高性能 GPU 的并行浮点数乘法,但这对于边缘芯片和大量终端设备来说并非可行。因此,高效节能的第三代神经网络——脉冲神经网络被认为是可能的替代选项。然而,尽管研究人员提出了梯度代替的方法来解决脉冲激活函数本质上的不可导问题,脉冲神经网络的训练仍然面临梯度消失等问题,限制了其在大规模高性能人工神经网络中的应用。本文首先介绍了脉冲神经网络的基本模型和训练方式,随后调研了相关工作。在此基础上,提出了脉冲稀疏多层感知机的网络架构。该架构通过在不同层神经元的膜电压间引入额外的残差连接,解决了脉冲神经网络训练过程中的梯度消失问题。消融实验证明了残差连接的有效性。此外,为满足脉冲神经网络必须的无乘法推理原则,调整了稀疏多层感知机中不同层的顺序。在 ImageNet-1K 数据集上的实验证明了该模型的高性能和有效性。同时,本文对最终训练得到的轴向采样权重进行了可视化,观察到了其与皮层细胞的相似性,进一步证实了脉冲神经网络的生物学基础。基于上述发现,本文提出了新的滤波多层感知机架构,将从完全训练的权重中发现的特性作为先验知识引入模型中。通过实验证实了其有效性,并解决了原模型对输入尺寸敏感的问题。这一架构的提出也突显了平移不变性和局部性对于图像任务早期特征提取的重要性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] HOROWITZ M. 1.1 Computing’s energy problem (and what we can do about it)[C]//IEEE International Conference on Solid-State Circuits. 2014: 10-14.
[2] NAIR V, HINTON G. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]//International Conference on Machine Learning. 2010: 807-814.
[3] GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition[M]. Cambridge University Press, 2014: 5-9.
[4] MAYNARD A. Navigating the fourth industrial revolution[J]. Nature Nanotechnology, 2015, 10: 1005-1006.
[5] ŚLUSARCZYK B. INDUSTRY 4.0-ARE WE READY?[J]. Polish Journal of Management Studies, 2018, 17.
[6] SARKER I. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems[J]. SN Computer Science, 2022, 3.
[7] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: Open and Efficient Foundation Language Models[A]. 2023. arXiv: 2302.13971.
[8] SAMSI S, ZHAO D, MCDONALD J, et al. From Words to Watts: Benchmarking the Energy Costs of Large Language Model Inference[C]//IEEE High Performance Extreme Computing Conference. 2023: 1-9.
[9] CAPATINA L, CERNIAN A, MOISESCU M A. Efficient training models of Spiking Neural Networks deployed on a neuromorphic computing architectures[C]//International Conference on Control Systems and Computer Science. 2023: 383-390.
[10] PANCHAPAKESAN S, FANG Z, CHANDRACHOODAN N. EASpiNN: Effective Automated Spiking Neural Network Evaluation on FPGA[C]//IEEE International Symposium on Field-Programmable Custom Computing Machines. 2020: 242.
[11] CHEN Y, LIU H, SHI K, et al. Spiking neural network with working memory can integrate and rectify spatiotemporal features[J]. Frontiers in Neuroscience, 2023, 17: 1167134.
[12] MAASS W. Networks of spiking neurons: The third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671.
[13] GHOSH-DASTIDAR S, ADELI H. Spiking neural networks[J]. International Journal of NeuralSystems, 2009, 19(04): 295-308.
[14] WANG X, LIN X, DANG X. Supervised learning in spiking neural networks: A review of algorithms and evaluations[J]. Neural Networks, 2020, 125: 258-280.
[15] MCCULLOCH W S, PITTS W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
[16] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve.[J]. The Journal of physiology, 1952, 117(4): 500-44.
[17] STEIN R B. The Information Capacity of Nerve Cells Using a Frequency Code[J]. Biophysical Journal, 1967, 7(6): 797-826.
[18] KOCH C, SEGEV I. Methods in Neuronal Modeling: From Ions to Networks[M]. MIT Press, 1998.
[19] IZHIKEVICH E. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569-1572.
