中文版 | English
题名

多酸辅助氰根桥连异金属配合物的合成及磁性研究

其他题名
SYNTHESES AND MAGNETIC STUDIES OF POLYOXOMETALATE-ASSISTED CYANIDE-BRIDGED HETEROMETALLIC COMPLEXES
姓名
姓名拼音
CHENG Yue
学号
12031276
学位类型
博士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
张元竹
导师单位
化学系
论文答辩日期
2024-05-16
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氰根桥连金属配合物在分子磁学领域具有重要地位。氰根(C≡N)具有强的电、磁传递能力,通过构筑块策略和原子替代原则可实现对目标分子结构和功能的系统调控,展现出在构筑高磁有序温度的分子磁体、分子纳米磁体、自旋翻转及电子转移光磁分子材料等方面的优势。然而,由于其线性配位特点的限制,氰根桥连配合物在结构多样性方面仍显不足。本论文选择具有较高的分子对称性、较大尺寸以及可变的电荷等特性的多酸阴离子为辅助,基于三氰合铁构筑基元([(TpR)Fe(CN)3])和3d过渡金属体系,探索一种新的合成策略,开发具有不同维度、不同结构特点及磁性特征的氰根桥配合物

通过引入Keggin型的磷钼酸根[PMo12O40]3–,合成了一系列零维的具有不同结构特点的氰根桥连配合物:平面四方结构的[Fe2Co2]1),互嵌式双三角双锥结构的[Fe3Co3]2),立方体结构的[Fe4Co4]3),六棱柱结构的[Fe6Co6]4)及底心四方结构的[Fe8Co6]5)。其中配合物245的金属氰根骨架均未被报道过,说明多酸阴离子的引入对于构筑多样且新颖的氰根桥连簇合物具有显著影响。另外,配合物3表现出不完全的热致和光致电子转移行为,转变温度为225 K,光激发亚稳态可维持在200 K

选取不同的多酸阴离子,辅助构建了一系列具有“珍珠链”结构的一维链状配合物611。在已知的链状氰根桥连配合物中,该结构并不常见,但理论上其结构特征有利于单链磁体的构筑。此外,在质子型溶剂中得到了带状配合物12,其主体骨架是由三角双锥分子簇构成的一维分子链。带的宽度达到了约3 nm,是目前晶体学表征的最宽一维配位聚合配合物,展示了构建介于一维和二维之间的维度交叉配合物的潜力。结果表明,配合物681012都具有单链磁体行为,其中多酸阴离子充当磁稀释剂,最大限度地减小链间的相互作用。

以硅钨酸[SiW12O40]4–缩写为SiW12为模板成功构建了两例电中性的氰根桥连二维蜂窝状配合物{SiW12@FeIII2MII3}M = Ni, 13; Fe, 14。其中硅钨酸阴离子处在每个蜂窝中心,与周围六个M金属中心通过配位键相连。配合物1314为反铁磁体,有序温度分别为9.815.5 K。进一步实现对配合物14FeII离子的抗磁掺杂,得到不同FeII:ZnII比例的配合物1518,其磁性从长程有序转为缓慢磁弛豫。配合物16(掺杂比例为2:1表现出典型的单链磁体行为,有效能垒为46.3 K此外,配合物13通过加热可实现单晶到单晶的转变,得到配合物19。结构中的甲醇分子被置换成水分子,改变了层与层之间的堆积方式,其磁性研究表现为铁磁有序。多酸在构建高稳定性氰根桥连二维材料中起着重要作用,且此类二维材料在磁学特性上具有可调控性。

其他摘要

Cyanometalates play an important role in the field of molecular magnetism. The cyanide bridges (C≡N) enable efficient magnetic exchange and electron transfer. The directional synthesis and structural regulation of cyanometalates are achievable through the building block method and atomic substitution principle. Therefore, the cyanide bridges show good potential in constructing high-temperature molecular magnets, molecule-based nanomagnets, spin crossover complexes, electron transfer materials, and opto-magnetism compounds. However, due to the rigidity of its linear coordination characteristics, only a limited amount of model compounds were reported. In this thesis, the polyoxometalates with high molecular symmetry, bulky structure, and variable charge were employed to assist the synthesis of cyanometalates in tricyanoiron building units ([(TpR)Fe(CN)3]) and 3d transition metals system. As a result, three series of cyanide-bridged complexes with different dimensions and structural characteristics were achieved.

A series of zero-dimensional cyanometalates bearing polyoxometalates were obtained by introducing Keggin-type [PMo12O40]3– under different reaction conditions: [Fe2Co2] (1) with square structure; [Fe3Co3] (2) with two mutually perpendicular trigonal bipyramids(TBP) structure; [Fe4Co4] (3) with cubic structure; [Fe6Co6] (4) with hexagonal prism cluster; [Fe8Co6] (5) with bottom-centered tetragonal cluster. Among them, the topology of complexes 2, 4, and 5 have not been reported in cyanometalates indicating that the introduction of polyoxoanions has a significant impact on the construction of diverse cyanometalates. Compound 3 exhibited incomplete thermal and photo-induced electron transfer, with a transition temperature of 225 K and a photoexcited metastable state below 200 K.

