[1] KRAGSKOW J G C, MATTIONI A, STAAB J K, et al. Spin–phonon coupling and magnetic relaxation in single-molecule magnets[J]. Chemical Society Reviews, 2023, 52(14): 4567-4585.
[2] BAR A K, PICHON C, SUTTER J-P. Magnetic anisotropy in two- to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism[J]. Coordination Chemistry Reviews, 2016, 308: 346-380.
[3] CRAIG G A, MURRIE M. 3d single-ion magnets[J]. Chemical Society Reviews, 2015, 44(8): 2135-2147.
[4] RUBIO-GIMÉNEZ V, TATAY S, MARTí-GASTALDO C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale[J]. Chemical Society Reviews, 2020, 49(15): 5601-5638.
[5] AGUILÀ D, PRADO Y, KOUMOUSI E S, et al. Switchable Fe/Co Prussian blue networks and molecular analogues[J]. Chemical Society Reviews, 2016, 45(1): 203-224.
[6] URDAMPILLETA M, KLYATSKAYA S, CLEUZIOU J P, et al. Supramolecular spin valves[J]. Nature Materials, 2011, 10(7): 502-506.
[7] ZAKRZEWSKI J J, LIBERKA M, WANG J, et al. Optical phenomena in molecule-based magnetic materials [J]. Chemical Review, 2024, DOI: 10.1021/acs.chemrev.3c00840.
[8] MORENO-PINEDA E, WERNSDORFER W. Measuring molecular magnets for quantum technologies[J]. Nature Reviews Physics, 2021, 3(9): 645-659.
[9] TORRES-CAVANILLAS R, GAVARA-EDO M, CORONADO E. Bistable spin-crossover nanoparticles for molecular electronics[J]. Advanced Materials, 2024, 36(1): 2307718.
[10] CORONADO E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices[J]. Nature Reviews Materials, 2020, 5(2): 87-104.
[11] ČERNÁK J, ORENDÁČ M, POTOČŇÁK I, et al. Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties[J]. Coordination Chemistry Reviews, 2002, 224(1): 51-66.
[12] WANG S, DING X-H, ZUO J-L, et al. Tricyanometalate molecular chemistry: a type of versatile building blocks for the construction of cyano-bridged molecular architectures[J]. Coordination Chemistry Reviews, 2011, 255: 1713-1732.
[13] WANG S, DING X-H, LI Y-H, et al. Dicyanometalate chemistry: a type of versatile building block for the construction of cyanide-bridged molecular architectures[J]. Coordination Chemistry Reviews, 2012, 256: 439-464.
[14] WANG J-H, LI Z-Y, YAMASHITA M, et al. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets[J]. Coordination Chemistry Reviews, 2021, 428: 213617.
[15] MONDAL A, LI Y, CHAMOREAU L-M, et al. Photo- and thermo-induced spin crossover in a cyanide-bridged {MoV2FeII2} rhombus molecule[J]. Chemical Communications, 2014, 50(22): 2893-2895.
[16] WU W-W, XIE K-P, HUANG G-Z, et al. Single-crystal to single-crystal transformation of a spin-crossover hybrid perovskite via thermal-induced cyanide linkage isomerization[J]. Inorganic Chemistry, 2022, 61(24): 9047-9054.
[17] MENG Y S, SATO O, LIU T. Manipulating metal-to-metal charge transfer for materials with switchable functionality[J]. Angewandte Chemie International Edition, 2018, 57(38): 12216-12226.
[18] SESSOLI R, GATTESCHI D, CANESCHI A, et al. Magnetic bistability in a metal-ion cluster[J]. Nature, 1993, 365(6442): 142-143.
[19] GUO F S, DAY B M, CHEN Y C, et al. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet[J]. Science, 2018, 362(6421): 1400-1403.
[20] SATO O, IYODA T, FUJISHIMA A, et al. Photoinduced magnetization of a Cobalt-Iron cyanide science[J]. Science, 1996, 272(5262): 704-705.
[21] SHIGA T, MIHARA N, NIHEI M. Cyanide-bridged assemblies with tricyanometalates[J]. Coordination Chemistry Reviews, 2022, 472: 214763.