[20] BRETTE R, GERSTNER W. Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity[J]. Journal of Neurophysiology, 2005, 94(5): 3637-3642.
[21] HEBB D O. The Organization of Behavior: A Neuropsychological Theory[M]. Psychology Press, 2005.
[22] BLISS T V, GARDNER-MEDWIN A R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path[J]. The Journal of Physiology, 1973, 232(2): 357.
[23] MASQUELIER T, GUYONNEAU R, THORPE S J. Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains[J]. PLOS One, 2008, 3(1): 1-9.
[24] BELL C C, HAN V Z, SUGAWARA Y, et al. Synaptic plasticity in a cerebellum-like structure depends on temporal order[J]. Nature, 1997, 387(6630): 278-281.
[25] BURBANK K S. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons[J]. PLOS Computational Biology, 2015, 11(12): 1-25.
[26] TAVANAEI A, MASQUELIER T, MAIDA A S. Acquisition of visual features through probabilistic spike-timing-dependent plasticity[C]//International Joint Conference on Neural Networks. 2016: 307-314.
[27] ZHOU R. A Method of Converting ANN to SNN for Image Classification[C]//IEEE International Conference on Electronic Technology, Communication and Information. 2023: 819-822.
[28] WANG Y, LIU H, ZHANG M, et al. A universal ANN-to-SNN framework for achieving high accuracy and low latency deep Spiking Neural Networks[J]. Neural Networks, 2024, 174.
[29] CAO Y, CHEN Y, KHOSLA D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition[J]. International Journal of Computer Vision, 2015, 113: 54-66.
[30] DIEHL P U, NEIL D, BINAS J, et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing[C]//International Joint Conference on Neural Networks. 2015: 1-8.
[31] RUECKAUER B, LUNGU I A, HU Y, et al. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification[J]. Frontiers in Neuroscience, 2017, 11: 682.
[32] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]//International Conference on Learning Representations. 2015.
[33] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[34] SENGUPTA A, YE Y, WANG R, et al. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures[J]. Frontiers in Neuroscience, 2019, 13: 95.
[35] BOHTE S, KOK J, POUTRé J. SpikeProp: backpropagation for networks of spiking neurons[C].//European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning: volume 48. 2000: 419-424.
[36] ZENKE F, GANGULI S. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks[J]. Neural Computation, 2018, 30(6): 1514-1541.
[37] WU Y, DENG L, LI G, et al. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks[J]. Frontiers in Neuroscience, 2018, 12: 331.
[38] XIAO M, MENG Q, ZHANG Z, et al. Online Training Through Time for Spiking Neural Networks[C]//Advances in Neural Information Processing Systems: volume 35. 2022: 20717-20730.
[39] DENG S, LI Y, ZHANG S, et al. Temporal efficient training of spiking neural network via grdient re-weight[C]//International Conference on Learning Representations. 2022.
[40] LI Y, GUO Y, ZHANG S, et al. Differentiable Spike: Rethinking Gradient-Descent for Training Spiking Neural Networks[C]//Advances in Neural Information Processing Systems: volume 34. 2021: 23426-23439.
[41] CHE K, LENG L, ZHANG K, et al. Differentiable hierarchical and surrogate gradient search for spiking neural networks[C]//Advances in Neural Information Processing Systems: volume 35. 2022: 24975-24990.
[42] GUO Y, CHEN Y, ZHANG L, et al. IM-Loss: Information Maximization Loss for Spiking Neural Networks[C]//Advances in Neural Information Processing Systems: volume 35. 2022: 156-166.
[43] GUO Y, TONG X, CHEN Y, et al. RecDis-SNN: Rectifying Membrane Potential Distribution for Directly Training Spiking Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2022: 326-335.
[44] DING R, CHIN T W, LIU Z, et al. Regularizing Activation Distribution for Training Binarized Deep Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11400-11409.
[45] MENG Q, XIAO M, YAN S, et al. Training high-performance low-latency spiking neural networks by differentiation on spike representation[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2022: 12444-12453.