By introducing different polyoxoanions, a series of one-dimensional chains 611 containing "pearl-chain" structure were synthesized. Among the known one-dimensional cyanometalates, the "pearl-chain" structure is rare, but it is theoretically advantageous for the construction of high-performance single-chain magnets. In addition, a complex tape-like compound 12 was successfully synthesized in protic solvent. The main skeleton of compound 12 is composed of TBP modules. This tape is approximately 3 nm in width, among the widest one-dimensional coordination assemblies, demonstrating the potential for constructing dimensional-crossover complexes between one-dimension and two-dimension. Compounds 6, 8 and 1012 show single-chain magnet (SCM) behavior, in which polyoxoanions act as magnetic diluents to minimize chain-to-chain interactions.

Two charge-neutral cyanide bridged two-dimensional honeycomb-like compounds {SiW12@FeIII2MII3} (M = Ni, 13; Fe, 14) were successfully constructed by using [SiW12O40]4– as template. Compounds 13 and 14 are antiferromagnets, with ordered temperatures of 9.8 and 15.5 K, respectively. By diamagnetic doping to compound 14, compounds 1518 with different FeII:ZnII ratio were obtained, and the magnetic properties changed from long-range ordered to slow magnetic relaxation. Compound 16 with a doping ratio of 2:1 (FeII:ZnII) shows a single chain magnet behavior with an effective energy barrier of 46.3 K. In addition, compound 19 could be obtained by heating compound 13 in a single-crystal to single-crystal transformation manner. Water molecules replaced all the methanol molecules in the structure, and the interlayer packing mode changed. As a result, compound 19 exhibits ferromagnetic rather than antiferromagnetic ordering. Polyoxometalates play an important role in the construction of cyanide bridged two-dimensional materials with high-stability, and these two-dimensional materials are tunable in terms of magnetic properties.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] KRAGSKOW J G C, MATTIONI A, STAAB J K, et al. Spin–phonon coupling and magnetic relaxation in single-molecule magnets[J]. Chemical Society Reviews, 2023, 52(14): 4567-4585.
[2] BAR A K, PICHON C, SUTTER J-P. Magnetic anisotropy in two- to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism[J]. Coordination Chemistry Reviews, 2016, 308: 346-380.
[3] CRAIG G A, MURRIE M. 3d single-ion magnets[J]. Chemical Society Reviews, 2015, 44(8): 2135-2147.
[4] RUBIO-GIMÉNEZ V, TATAY S, MARTí-GASTALDO C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale[J]. Chemical Society Reviews, 2020, 49(15): 5601-5638.
[5] AGUILÀ D, PRADO Y, KOUMOUSI E S, et al. Switchable Fe/Co Prussian blue networks and molecular analogues[J]. Chemical Society Reviews, 2016, 45(1): 203-224.
[6] URDAMPILLETA M, KLYATSKAYA S, CLEUZIOU J P, et al. Supramolecular spin valves[J]. Nature Materials, 2011, 10(7): 502-506.
[7] ZAKRZEWSKI J J, LIBERKA M, WANG J, et al. Optical phenomena in molecule-based magnetic materials [J]. Chemical Review, 2024, DOI: 10.1021/acs.chemrev.3c00840.
[8] MORENO-PINEDA E, WERNSDORFER W. Measuring molecular magnets for quantum technologies[J]. Nature Reviews Physics, 2021, 3(9): 645-659.
[9] TORRES-CAVANILLAS R, GAVARA-EDO M, CORONADO E. Bistable spin-crossover nanoparticles for molecular electronics[J]. Advanced Materials, 2024, 36(1): 2307718.
[10] CORONADO E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices[J]. Nature Reviews Materials, 2020, 5(2): 87-104.
[11] ČERNÁK J, ORENDÁČ M, POTOČŇÁK I, et al. Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties[J]. Coordination Chemistry Reviews, 2002, 224(1): 51-66.
[12] WANG S, DING X-H, ZUO J-L, et al. Tricyanometalate molecular chemistry: a type of versatile building blocks for the construction of cyano-bridged molecular architectures[J]. Coordination Chemistry Reviews, 2011, 255: 1713-1732.
[13] WANG S, DING X-H, LI Y-H, et al. Dicyanometalate chemistry: a type of versatile building block for the construction of cyanide-bridged molecular architectures[J]. Coordination Chemistry Reviews, 2012, 256: 439-464.
[14] WANG J-H, LI Z-Y, YAMASHITA M, et al. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets[J]. Coordination Chemistry Reviews, 2021, 428: 213617.
[15] MONDAL A, LI Y, CHAMOREAU L-M, et al. Photo- and thermo-induced spin crossover in a cyanide-bridged {MoV2FeII2} rhombus molecule[J]. Chemical Communications, 2014, 50(22): 2893-2895.
[16] WU W-W, XIE K-P, HUANG G-Z, et al. Single-crystal to single-crystal transformation of a spin-crossover hybrid perovskite via thermal-induced cyanide linkage isomerization[J]. Inorganic Chemistry, 2022, 61(24): 9047-9054.