[22] BELTRAN L M C, LONG J R. Directed assembly of metal-cyanide cluster magnets[J]. Accounts of Chemical Research, 2005, 38(4): 325-334.
[23] CLÉRAC R, JEON I R, PANJA A, et al. Spin crossover or intra-molecular electron transfer in a cyanido-bridged Fe/Co dinuclear dumbbell: a matter of state[J]. Chemical Science, 2013, 4(6): 2463-2470.
[24] KOUMOUSI E S, JEON I R, GAO Q, et al. Metal-to-metal electron transfer in Co/Fe Prussian blue molecular analogues: the ultimate miniaturization[J]. Journal of the American Chemical Society, 2014, 136(44): 15461-15464.
[25] JAFRI S F, KOUMOUSI E S, ARRIO M-A, et al. Atomic scale evidence of the switching mechanism in a photomagnetic CoFe dinuclear Prussian blue analogue[J]. Journal of the American Chemical Society, 2019, 141(8): 3470-3479.
[26] WU D Q, SHAO D, WEI X Q, et al. Reversible On-Off switching of a single-molecule magnet via a crystal-to-crystal chemical transformation[J]. Journal of the American Chemical Society, 2017, 139(34): 11714-11717.
[27] PINKOWICZ D, SOUTHERLAND H I, PROSVIRIN A, et al. Cyanide single-molecule magnets exhibiting solvent dependent reversible "On" and "Off" exchange bias behavior[J]. Journal of the American Chemical Society, 2015, 137(45): 14406-14422.
[28] LI J, WU S, SU S, et al. Manipulating slow magnetic relaxation by light in a charge transfer {Fe2Co} complex[J]. Chemistry – A European Journal, 2020, 26(15): 3259-3263.
[29] ZHAO X-H, SHAO D, CHEN J-T, et al. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis [J]. Science China Chemistry, 2022, 65(3): 532-538.
[30] LIU M, WANG C-F, LI Y-Z, et al. Structural and magnetic studies on cyano-bridged rectangular Fe2M2 (M = Cu, Ni) clusters[J]. Inorganic Chemistry, 2006, 45(25): 10058-10065.
[31] ZHANG Y Z, LI D F, CLÉRAC R, et al. Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex[J]. Angewandte Chemie International Edition, 2010, 49(22): 3752-3756.
[32] SIRETANU D, LI D, BUISSON L, et al. Controlling thermally induced electron transfer in cyano-bridged molecular squares from solid state to solution[J]. Chemistry-A European Journal, 2011, 17(42): 11704-11708.
[33] NIHEI M, SEKINE Y, SUGANAMI N, et al. Controlled intramolecular electron transfers in cyanide-bridged molecular squares by chemical modifications and external stimuli[J]. Journal of the American Chemical Society, 2011, 133(10): 3592-3600.
[34] ZHANG Y Z, FERKO P, SIRETANU D, et al. Thermochromic and photoresponsive cyanometalate Fe/Co squares: toward control of the electron transfer temperature[J]. Journal of the American Chemical Society, 2014, 136(48): 16854-16864.
[35] MENG L, DENG Y-F, LIU S, et al. A smart post-synthetic route towards [Fe2Co2] molecular capsules with electron transfer and bidirectional switching behaviors[J]. Science China Chemistry, 2021, 64(8): 1340-1348.
[36] ZHAO X-H, DENG Y-F, CHEN J-T, et al. An electron-transfer [Fe2Co2] square complex exhibiting unprecedented wide room-temperature hysteresis[J]. Science China Chemistry, 2024, DOI: 10.1007/s11426-023-1835-y.
[37] ZHENG C, XU J, WANG F, et al. Spin crossover and reversible single-crystal to single-crystal transformation behaviour in two cyanide-bridged mixed-valence {FeIII2FeII2} clusters[J]. Dalton Transactions, 2016, 45(43): 17254-17263.
[38] NIHEI M, OKAMOTO Y, SEKINE Y, et al. A light-induced phase exhibiting slow magnetic relaxation in a cyanide-bridged [Fe4Co2] complex[J]. Angewandte Chemie International Edition, 2012, 51(26): 6361-6364.