[46] LIAN S, SHEN J, LIU Q, et al. Learnable Surrogate Gradient for Direct Training Spiking Neural Networks[C]//International Joint Conference on Artificial Intelligence: 2023-August. 2023: 3002-3010.
[47] ZENKE F, VOGELS T P. The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks[J]. Neural Computation, 2021, 33(4): 899-925.
[48] WANG Z, JIANG R, LIAN S, et al. Adaptive Smoothing Gradient Learning for Spiking Neural Networks[C]//International Conference on Machine Learning: volume 202. 2023: 35798-35816.
[49] GALLEGO G, DELBRüCK T, ORCHARD G, et al. Event-Based Vision: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 154-180.
[50] ZHANG J, DONG B, ZHANG H, et al. Spiking Transformers for Event-based Single Object Tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2022: 8791-8800.
[51] ZHU Z, HOU J, LYU X. Learning Graph-embedded Key-event Back-tracing for Object Tracking in Event Clouds[C]//Advances in Neural Information Processing Systems: volume 35. 2022: 7462-7476.
[52] MESSIKOMMER N, FANG C, GEHRIG M, et al. Data-Driven Feature Tracking for Event Cameras[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2023: 5642-5651.
[53] LIU M, DELBRUCK T. EDFLOW: Event Driven Optical Flow Camera With Keypoint Detection and Adaptive Block Matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5776-5789.
[54] WAN Z, DAI Y, MAO Y. Learning Dense and Continuous Optical Flow From an Event Camera[J]. IEEE Transactions on Image Processing, 2022, 31: 7237-7251.
[55] ERCAN B, EKER O, SAGLAM C, et al. HyperE2VID: Improving Event-Based Video Reconstruction via Hypernetworks[J]. IEEE Transactions on Image Processing, 2024, 33: 1826-1837.
[56] ZHANG P, LIU H, GE Z, et al. Neuromorphic Imaging With Joint Image Deblurring and Event Denoising[J]. IEEE Transactions on Image Processing, 2024, 33: 2318-2333.
[57] GAO L, SU H, GEHRIG D, et al. A 5-Point Minimal Solver for Event Camera Relative Motion Estimation[C]//IEEE International Conference on Computer Vision. 2023: 8015-8025.
[58] GUO S, GALLEGO G. CMax-SLAM: Event-Based Rotational-Motion Bundle Adjustment and SLAM System Using Contrast Maximization[J]. IEEE Transactions on Robotics, 2024, 40: 2442-2461.
[59] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain.[J]. Psychological Review, 1958, 65 6: 386-408.
[60] MINSKY M, PAPERT S. Perceptrons[M]. Cambridge, MA: MIT Press, 1969.
[61] GIDON A, ZOLNIK T A, FIDZINSKI P, et al. Dendritic action potentials and computation in human layer 2/3 cortical neurons[J]. Science, 2020, 367(6473): 83-87.
[62] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[M]//Neurocomputing, Volume 1: Foundations of Research. MIT Press, 1988.
[63] FUKUSHIMA K, MIYAKE S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition[C]//AMARI S I, ARBIB M A. Competition and Cooperation in Neural Nets. 1982: 267-285.
[64] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Learning Representations. 2016.
[65] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]//Advances in Neural Information Processing Systems: volume 30. 2017.
[66] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//International Conference on Learning Representations. 2021.
[67] TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: An all-MLP Architecture for Vision[C]//Advances in Neural Information Processing Systems: volume 34. 2021: 24261-24272.
[68] TANG C, ZHAO Y, WANG G, et al. Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?[C]//AAAI Conference on Artificial Intelligence: volume 36. 2022: 2344-2351.
[69] GU A, DAO T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces[A]. 2023. arXiv: 2312.00752.
[70] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//International Conference on Machine Learning: volume 139. 2021: 10347-10357.
[71] MENG Q, XIAO M, YAN S, et al. Towards memory-and time-efficient backpropagation for training spiking neural networks[C]//IEEE International Conference on Computer Vision. 2023: 6166-6176.
[72] IZHIKEVICH E M. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1063-1070.