[17] MENG Y S, SATO O, LIU T. Manipulating metal-to-metal charge transfer for materials with switchable functionality[J]. Angewandte Chemie International Edition, 2018, 57(38): 12216-12226.
[18] SESSOLI R, GATTESCHI D, CANESCHI A, et al. Magnetic bistability in a metal-ion cluster[J]. Nature, 1993, 365(6442): 142-143.
[19] GUO F S, DAY B M, CHEN Y C, et al. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet[J]. Science, 2018, 362(6421): 1400-1403.
[20] SATO O, IYODA T, FUJISHIMA A, et al. Photoinduced magnetization of a Cobalt-Iron cyanide science[J]. Science, 1996, 272(5262): 704-705.
[21] SHIGA T, MIHARA N, NIHEI M. Cyanide-bridged assemblies with tricyanometalates[J]. Coordination Chemistry Reviews, 2022, 472: 214763.
[22] BELTRAN L M C, LONG J R. Directed assembly of metal-cyanide cluster magnets[J]. Accounts of Chemical Research, 2005, 38(4): 325-334.
[23] CLÉRAC R, JEON I R, PANJA A, et al. Spin crossover or intra-molecular electron transfer in a cyanido-bridged Fe/Co dinuclear dumbbell: a matter of state[J]. Chemical Science, 2013, 4(6): 2463-2470.
[24] KOUMOUSI E S, JEON I R, GAO Q, et al. Metal-to-metal electron transfer in Co/Fe Prussian blue molecular analogues: the ultimate miniaturization[J]. Journal of the American Chemical Society, 2014, 136(44): 15461-15464.
[25] JAFRI S F, KOUMOUSI E S, ARRIO M-A, et al. Atomic scale evidence of the switching mechanism in a photomagnetic CoFe dinuclear Prussian blue analogue[J]. Journal of the American Chemical Society, 2019, 141(8): 3470-3479.
[26] WU D Q, SHAO D, WEI X Q, et al. Reversible On-Off switching of a single-molecule magnet via a crystal-to-crystal chemical transformation[J]. Journal of the American Chemical Society, 2017, 139(34): 11714-11717.
[27] PINKOWICZ D, SOUTHERLAND H I, PROSVIRIN A, et al. Cyanide single-molecule magnets exhibiting solvent dependent reversible "On" and "Off" exchange bias behavior[J]. Journal of the American Chemical Society, 2015, 137(45): 14406-14422.
[28] LI J, WU S, SU S, et al. Manipulating slow magnetic relaxation by light in a charge transfer {Fe2Co} complex[J]. Chemistry – A European Journal, 2020, 26(15): 3259-3263.
[29] ZHAO X-H, SHAO D, CHEN J-T, et al. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis [J]. Science China Chemistry, 2022, 65(3): 532-538.
[30] LIU M, WANG C-F, LI Y-Z, et al. Structural and magnetic studies on cyano-bridged rectangular Fe2M2 (M = Cu, Ni) clusters[J]. Inorganic Chemistry, 2006, 45(25): 10058-10065.
[31] ZHANG Y Z, LI D F, CLÉRAC R, et al. Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex[J]. Angewandte Chemie International Edition, 2010, 49(22): 3752-3756.
[32] SIRETANU D, LI D, BUISSON L, et al. Controlling thermally induced electron transfer in cyano-bridged molecular squares from solid state to solution[J]. Chemistry-A European Journal, 2011, 17(42): 11704-11708.
[33] NIHEI M, SEKINE Y, SUGANAMI N, et al. Controlled intramolecular electron transfers in cyanide-bridged molecular squares by chemical modifications and external stimuli[J]. Journal of the American Chemical Society, 2011, 133(10): 3592-3600.
[34] ZHANG Y Z, FERKO P, SIRETANU D, et al. Thermochromic and photoresponsive cyanometalate Fe/Co squares: toward control of the electron transfer temperature[J]. Journal of the American Chemical Society, 2014, 136(48): 16854-16864.
[35] MENG L, DENG Y-F, LIU S, et al. A smart post-synthetic route towards [Fe2Co2] molecular capsules with electron transfer and bidirectional switching behaviors[J]. Science China Chemistry, 2021, 64(8): 1340-1348.
[36] ZHAO X-H, DENG Y-F, CHEN J-T, et al. An electron-transfer [Fe2Co2] square complex exhibiting unprecedented wide room-temperature hysteresis[J]. Science China Chemistry, 2024, DOI: 10.1007/s11426-023-1835-y.
[37] ZHENG C, XU J, WANG F, et al. Spin crossover and reversible single-crystal to single-crystal transformation behaviour in two cyanide-bridged mixed-valence {FeIII2FeII2} clusters[J]. Dalton Transactions, 2016, 45(43): 17254-17263.
[38] NIHEI M, OKAMOTO Y, SEKINE Y, et al. A light-induced phase exhibiting slow magnetic relaxation in a cyanide-bridged [Fe4Co2] complex[J]. Angewandte Chemie International Edition, 2012, 51(26): 6361-6364.