[39] WANG J-H, VIGNESH K R, ZHAO J, et al. Charge transfer and slow magnetic relaxation in a series of cyano-bridged FeIII4MII2 (M = FeII, CoII, NiII) molecules[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 493-497.
[40] LI D, PARKIN S, WANG G, et al. An S = 6 Cyanide-bridged octanuclear FeIII4NiII4 complex that exhibits slow relaxation of the magnetization[J]. Journal of the American Chemical Society, 2006, 128(13): 4214-4215.
[41] LI D, CLÉRAC R, ROUBEAU O, et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular Cobalt-Iron Prussian blue analogue[J]. Journal of the American Chemical Society, 2008, 130(1): 252-258.
[42] GARNIER D, JIMÉNEZ J-R, LI Y, et al. K⊂{[FeII(Tp)(CN)3]4[CoIII(pzTp)]3 [CoII(pzTp)]}: a neutral soluble model complex of photomagnetic Prussian blue analogues[J]. Chemical Science, 2016, 7(8): 4825-4831.
[43] YOU M, GAN D-X, DENG Y-F, et al. Thermally induced reversible metal-to-metal charge transfer in mixed-valence {FeIII4FeII4} cubes[J]. CCS Chemistry, 2021, 4(7): 2452-2459.
[44] CHEN Z Y, LIU Q, CHENG Y, et al. Manipulating electron-transfer events in [Fe4Co4] cubes via a mixed-ligand approach: the impact of elastic frustration[J]. Angewandte Chemie International Edition, 2023, 62(29): e202301124.
[45] BERLINGUETTE C P, DRAGULESCU-ANDRASI A, SIEBER A, et al. A charge-transfer-induced spin transition in the discrete cyanide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}[J]. Journal of the American Chemical Society, 2004, 126(20): 6222-6223.
[46] WANG C F, ZUO J L, BARTLETT B M, et al. Symmetry-based magnetic anisotropy in the trigonal bipyramidal cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+[J]. Journal of the American Chemical Society, 2006, 128(22): 7162-7163.
[47] BERSETH P A, SOKOL J J, SHORES M P, et al. High-nuclearity metal-cyanide clusters: assembly of a Cr8Ni6(CN)24 cage with a face-centered cubic geometry[J]. Journal of the American Chemical Society, 2000, 122(40): 9655-9662.
[48] WANG S, ZUO J L, ZHOU H C, et al. [(Tp)8(H2O)6CuII6FeIII8(CN)24]4+: a cyanide-bridged face-centered-cubic cluster with single-molecule-magnet behavior[J]. Angewandte Chemie International Edition, 2004, 43(44): 5940-5943.
[49] CHORAZY S, STANEK J J, NOGAS W, et al. Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution[J]. Journal of the American Chemical Society, 2016, 138(5): 1635-1646.
[50] SOKOL J J, SHORES M P, LONG J R. Giant metal-cyanide coordination clusters: tetracapped edge-bridged cubic Cr12Ni12(CN)48 and double face-centered cubic Cr14Ni13(CN)48 species[J]. Inorganic Chemistry, 2002, 41(12): 3052-3054.
[51] WANG X, PROSVIRIN A V, DUNBAR K R. A docosanuclear {Mo8Mn14} cluster based on [Mo(CN)7]4[J]. Angewandte Chemie International Edition, 2010, 49(30): 5081-5084.
[52] KANG S, ZHENG H, LIU T, et al. A ferromagnetically coupled Fe42 cyanide-bridged nanocage[J]. Nature Communications, 2015, 6: 5955.
[53] GLAUBER R J. Time-dependent statistics of the Ising model[J]. Journal of mathematical physics, 1963, 4: 294-307.
[54] CANESCHI A, GATTESCHI D, LALIOTI N, et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires[J]. Angewandte Chemie International Edition, 2001, 40(9): 1760-1763.
[55] COULON C, CLÉRAC R, WERNSDORFER W, et al. Realization of a magnet using an antiferromagnetic phase of single-chain magnets[J]. Physical Review Letters, 2009, 102(16): 167204.
[56] MIYASAKA H, TAKAYAMA K, SAITOH A, et al. Three-dimensional antiferromagnetic order of single-chain magnets: a new approach to design molecule-based magnets[J]. Chemistry A European Journal, 2010, 16(12): 3656-3662.