[73] DECO G, JIRSA V K, ROBINSON P A, et al. The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields[J]. PLOS Computational Biology, 2008, 4(8): 1-35.
[74] KORCSAK-GORZO A, MüLLER M G, BAUMBACH A, et al. Cortical oscillations support sampling-based computations in spiking neural networks[J]. PLOS Computational Biology, 2022, 18(3): 1-41.
[75] SHRESTHA S B, ORCHARD G. SLAYER: Spike Layer Error Reassignment in Time[C]//Advances in Neural Information Processing Systems: volume 31. 2018.
[76] WU Y, DENG L, LI G, et al. Direct training for spiking neural networks: Faster, larger, better[C]//AAAI Conference on Artificial Intelligence: volume 33. 2019: 1311-1318.
[77] FANG W, YU Z, CHEN Y, et al. Deep Residual Learning in Spiking Neural Networks[C]//Advances in Neural Information Processing Systems: volume 34. 2021: 21056-21069.
[78] KIM S, PARK S, NA B, et al. Spiking-YOLO: Spiking neural network for energy-efficient object detection[C]//AAAI Conference on Artificial Intelligence: volume 34. 2020: 11270-11277.
[79] KIM Y, CHOUGH J, PANDA P. Beyond classification: directly training spiking neural networks for semantic segmentation[J]. Neuromorphic Computing and Engineering, 2022, 2(4): 044015.
[80] RANçON U, CUADRADO-ANIBARRO J, COTTEREAU B R, et al. StereoSpike: Depth Learning With a Spiking Neural Network[J]. IEEE Access, 2022, 10: 127428-127439.
[81] ZHU L, WANG X, CHANG Y, et al. Event-Based Video Reconstruction via Potential-Assisted Spiking Neural Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2022: 3594-3604.
[82] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows[C]//IEEE International Conference on Computer Vision. 2021: 10012-10022.
[83] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617.
[84] RATHI N, ROY K. DIET-SNN: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[85] LIU H, SIMONYAN K, YANG Y. DARTS: Differentiable Architecture Search[C]//International Conference on Learning Representations. 2019.
[86] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//International Conference on Machine Learning: volume 37. 2015: 448-456.
[87] TATSUNAMI Y, TAKI M. RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?[C]//Asian Conference on Computer Vision. 2022: 3172-3188.
[88] HOU Q, JIANG Z, YUAN L, et al. Vision permutator: A permutable mlp-like architecture for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
[89] WANG Z, JIANG W, ZHU Y M, et al. DynaMixer: A Vision MLP Architecture with Dynamic Mixing[C]//International Conference on Machine Learning: volume 162. 2022: 22691-22701.
[90] HU Y, TANG H, PAN G. Spiking Deep Residual Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018.
[91] RATHI N, SRINIVASAN G, PANDA P, et al. Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation[C]//International Conference on Learning Representations. 2020.
[92] LEE C, SARWAR S S, PANDA P, et al. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures[J]. Frontiers in Neuroscience, 2019, 14.
[93] ZHENG H, WU Y, DENG L, et al. Going Deeper With Directly-Trained Larger Spiking Neural Networks[C]//AAAI Conference on Artificial Intelligence: volume 35. 2021: 11062-11070.
[94] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106.
[95] LIU R, LI Y, TAO L, et al. Are we ready for a new paradigm shift? A survey on visual deep MLP[J]. Patterns, 2022, 3(7): 100520.
[96] TANG Y, HAN K, GUO J, et al. An Image Patch Is a Wave: Phase-Aware Vision MLP[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2022: 10935-10944.
[97] ZHANG D J, LI K, WANG Y, et al. Morphmlp: An efficient mlp-like backbone for spatial-temporal representation learning[C]//European Conference on Computer Vision. 2022: 230-248.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP183
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766084
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
沈帅杰. 面向分类任务的高效脉冲神经网络算法[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132355-沈帅杰-计算机科学与工(1745KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[沈帅杰]的文章
百度学术
百度学术中相似的文章
[沈帅杰]的文章
必应学术
必应学术中相似的文章
[沈帅杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。