[39] WANG J-H, VIGNESH K R, ZHAO J, et al. Charge transfer and slow magnetic relaxation in a series of cyano-bridged FeIII4MII2 (M = FeII, CoII, NiII) molecules[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 493-497.
[40] LI D, PARKIN S, WANG G, et al. An S = 6 Cyanide-bridged octanuclear FeIII4NiII4 complex that exhibits slow relaxation of the magnetization[J]. Journal of the American Chemical Society, 2006, 128(13): 4214-4215.
[41] LI D, CLÉRAC R, ROUBEAU O, et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular Cobalt-Iron Prussian blue analogue[J]. Journal of the American Chemical Society, 2008, 130(1): 252-258.
[42] GARNIER D, JIMÉNEZ J-R, LI Y, et al. K⊂{[FeII(Tp)(CN)3]4[CoIII(pzTp)]3 [CoII(pzTp)]}: a neutral soluble model complex of photomagnetic Prussian blue analogues[J]. Chemical Science, 2016, 7(8): 4825-4831.
[43] YOU M, GAN D-X, DENG Y-F, et al. Thermally induced reversible metal-to-metal charge transfer in mixed-valence {FeIII4FeII4} cubes[J]. CCS Chemistry, 2021, 4(7): 2452-2459.
[44] CHEN Z Y, LIU Q, CHENG Y, et al. Manipulating electron-transfer events in [Fe4Co4] cubes via a mixed-ligand approach: the impact of elastic frustration[J]. Angewandte Chemie International Edition, 2023, 62(29): e202301124.
[45] BERLINGUETTE C P, DRAGULESCU-ANDRASI A, SIEBER A, et al. A charge-transfer-induced spin transition in the discrete cyanide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}[J]. Journal of the American Chemical Society, 2004, 126(20): 6222-6223.
[46] WANG C F, ZUO J L, BARTLETT B M, et al. Symmetry-based magnetic anisotropy in the trigonal bipyramidal cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+[J]. Journal of the American Chemical Society, 2006, 128(22): 7162-7163.
[47] BERSETH P A, SOKOL J J, SHORES M P, et al. High-nuclearity metal-cyanide clusters: assembly of a Cr8Ni6(CN)24 cage with a face-centered cubic geometry[J]. Journal of the American Chemical Society, 2000, 122(40): 9655-9662.
[48] WANG S, ZUO J L, ZHOU H C, et al. [(Tp)8(H2O)6CuII6FeIII8(CN)24]4+: a cyanide-bridged face-centered-cubic cluster with single-molecule-magnet behavior[J]. Angewandte Chemie International Edition, 2004, 43(44): 5940-5943.
[49] CHORAZY S, STANEK J J, NOGAS W, et al. Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution[J]. Journal of the American Chemical Society, 2016, 138(5): 1635-1646.
[50] SOKOL J J, SHORES M P, LONG J R. Giant metal-cyanide coordination clusters: tetracapped edge-bridged cubic Cr12Ni12(CN)48 and double face-centered cubic Cr14Ni13(CN)48 species[J]. Inorganic Chemistry, 2002, 41(12): 3052-3054.
[51] WANG X, PROSVIRIN A V, DUNBAR K R. A docosanuclear {Mo8Mn14} cluster based on [Mo(CN)7]4[J]. Angewandte Chemie International Edition, 2010, 49(30): 5081-5084.
[52] KANG S, ZHENG H, LIU T, et al. A ferromagnetically coupled Fe42 cyanide-bridged nanocage[J]. Nature Communications, 2015, 6: 5955.
[53] GLAUBER R J. Time-dependent statistics of the Ising model[J]. Journal of mathematical physics, 1963, 4: 294-307.
[54] CANESCHI A, GATTESCHI D, LALIOTI N, et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires[J]. Angewandte Chemie International Edition, 2001, 40(9): 1760-1763.
[55] COULON C, CLÉRAC R, WERNSDORFER W, et al. Realization of a magnet using an antiferromagnetic phase of single-chain magnets[J]. Physical Review Letters, 2009, 102(16): 167204.
[56] MIYASAKA H, TAKAYAMA K, SAITOH A, et al. Three-dimensional antiferromagnetic order of single-chain magnets: a new approach to design molecule-based magnets[J]. Chemistry A European Journal, 2010, 16(12): 3656-3662.
[57] ZHANG S-Y, SHI W, LAN Y, et al. Observation of slow relaxation of the magnetization and hysteresis loop in an antiferromagnetic ordered phase of a 2D framework based on CoII magnetic chains[J]. Chemical Communications, 2011, 47(10): 2859-2861.
[58] LESCOUEZEC R, VAISSERMANN J, RUIZ-PEREZ C, et al. Cyanide-bridged Iron(III)-Cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires[J]. Angewandte Chemie International Edition, 2003, 42(13): 1483-1486.
[59] WANG S, ZUO J L, GAO S, et al. The observation of superparamagnetic behavior in molecular nanowires[J]. Journal of the American Chemical Society, 2004, 126(29): 8900-8901.
[60] JIMÉNEZ J-R, SUGAHARA A, OKUBO M, et al. A [FeIII(Tp)(CN)3]− scorpionate-based complex as a building block for designing ion storage hosts (Tp: hydrotrispyrazolylborate)[J]. Chemical Communications, 2018, 54(41), 5189-5192.