[57] ZHANG S-Y, SHI W, LAN Y, et al. Observation of slow relaxation of the magnetization and hysteresis loop in an antiferromagnetic ordered phase of a 2D framework based on CoII magnetic chains[J]. Chemical Communications, 2011, 47(10): 2859-2861.
[58] LESCOUEZEC R, VAISSERMANN J, RUIZ-PEREZ C, et al. Cyanide-bridged Iron(III)-Cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires[J]. Angewandte Chemie International Edition, 2003, 42(13): 1483-1486.
[59] WANG S, ZUO J L, GAO S, et al. The observation of superparamagnetic behavior in molecular nanowires[J]. Journal of the American Chemical Society, 2004, 126(29): 8900-8901.
[60] JIMÉNEZ J-R, SUGAHARA A, OKUBO M, et al. A [FeIII(Tp)(CN)3]− scorpionate-based complex as a building block for designing ion storage hosts (Tp: hydrotrispyrazolylborate)[J]. Chemical Communications, 2018, 54(41), 5189-5192.
[61] LIU T, ZHANG Y-J, KANEGAWA S, et al. Photoinduced metal-to-metal charge transfer toward single-chain magnet[J]. Journal of the American Chemical Society, 2010, 132(24): 8250-8251.
[62] DONG D-P, LIU T, KANEGAWA S, et al. Photoswitchable dynamic magnetic relaxation in a well-isolated {Fe2Co} double-zigzag chain[J]. Angewandte Chemie International Edition, 2012, 51(21): 5119-5123.
[63] PICHON C, SUAUD N, DUHAYON C, et al. Cyano-bridged Fe(II)–Cr(III) single-chain magnet based on pentagonal bipyramid units: on the added value of aligned axial anisotropy[J]. Journal of the American Chemical Society, 2018, 140(24): 7698-7704.
[64] HOSHINO N, IIJIMA F, NEWTON G N, et al. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nature Chemistry, 2012, 4(11): 921-926.
[65] WEI R-M, CAO F, LI J, et al. Single-chain magnets based on octacyanotungstate with the highest energy barriers for cyanide compounds[J]. Scientific Reports, 2016, 6: 24372.
[66] ZHANG Y-Z, DOLINAR B S, LIU S, et al. Enforcing Ising-like magnetic anisotropy via trigonal distortion in the design of a W(V)–Co(II) cyanide single-chain magnet[J]. Chemical Science, 2018, 9(1): 119-124.
[67] ZHANG Y Z, ZHAO H H, FUNCK E, et al. A single-chain magnet tape based on hexacyanomanganate(III)[J]. Angewandte Chemie International Edition, 2015, 54(19): 5583-5587.
[68] 袁梅,王新益,张闻,等. 分子磁性材料及其研究进展[J]. 大学化学, 2012, 27(4): 1-8.
[69] SHAO D, ZHOU Y, PI Q, et al. Two-dimensional frameworks formed by pentagonal bipyramidal Cobalt(II) ions and hexacyanometallates: antiferromagnetic ordering, metamagnetism and slow magnetic relaxation[J]. Dalton Transactions, 2017, 46(28): 9088-9096.
[70] LIU T, ZHENG H, KANG S, et al. A Light-induced spin crossover actuated single-chain magnet[J]. Nature Communications, 2013, 4: 2826.
[71] YAMADA R, TOKORO H, OZAKI N, et al. Magnetic dimensional crossover from two- to three-dimensional Heisenberg magnetism in a Cu–W cyano-bridged bimetal assembly[J]. Crystal Growth & Design, 2012, 12(4): 2013-2017.
[72] POPE M T. Heteropoly and Isopoly Oxometalates[M]. Springer, 1983.
[73] POPE M T, MÜLLER A. Polyoxometalate chemistry from topology via self- assembly to applications[M]. Kluwer Academic Publishers, Dordrecht, 2002.
[74] KORTZ U, MÜLLER A, VAN SLAGEREN J, et al. Polyoxometalates: fascinating structures, unique magnetic properties[J]. Coordination Chemistry Reviews, 2009, 253(19): 2315-2327.
[75] POPE M T, MÜLLER A. Polyoxometalate Chemistry: an old field with new dimensions in several disciplines[J]. Angewandte Chemie International Edition, 1991, 30(1): 34-48.