[61] LIU T, ZHANG Y-J, KANEGAWA S, et al. Photoinduced metal-to-metal charge transfer toward single-chain magnet[J]. Journal of the American Chemical Society, 2010, 132(24): 8250-8251.
[62] DONG D-P, LIU T, KANEGAWA S, et al. Photoswitchable dynamic magnetic relaxation in a well-isolated {Fe2Co} double-zigzag chain[J]. Angewandte Chemie International Edition, 2012, 51(21): 5119-5123.
[63] PICHON C, SUAUD N, DUHAYON C, et al. Cyano-bridged Fe(II)–Cr(III) single-chain magnet based on pentagonal bipyramid units: on the added value of aligned axial anisotropy[J]. Journal of the American Chemical Society, 2018, 140(24): 7698-7704.
[64] HOSHINO N, IIJIMA F, NEWTON G N, et al. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nature Chemistry, 2012, 4(11): 921-926.
[65] WEI R-M, CAO F, LI J, et al. Single-chain magnets based on octacyanotungstate with the highest energy barriers for cyanide compounds[J]. Scientific Reports, 2016, 6: 24372.
[66] ZHANG Y-Z, DOLINAR B S, LIU S, et al. Enforcing Ising-like magnetic anisotropy via trigonal distortion in the design of a W(V)–Co(II) cyanide single-chain magnet[J]. Chemical Science, 2018, 9(1): 119-124.
[67] ZHANG Y Z, ZHAO H H, FUNCK E, et al. A single-chain magnet tape based on hexacyanomanganate(III)[J]. Angewandte Chemie International Edition, 2015, 54(19): 5583-5587.
[68] 袁梅,王新益,张闻,等. 分子磁性材料及其研究进展[J]. 大学化学, 2012, 27(4): 1-8.
[69] SHAO D, ZHOU Y, PI Q, et al. Two-dimensional frameworks formed by pentagonal bipyramidal Cobalt(II) ions and hexacyanometallates: antiferromagnetic ordering, metamagnetism and slow magnetic relaxation[J]. Dalton Transactions, 2017, 46(28): 9088-9096.
[70] LIU T, ZHENG H, KANG S, et al. A Light-induced spin crossover actuated single-chain magnet[J]. Nature Communications, 2013, 4: 2826.
[71] YAMADA R, TOKORO H, OZAKI N, et al. Magnetic dimensional crossover from two- to three-dimensional Heisenberg magnetism in a Cu–W cyano-bridged bimetal assembly[J]. Crystal Growth & Design, 2012, 12(4): 2013-2017.
[72] POPE M T. Heteropoly and Isopoly Oxometalates[M]. Springer, 1983.
[73] POPE M T, MÜLLER A. Polyoxometalate chemistry from topology via self- assembly to applications[M]. Kluwer Academic Publishers, Dordrecht, 2002.
[74] KORTZ U, MÜLLER A, VAN SLAGEREN J, et al. Polyoxometalates: fascinating structures, unique magnetic properties[J]. Coordination Chemistry Reviews, 2009, 253(19): 2315-2327.
[75] POPE M T, MÜLLER A. Polyoxometalate Chemistry: an old field with new dimensions in several disciplines[J]. Angewandte Chemie International Edition, 1991, 30(1): 34-48.
[76] 王恩波. 多酸化学导论[M]. 化学工业出版社, 1998.
[77] KEGGIN J F. Structure of the molecule of 12-phosphotungstic acid[J]. Nature, 1933, 131: 908-909.
[78] DAWSON B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62).14H2O[J]. Acta Crystallographica, 1953, 6: 113-126.
[79] ANDERSON J S. Constitution of the poly-acids[J]. Nature, 1937, 140: 850-850.
[80] HILL C L. Introduction: polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems[J]. Chemical Reviews, 1998, 98(1): 1-2.
[81] LONG D-L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices[J]. Chemical Society Reviews, 2007, 36(1): 105-121.
[82] DOLBECQ A, DUMAS E, MAYER C R, et al. Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications[J]. Chemical Reviews, 2010, 110(10): 6009-6048.
[83] MIRAS H N, VILÀ-NADAL L, CRONIN L. Polyoxometalate based open-frameworks (POM-OFs)[J]. Chemical Society Reviews, 2014, 43(16): 5679-5699.
[84] BLAZEVIC A, ROMPEL A. The Anderson-Evans polyoxometalate: from inorganic building blocks via hybrid organic-inorganic structures to tomorrows "Bio-POM"[J]. Coordination Chemistry Reviews, 2016, 307: 42-64.
[85] LI D, MA P, NIU J, et al. Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers[J]. Coordination Chemistry Reviews, 2019, 392: 49-80.
[86] GE R, LI X-X, ZHENG S-T. Recent advances on high-nuclear polyoxometalate clusters[J]. Coordination Chemistry Reviews, 2021, 435: 213787.
[87] PROUST A, THOUVENOT R, GOUZERH P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science[J]. Chemical Communications, 2008, (16): 1837-1852.
[88] WANG S-S, YANG G-Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115(11): 4893-4962.
[89] ZHONG J, PÉREZ-RAMÍREZ J, YAN N. Biomass valorisation over polyoxometalate-based catalysts[J]. Green Chemistry, 2021, 23(1): 18-36.
[90] IBRAHIM M, LAN Y, BASSIL B S, et al. Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet[J]. Angewandte Chemie International Edition, 2011, 50(20): 4708-4711.
[91] YANG Z-X, GONG F, LIN D, et al. Recent advances in polyoxometalate-based single-molecule magnets[J]. Coordination Chemistry Reviews, 2023, 492: 215205.
[92] JI Y, HUANG L, HU J, et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems[J]. Energy & Environmental Science, 2015, 8(3): 776-789.
[93] CUI L, YU K, LV J, et al. A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide[J]. Journal of Materials Chemistry A, 2020, 8(43): 22918-22928.
[94] LI N, LIU J, DONG B-X, et al. Polyoxometalate-based compounds for photo- and electrocatalytic applications[J]. Angewandte Chemie International Edition, 2020, 59(47): 20779-20793.
[95] WALSH J J, BOND A M, FORSTER R J, et al. Hybrid polyoxometalate materials for photo(electro-) chemical applications[J]. Coordination Chemistry Reviews, 2016, 306: 217-234.
[96] CHEN X, ZHOU Y, ROY V A L, et al. Evolutionary metal oxide clusters for novel applications: toward high-density data storage in nonvolatile memories[J]. Advanced Materials, 2018, 30(3): 1-9.
[97] GIUSTI A, CHARRON G, MAZERAT S, et al. Mallah, Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes[J]. Angewandte Chemie International Edition, 2009, 48(27): 4949-4952.
[98] SALOMON W, LAN Y, RIVIÈRE E, et al. Single-molecule magnet behavior of individual polyoxometalate molecules incorporated within biopolymer or metal-organic framework matrices[J]. Chemistry A European Journal, 2016, 22(19): 6564-6574.
[99] CLEMENTE-JUAN J M, CORONADO E. Magnetic clusters from polyoxometalate complexes[J]. Coordination Chemistry Reviews, 1999, 193: 361-394.
[100] BASSIL B S, KORTZ U Z. Recent advances in lanthanide-containing polyoxotungstates[J]. Zeitschrift für anorganische und allgemeine Chemie, 2010, 636(12): 2222-2231.
[101] BASSIL B S, KORTZ U. Divacant polyoxotungstates: reactivity of the gamma-decatungstates [γ-XW10O36]8−(X = Si, Ge)[J]. Dalton Transactions, 2011, 40(38): 9649-9661.
[102] REINOSO S. Heterometallic 3d-4f polyoxometalates: still an incipient field[J]. Dalton Transactions, 2011, 40(25): 6610-6615.
[103] OMS O, DOLBECQ A, MIALANE P. Diversity in structures and properties of 3d-incorporating polyoxotungstates[J]. Chemical Society Reviews, 2012, 41(22): 7497-7536.
[104] ZHENG S T, YANG G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu)[J]. Chemical Society Reviews, 2012, 41(22): 7623-7646.
[105] SUZUKI K, SATO R, MIZUNO N. Reversible switching of single-molecule magnet behaviors by transformation of dinuclear dysprosium cores in polyoxometalates[J]. Chemical Science, 2013, 4(2): 596-600.
[106] CASAN-PASTOR N, BAS-SERRA J, CORONADO E, et al. First ferromagnetic interaction in a heteropoly complex: [CoII4O14(H2O)2(PW9O27)2]10-. Experiment and theory for intramolecular anisotropic exchange involving the four Co(II) atoms[J]. Journal of the American Chemical Society, 1992, 114(26): 10380-10383.
[107] CORONADO E, GÓMEZ-GARCÍA C J, et al. Polyoxometalates: from magnetic clusters to molecular materials[J]. Comments on Inorganic Chemistry, 1995, 17(5): 255-281.
[108] CORONADO E, GÓMEZ-GARCÍA C J. Polyoxometalate-based molecular materials[J]. Chemical Review, 1998, 98(1): 273-296.
[109] CORONADO E, GIMÉNEZ-SAIZ C, GÓMEZ-GARCÍA C J. Recent advances in polyoxometalate-containing molecular conductors[J]. Coordination Chemistry Reviews, 2005, 249(17): 1776-1796.
[110] AIDAMEN M A, CLEMENTE-JUAN J M, CORONADO E, et al. Mononuclear lanthanide single-molecule magnets based on polyoxometalates[J]. Journal of the American Chemical Society, 2008, 130(28): 8874-8875.
[111] RITCHIE C, FERGUSON A, NOJIRI H, et al. Polyoxometalate-mediated self-assembly of single-molecule magnets: {[XW9O34]2[(MnIII4MnII2O4)¬(H2O)4]12-[J]. Angewandte Chemie International Edition, 2008, 47(30): 5609-5612.
[112] MIRAS H N, YAN J, LONG D-L, et al. Engineering polyoxometalates with emergent properties[J]. Chemical Society Reviews, 2012, 41(22): 7403-7430.