[76] 王恩波. 多酸化学导论[M]. 化学工业出版社, 1998.
[77] KEGGIN J F. Structure of the molecule of 12-phosphotungstic acid[J]. Nature, 1933, 131: 908-909.
[78] DAWSON B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62).14H2O[J]. Acta Crystallographica, 1953, 6: 113-126.
[79] ANDERSON J S. Constitution of the poly-acids[J]. Nature, 1937, 140: 850-850.
[80] HILL C L. Introduction: polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems[J]. Chemical Reviews, 1998, 98(1): 1-2.
[81] LONG D-L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices[J]. Chemical Society Reviews, 2007, 36(1): 105-121.
[82] DOLBECQ A, DUMAS E, MAYER C R, et al. Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications[J]. Chemical Reviews, 2010, 110(10): 6009-6048.
[83] MIRAS H N, VILÀ-NADAL L, CRONIN L. Polyoxometalate based open-frameworks (POM-OFs)[J]. Chemical Society Reviews, 2014, 43(16): 5679-5699.
[84] BLAZEVIC A, ROMPEL A. The Anderson-Evans polyoxometalate: from inorganic building blocks via hybrid organic-inorganic structures to tomorrows "Bio-POM"[J]. Coordination Chemistry Reviews, 2016, 307: 42-64.
[85] LI D, MA P, NIU J, et al. Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers[J]. Coordination Chemistry Reviews, 2019, 392: 49-80.
[86] GE R, LI X-X, ZHENG S-T. Recent advances on high-nuclear polyoxometalate clusters[J]. Coordination Chemistry Reviews, 2021, 435: 213787.
[87] PROUST A, THOUVENOT R, GOUZERH P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science[J]. Chemical Communications, 2008, (16): 1837-1852.
[88] WANG S-S, YANG G-Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115(11): 4893-4962.
[89] ZHONG J, PÉREZ-RAMÍREZ J, YAN N. Biomass valorisation over polyoxometalate-based catalysts[J]. Green Chemistry, 2021, 23(1): 18-36.
[90] IBRAHIM M, LAN Y, BASSIL B S, et al. Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet[J]. Angewandte Chemie International Edition, 2011, 50(20): 4708-4711.
[91] YANG Z-X, GONG F, LIN D, et al. Recent advances in polyoxometalate-based single-molecule magnets[J]. Coordination Chemistry Reviews, 2023, 492: 215205.
[92] JI Y, HUANG L, HU J, et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems[J]. Energy & Environmental Science, 2015, 8(3): 776-789.
[93] CUI L, YU K, LV J, et al. A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide[J]. Journal of Materials Chemistry A, 2020, 8(43): 22918-22928.
[94] LI N, LIU J, DONG B-X, et al. Polyoxometalate-based compounds for photo- and electrocatalytic applications[J]. Angewandte Chemie International Edition, 2020, 59(47): 20779-20793.
[95] WALSH J J, BOND A M, FORSTER R J, et al. Hybrid polyoxometalate materials for photo(electro-) chemical applications[J]. Coordination Chemistry Reviews, 2016, 306: 217-234.
[96] CHEN X, ZHOU Y, ROY V A L, et al. Evolutionary metal oxide clusters for novel applications: toward high-density data storage in nonvolatile memories[J]. Advanced Materials, 2018, 30(3): 1-9.
[97] GIUSTI A, CHARRON G, MAZERAT S, et al. Mallah, Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes[J]. Angewandte Chemie International Edition, 2009, 48(27): 4949-4952.
[98] SALOMON W, LAN Y, RIVIÈRE E, et al. Single-molecule magnet behavior of individual polyoxometalate molecules incorporated within biopolymer or metal-organic framework matrices[J]. Chemistry A European Journal, 2016, 22(19): 6564-6574.
[99] CLEMENTE-JUAN J M, CORONADO E. Magnetic clusters from polyoxometalate complexes[J]. Coordination Chemistry Reviews, 1999, 193: 361-394.
[100] BASSIL B S, KORTZ U Z. Recent advances in lanthanide-containing polyoxotungstates[J]. Zeitschrift für anorganische und allgemeine Chemie, 2010, 636(12): 2222-2231.