[113] CLEMENTE-JUAN J M, CORONADO E, GAITA-ARIÑ A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing[J]. Chemical Society Reviews, 2012, 41(22): 7464-7478.
[114] NEWTON G N, YAMASHITA S, HASUMI K, et al. Redox-controlled magnetic {Mn13} Keggin systems[J]. Angewandte Chemie International Edition, 2011, 50(25): 5716-5720.
[115] SATO R, SUZUKI K, MIZUNO N, et al. Field-induced slow magnetic relaxation of octahedrally coordinated mononuclear Fe(III), Co(II), and Mn(III) containing polyoxometalates[J]. Chemical Communications, 2015, 51(19): 4081-4084.
[116] FORMENT-ALIAGA A, CORONADO E, FELIZ M, et al. Cationic Mn12 single-molecule magnets and their polyoxometalate hybrid salts[J]. Inorganic Chemistry, 2003, 42(24): 8019-8027.
[117] WU Q, LI Y-G, WANG Y-H, et al. Polyoxometalate-based {MnIII2}-Schiff base composite materials exhibiting single-molecule magnet behaviour[J]. Chemical Communications, 2009, (38): 5743-5745.
[118] CARDONA-SERRA S, CLEMENTE-JUAN J M, CORONADO E, et al. The use of polyoxometalates in the design of layer-like hybrid salts containing cationic Mn4 single-molecule magnets[J]. European Journal of Inorganic Chemistry, 2013, (10): 1903-1909.
[119] SAHU P K, MONDAL A, KONAR S. A trapped hexaaqua CoII complex between the polyanionic sheets of decavanadate reveals high axial anisotropy and field induced SIM behaviour[J]. Dalton Transactions, 2021, 50(11): 3825-3831.
[120] LIU J-X, ZHANG X-B, LI Y-L, et al. Polyoxometalate functionalized architectures[J]. Coordination Chemistry Reviews, 2020, 414: 213260.
[121] MÜLLER A, TODEA A M, BÖGGE H, et al. Formation of a “less stable” polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}2−⊂{MoVI72FeIII30O252¬(ac)20-(H2O)92}]4−[J]. Chemical Communications, 2006, (29): 3066-3068.
[122] LI Y-Y, GAO F, BEVES J E, et al. A giant metallo-supramolecular cage encapsulating a single-molecule magnet[J]. Chemical Communications, 2013, 49(35): 3658-3660.
[123] XIE Y-P, MAK T C W. Silver(I)−ethynide clusters constructed with phosphonate-functionized polyoxovanadates[J]. Journal of the American Chemical Society, 2011, 133(11): 3760-3763.
[124] DAS V, KAUSHIK R, HUSSAIN F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications[J]. Coordination Chemistry Reviews, 2020, 413: 213271.
[125] MA P, HU F, WANG J, et al. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications[J]. Coordination Chemistry Reviews, 2019, 378: 281-309.
[126] GUO F-S, BAR A K, LAYFIELD R A. Main group chemistry at the interface with molecular magnetism[J]. Chemical Reviews, 2019, 119(14): 8479-8505.
[127] TROFIMENKO S. Boron-pyrazole chemistry. IV. Carbon- and boron-substituted poly[(1-pyrazolyl) borates[J]. Journal of the American Chemical Society, 1967, 89(24): 6288-6294.
[128] LOBBIA G G, VALLE G, CALOGERO S, et al. Trichloro-, mono-, di- and tri-organotin(IV) derivatives of hydridotris(4-methylpyrazol-1-yl)borates[J]. Journal of the Chemical Society-Dalton Transactions, 1996, (12): 2475-2483.
[129] ZHANG Y, MALIK U P, QUIGGINS B, et al. Structure-property relationships in tricyanoferrate(III) building blocks and trinuclear cyanide-bridged complexes[J]. European Journal of Inorganic Chemistry, 2016, (15): 2432-2442.
[130] LI D, CLÉRAC R, PARKIN S, et al. An S = 2 Cyanide-bridged trinuclear FeIII2NiII single-molecule magnet[J]. Inorganic Chemistry, 2006, 45(14): 5251-5253.
[131] REGER D L, GRATTAN T C, BROWN K J, et al. Syntheses of tris(pyrazolyl)methane ligands and {[tris(pyrazolyl)methane]Mn(CO)3}-SO3CF3 complexes: comparison of ligand donor properties[J]. Journal of Organometallic Chemistry, 2000, 607(1): 120-128.
[132] MBOMEKALLE I-M, LU Y W, KEITA B, et al. Simple, high yield and reagent-saving synthesis of pure α-K6P2W18O62·14H2O[J]. Inorganic Chemistry Communications, 2004, 7(1): 86-90.
[133] DU D-Y, QIN J-S, LI S-L, et al. Recent advances in porous polyoxometalate-based metal-organic framework materials[J]. Chemical Society Reviews, 2014, 43(13): 4615-4632.
[134] CHENG Y, CHEN Z-Y, XIE K-P, et al. Cyanide-bridged Fe-Co polynuclear clusters based on four-coordinate Cobalt(II)[J]. Inorganic Chemistry, 2020, 59(12): 8025-8033.
[135] BEEDLE C C, ZHANG Y-Z, HOLMES S M, et al. EPR studies of a cyano-bridged {FeIII2NiII} coordination complex and its corresponding FeIII mononuclear building-block[J]. Polyhedron, 2013, 59: 48-51.
[136] CHILTON N F, ANDERSON R P, TURNER L D, et al. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f- block complexes[J]. Journal of Computational Chemistry, 2013, 34(13): 1164-1175.
[137] LIU X, FENG X, MEIHAUS K R, et al. Coercive fields above 6T in two Cobalt(II)-radical chain compounds[J]. Angewandte Chemie International Edition, 2020, 59(26): 10610-10618.
[138] SHI L, SHAO D, WEI X-Q, et al. Enhanced single-chain magnet behavior via anisotropic exchange in a cyano-bridged MoIII–MnII chain[J]. Angewandte Chemie International Edition, 2020, 59(26): 10379-10384.
[139] DEGAYNER J A, WANG K, HARRIS T D. A ferric semiquinoid single-chain magnet via thermally-switchable metal-ligand electron transfer[J]. Journal of the American Chemical Society, 2018, 140(21): 6550-6553.
[140] BRETOSH K, BÉREAU V, DUHAYON C, et al. A ferromagnetic Ni(II)–Cr(III) single-chain magnet based on pentagonal bipyramidal building units[J]. Inorganic Chemistry Frontiers, 2020, 7(7): 1503-1511.
[141] VINCENT R, KLYATSKAYA S, RUBEN M, et al. Electronic read-out of a single nuclear spin using a molecular spin transistor[J]. Nature, 2012, 488(7411): 357-360.
[142] GAITA-ARIÑO A, LUIS F, HILL S, et al. Molecular spins for quantum computation[J]. Nature Chemistry, 2019, 11(4): 301-309.
[143] BOGANI L, WERNSDORFER W. Molecular spintronics using single-molecule magnets[J]. Nature Materials, 2008, 7(3): 179-186.
[144] MYDOSH J A. Spin glasses: an experimental introduction[M]. Taylor & Francis: London, 1993, 64-72.
[145] HARRIS T D, COULON C, CLÉRAC R, et al. Record ferromagnetic exchange through cyanide and elucidation of the magnetic phase diagram for a CuIIReIV(CN)2 chain compound[J]. Journal of the American Chemical Society, 2011, 133(1): 123-130.
[146] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351.
[147] COULON C, MIYASAKA H, CLÉRAC R. Single-chain magnets: theoretical approach and experimental systems[J]. Structure and Bonding, 2006, 122: 163-206.
[148] BOGANI L, VINDIGNI A, SESSOLI R, et al. Single chain magnets: where to from here?[J]. Journal of Materials Chemistry, 2008, 18(40): 4750-4758.
[149] SUN H-L, WANG Z-M, GAO S. Strategies towards single-chain magnets[J]. Coordination Chemistry Reviews, 2010, 254(9): 1081-1100.
[150] ZHANG W-X, ISHIKAWA R, Breedlove B, et al. Single-chain magnets: beyond the Glauber model[J]. RSC Advances, 2013, 3(12): 3772-3798.
[151] BÖHME M, PLASS W. How to link theory and experiment for single-chain magnets beyond the Ising model: magnetic properties modeled from ab initio calculations of molecular fragments[J]. Chemical Science, 2019, 10(40): 9189-9202.
[152] YANG J, YOU M-L, LIU S, et al. Cyanide-bridged rope-like chains based on the trigonal bipyramidal [Fe2Cu3] subunits[J]. Inorganic Chemistry, 2023, 62(42): 17530-17536.
[153] MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1294-1314.
[154] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
[155] THORARINSDOTTIR A E, HARRIS T D. Metal-organic framework magnets[J]. Chemical Reviews, 2020, 120(16): 8716-8789.
[156] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781.
[157] KOSAKA W, LIU Z, ZHANG J, et al. Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen[J]. Nature Communications, 2018, 9: 5420.
[158] ZHANG J, KOSAKA W, SUGIMOTO K, et al. Magnetic sponge behavior via electronic state modulations[J]. Journal of the American Chemical Society, 2018, 140(16): 5644-5652.
[159] ZHANG J, KOSAKA W, KITAGAWA Y, et al. A metal-organic framework that exhibits CO2-induced transitions between paramagnetism and ferrimagnetism[J]. Nature Chemistry, 2021, 13(2): 191-199.
[160] ZHANG J, KOSAKA W, KITAGAWA Y, et al. A host-guest electron transfer mechanism for magnetic and electronic modifications in a redox-active metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(18): e202115976.

所在学位评定分委会
化学
国内图书分类号
O641.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766087
专题理学院_化学系
推荐引用方式
GB/T 7714
程玥. 多酸辅助氰根桥连异金属配合物的合成及磁性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031276-程玥-化学系.pdf(17412KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程玥]的文章
百度学术
百度学术中相似的文章
[程玥]的文章
必应学术
必应学术中相似的文章
[程玥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。