[101] BASSIL B S, KORTZ U. Divacant polyoxotungstates: reactivity of the gamma-decatungstates [γ-XW10O36]8−(X = Si, Ge)[J]. Dalton Transactions, 2011, 40(38): 9649-9661.
[102] REINOSO S. Heterometallic 3d-4f polyoxometalates: still an incipient field[J]. Dalton Transactions, 2011, 40(25): 6610-6615.
[103] OMS O, DOLBECQ A, MIALANE P. Diversity in structures and properties of 3d-incorporating polyoxotungstates[J]. Chemical Society Reviews, 2012, 41(22): 7497-7536.
[104] ZHENG S T, YANG G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu)[J]. Chemical Society Reviews, 2012, 41(22): 7623-7646.
[105] SUZUKI K, SATO R, MIZUNO N. Reversible switching of single-molecule magnet behaviors by transformation of dinuclear dysprosium cores in polyoxometalates[J]. Chemical Science, 2013, 4(2): 596-600.
[106] CASAN-PASTOR N, BAS-SERRA J, CORONADO E, et al. First ferromagnetic interaction in a heteropoly complex: [CoII4O14(H2O)2(PW9O27)2]10-. Experiment and theory for intramolecular anisotropic exchange involving the four Co(II) atoms[J]. Journal of the American Chemical Society, 1992, 114(26): 10380-10383.
[107] CORONADO E, GÓMEZ-GARCÍA C J, et al. Polyoxometalates: from magnetic clusters to molecular materials[J]. Comments on Inorganic Chemistry, 1995, 17(5): 255-281.
[108] CORONADO E, GÓMEZ-GARCÍA C J. Polyoxometalate-based molecular materials[J]. Chemical Review, 1998, 98(1): 273-296.
[109] CORONADO E, GIMÉNEZ-SAIZ C, GÓMEZ-GARCÍA C J. Recent advances in polyoxometalate-containing molecular conductors[J]. Coordination Chemistry Reviews, 2005, 249(17): 1776-1796.
[110] AIDAMEN M A, CLEMENTE-JUAN J M, CORONADO E, et al. Mononuclear lanthanide single-molecule magnets based on polyoxometalates[J]. Journal of the American Chemical Society, 2008, 130(28): 8874-8875.
[111] RITCHIE C, FERGUSON A, NOJIRI H, et al. Polyoxometalate-mediated self-assembly of single-molecule magnets: {[XW9O34]2[(MnIII4MnII2O4)¬(H2O)4]12-[J]. Angewandte Chemie International Edition, 2008, 47(30): 5609-5612.
[112] MIRAS H N, YAN J, LONG D-L, et al. Engineering polyoxometalates with emergent properties[J]. Chemical Society Reviews, 2012, 41(22): 7403-7430.
[113] CLEMENTE-JUAN J M, CORONADO E, GAITA-ARIÑ A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing[J]. Chemical Society Reviews, 2012, 41(22): 7464-7478.
[114] NEWTON G N, YAMASHITA S, HASUMI K, et al. Redox-controlled magnetic {Mn13} Keggin systems[J]. Angewandte Chemie International Edition, 2011, 50(25): 5716-5720.
[115] SATO R, SUZUKI K, MIZUNO N, et al. Field-induced slow magnetic relaxation of octahedrally coordinated mononuclear Fe(III), Co(II), and Mn(III) containing polyoxometalates[J]. Chemical Communications, 2015, 51(19): 4081-4084.
[116] FORMENT-ALIAGA A, CORONADO E, FELIZ M, et al. Cationic Mn12 single-molecule magnets and their polyoxometalate hybrid salts[J]. Inorganic Chemistry, 2003, 42(24): 8019-8027.
[117] WU Q, LI Y-G, WANG Y-H, et al. Polyoxometalate-based {MnIII2}-Schiff base composite materials exhibiting single-molecule magnet behaviour[J]. Chemical Communications, 2009, (38): 5743-5745.
[118] CARDONA-SERRA S, CLEMENTE-JUAN J M, CORONADO E, et al. The use of polyoxometalates in the design of layer-like hybrid salts containing cationic Mn4 single-molecule magnets[J]. European Journal of Inorganic Chemistry, 2013, (10): 1903-1909.
[119] SAHU P K, MONDAL A, KONAR S. A trapped hexaaqua CoII complex between the polyanionic sheets of decavanadate reveals high axial anisotropy and field induced SIM behaviour[J]. Dalton Transactions, 2021, 50(11): 3825-3831.
[120] LIU J-X, ZHANG X-B, LI Y-L, et al. Polyoxometalate functionalized architectures[J]. Coordination Chemistry Reviews, 2020, 414: 213260.
[121] MÜLLER A, TODEA A M, BÖGGE H, et al. Formation of a “less stable” polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}2−⊂{MoVI72FeIII30O252¬(ac)20-(H2O)92}]4−[J]. Chemical Communications, 2006, (29): 3066-3068.
[122] LI Y-Y, GAO F, BEVES J E, et al. A giant metallo-supramolecular cage encapsulating a single-molecule magnet[J]. Chemical Communications, 2013, 49(35): 3658-3660.
[123] XIE Y-P, MAK T C W. Silver(I)−ethynide clusters constructed with phosphonate-functionized polyoxovanadates[J]. Journal of the American Chemical Society, 2011, 133(11): 3760-3763.
[124] DAS V, KAUSHIK R, HUSSAIN F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications[J]. Coordination Chemistry Reviews, 2020, 413: 213271.
[125] MA P, HU F, WANG J, et al. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications[J]. Coordination Chemistry Reviews, 2019, 378: 281-309.
[126] GUO F-S, BAR A K, LAYFIELD R A. Main group chemistry at the interface with molecular magnetism[J]. Chemical Reviews, 2019, 119(14): 8479-8505.
[127] TROFIMENKO S. Boron-pyrazole chemistry. IV. Carbon- and boron-substituted poly[(1-pyrazolyl) borates[J]. Journal of the American Chemical Society, 1967, 89(24): 6288-6294.
[128] LOBBIA G G, VALLE G, CALOGERO S, et al. Trichloro-, mono-, di- and tri-organotin(IV) derivatives of hydridotris(4-methylpyrazol-1-yl)borates[J]. Journal of the Chemical Society-Dalton Transactions, 1996, (12): 2475-2483.
[129] ZHANG Y, MALIK U P, QUIGGINS B, et al. Structure-property relationships in tricyanoferrate(III) building blocks and trinuclear cyanide-bridged complexes[J]. European Journal of Inorganic Chemistry, 2016, (15): 2432-2442.
[130] LI D, CLÉRAC R, PARKIN S, et al. An S = 2 Cyanide-bridged trinuclear FeIII2NiII single-molecule magnet[J]. Inorganic Chemistry, 2006, 45(14): 5251-5253.
[131] REGER D L, GRATTAN T C, BROWN K J, et al. Syntheses of tris(pyrazolyl)methane ligands and {[tris(pyrazolyl)methane]Mn(CO)3}-SO3CF3 complexes: comparison of ligand donor properties[J]. Journal of Organometallic Chemistry, 2000, 607(1): 120-128.
[132] MBOMEKALLE I-M, LU Y W, KEITA B, et al. Simple, high yield and reagent-saving synthesis of pure α-K6P2W18O62·14H2O[J]. Inorganic Chemistry Communications, 2004, 7(1): 86-90.
[133] DU D-Y, QIN J-S, LI S-L, et al. Recent advances in porous polyoxometalate-based metal-organic framework materials[J]. Chemical Society Reviews, 2014, 43(13): 4615-4632.
[134] CHENG Y, CHEN Z-Y, XIE K-P, et al. Cyanide-bridged Fe-Co polynuclear clusters based on four-coordinate Cobalt(II)[J]. Inorganic Chemistry, 2020, 59(12): 8025-8033.
[135] BEEDLE C C, ZHANG Y-Z, HOLMES S M, et al. EPR studies of a cyano-bridged {FeIII2NiII} coordination complex and its corresponding FeIII mononuclear building-block[J]. Polyhedron, 2013, 59: 48-51.
[136] CHILTON N F, ANDERSON R P, TURNER L D, et al. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f- block complexes[J]. Journal of Computational Chemistry, 2013, 34(13): 1164-1175.
[137] LIU X, FENG X, MEIHAUS K R, et al. Coercive fields above 6T in two Cobalt(II)-radical chain compounds[J]. Angewandte Chemie International Edition, 2020, 59(26): 10610-10618.
[138] SHI L, SHAO D, WEI X-Q, et al. Enhanced single-chain magnet behavior via anisotropic exchange in a cyano-bridged MoIII–MnII chain[J]. Angewandte Chemie International Edition, 2020, 59(26): 10379-10384.
[139] DEGAYNER J A, WANG K, HARRIS T D. A ferric semiquinoid single-chain magnet via thermally-switchable metal-ligand electron transfer[J]. Journal of the American Chemical Society, 2018, 140(21): 6550-6553.
[140] BRETOSH K, BÉREAU V, DUHAYON C, et al. A ferromagnetic Ni(II)–Cr(III) single-chain magnet based on pentagonal bipyramidal building units[J]. Inorganic Chemistry Frontiers, 2020, 7(7): 1503-1511.
[141] VINCENT R, KLYATSKAYA S, RUBEN M, et al. Electronic read-out of a single nuclear spin using a molecular spin transistor[J]. Nature, 2012, 488(7411): 357-360.
[142] GAITA-ARIÑO A, LUIS F, HILL S, et al. Molecular spins for quantum computation[J]. Nature Chemistry, 2019, 11(4): 301-309.
[143] BOGANI L, WERNSDORFER W. Molecular spintronics using single-molecule magnets[J]. Nature Materials, 2008, 7(3): 179-186.
[144] MYDOSH J A. Spin glasses: an experimental introduction[M]. Taylor & Francis: London, 1993, 64-72.
[145] HARRIS T D, COULON C, CLÉRAC R, et al. Record ferromagnetic exchange through cyanide and elucidation of the magnetic phase diagram for a CuIIReIV(CN)2 chain compound[J]. Journal of the American Chemical Society, 2011, 133(1): 123-130.
[146] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351.
[147] COULON C, MIYASAKA H, CLÉRAC R. Single-chain magnets: theoretical approach and experimental systems[J]. Structure and Bonding, 2006, 122: 163-206.
[148] BOGANI L, VINDIGNI A, SESSOLI R, et al. Single chain magnets: where to from here?[J]. Journal of Materials Chemistry, 2008, 18(40): 4750-4758.
[149] SUN H-L, WANG Z-M, GAO S. Strategies towards single-chain magnets[J]. Coordination Chemistry Reviews, 2010, 254(9): 1081-1100.
[150] ZHANG W-X, ISHIKAWA R, Breedlove B, et al. Single-chain magnets: beyond the Glauber model[J]. RSC Advances, 2013, 3(12): 3772-3798.
[151] BÖHME M, PLASS W. How to link theory and experiment for single-chain magnets beyond the Ising model: magnetic properties modeled from ab initio calculations of molecular fragments[J]. Chemical Science, 2019, 10(40): 9189-9202.
[152] YANG J, YOU M-L, LIU S, et al. Cyanide-bridged rope-like chains based on the trigonal bipyramidal [Fe2Cu3] subunits[J]. Inorganic Chemistry, 2023, 62(42): 17530-17536.
[153] MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1294-1314.
[154] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
[155] THORARINSDOTTIR A E, HARRIS T D. Metal-organic framework magnets[J]. Chemical Reviews, 2020, 120(16): 8716-8789.
[156] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781.
[157] KOSAKA W, LIU Z, ZHANG J, et al. Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen[J]. Nature Communications, 2018, 9: 5420.
[158] ZHANG J, KOSAKA W, SUGIMOTO K, et al. Magnetic sponge behavior via electronic state modulations[J]. Journal of the American Chemical Society, 2018, 140(16): 5644-5652.
[159] ZHANG J, KOSAKA W, KITAGAWA Y, et al. A metal-organic framework that exhibits CO2-induced transitions between paramagnetism and ferrimagnetism[J]. Nature Chemistry, 2021, 13(2): 191-199.
[160] ZHANG J, KOSAKA W, KITAGAWA Y, et al. A host-guest electron transfer mechanism for magnetic and electronic modifications in a redox-active metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(18): e202115976.
修改评论