[1] 罗连发, 储梦洁, 刘俊俊. 机器人的发展: 中国与国际的比较[J]. 宏观质量研究, 2019, 7(3): 38-50.
[2] WU T, HE S, LIU J, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136.
[3] DURANT H, YOU J. Getting a feel for the world[J]. Science, 2014, 346(6206): 184-185.
[4] MARKET.US. Global LiDAR Market 2022-2032[Z].
[2024.3.15]. https://market.us/report/lidar-market/.
[5] CHERRY E C. Some experiments on the recognition of speech, with one and with two ears[J]. The Journal of the Acoustical Society of America, 1953, 25(5): 975-979.
[6] HAYKIN S, CHEN Z. The cocktail party problem[J]. Neural Computation, 2005, 17(9): 1875-1902.
[7] MIDDLEBROOKS J C, SIMON J Z, POPPER A N, et al. The auditory system at the cocktail party[M]. New York: Springer, 2017.
[8] WANG D, CHEN J. Supervised speech separation based on deep learning: An overview[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(10): 1702-1726.
[9] FLOREANO D, WOOD R J. Science, technology and the future of small autonomous drones[J]. Nature, 2015, 521(7553): 460-466.
[10] YAACOUB J-P, NOURA H, SALMAN O, et al. Security analysis of drones systems: Attacks, limitations, and recommendations[J]. Internet of Things, 2020, 11: 100218.
[11] PARK S, KIM H T, LEE S, et al. Survey on anti-drone systems: Components, designs, and challenges[J]. IEEE Access, 2021, 9: 42635-42659.
[12] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]. proceedings of the Computer Vision–ECCV 2016: 14th European Conference, The Netherlands: Springer, 2016: 21-37.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada: IEEE, 2016: 779-788.
[14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. preprint at https://arxivorg/abs/201011929, 2020.
[15] RICHMOND R D, CAIN S C. Direct-detection LADAR systems[M]. Washington: SPIE Press, 2010.
[16] MAIMAN T. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[17] MCMANAMON P F. Field guide to Lidar[M]. Washington: SPIE Press, 2015.
[18] FLOOD M. Laser altimetry: From science to commerical lidar mapping[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(11): 1209-1211.
[19] LIU Z, ZHANG F, HONG X. Low-cost retina-like robotic lidars based on incommensurable scanning[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(1): 58-68.
[20] AREANN M-C, BOSCH T, LESCURE M. Laser ranging: a critical review of usual techniques for distance measurement[J]. Opt Eng, 2001, 40(1): 10-19.
[21] WINKER D M, HUNT W H, MCGILL M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): L19803:19801-19805.
[22] MCMANAMON P F, KAMERMAN G, HUFFAKER M. A history of laser radar in the United States[C]. proceedings of the Laser Radar Technology and Applications XV, Orlando, Florida: International Society for Optics and Photonics, 2010: 76840T.
[23] VONDRAK R, KELLER J, CHIN G, et al. Lunar Reconnaissance Orbiter (LRO): Observations for lunar exploration and science[J]. Space Science Reviews, 2010, 150(1): 7-22.
[24] ZHOU Y, CHEN Y, ZHAO H, et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties[J]. Light: Science & Applications, 2022, 11(1): 261.
[25] ZHOU G, LI C, ZHANG D, et al. Overview of underwater transmission characteristics of oceanic LiDAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8144-8159.
[26] ZHANG J, SINGH S. LOAM: Lidar Odometry and Mapping in Real-time[C]. proceedings of the Robotics: Science and Systems, Berkeley, CA: MIT Press, 2014: 1-9.
[27] JAFARBIGLU H, POURREZA A. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops[J]. Computers and Electronics in Agriculture, 2022, 197: 106844.
[28] WU C, YUAN Y, TANG Y, et al. Application of terrestrial laser scanning (TLS) in the architecture, engineering and construction (AEC) industry[J]. Sensors, 2021, 22(1): 265.
[29] RISBøL O, GUSTAVSEN L. LiDAR from drones employed for mapping archaeology–potential, benefits and challenges[J]. Archaeological Prospection, 2018, 25(4): 329-338.
[30] BASTOS D, MONTEIRO P P, OLIVEIRA A S, et al. An overview of LiDAR requirements and techniques for autonomous driving[C]. proceedings of the 2021 Telecoms Conference: IEEE, 2021: 1-6.
[31] WARREN M E. Automotive LIDAR technology[C]. proceedings of the 2019 Symposium on VLSI Circuits, Kyoto: IEEE, 2019: 254-255.
[32] KAMMEL S, ZIEGLER J, PITZER B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639.
[33] BOHREN J, FOOTE T, KELLER J, et al. Little ben: The ben franklin racing team's entry in the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 598-614.
[34] LEONARD J, HOW J, TELLER S, et al. A perception‐driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774.
[35] CHEN J D, MIAO W C, HONG Y H, et al. Recent advances in light detection and ranging: optical modulation solutions and novel nanotechnologies[J]. Advanced Quantum Technologies, 2023: 2300157.
[36] SUN X, ZHANG L, ZHANG Q, et al. Si photonics for practical LiDAR solutions[J]. Applied Sciences, 2019, 9(20): 4225.
[37] RORIZ R, CABRAL J, GOMES T. Automotive LiDAR technology: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6282-6297.
[38] KIM I, MARTINS R J, JANG J, et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 2021, 16(5): 508-524.
[39] BROCK J C, WRIGHT C W, SALLENGER A H, et al. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies[J]. Journal of Coastal Research, 2002: 1-13.
[40] 胡春生. 脉冲半导体激光器高速三维成像激光雷达研究[D], 2005.
[41] KASHANI A G, OLSEN M J, PARRISH C E, et al. A review of LiDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration[J]. Sensors, 2015, 15(11): 28099-28128.
[42] SANDBORN P A M. FMCW Lidar: scaling to the chip-level and improving phase-noise-limited performance[D]. University of California, Berkeley, 2017.
[43] QIAN R, ZHOU K C, ZHANG J, et al. Video-rate high-precision time-frequency multiplexed 3D coherent ranging[J]. Nature Communications, 2022, 13(1): 1476.
[44] RIEMENSBERGER J, LUKASHCHUK A, KARPOV M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170.
[45] LUKASHCHUK A, RIEMENSBERGER J, KARPOV M, et al. Dual chirped microcomb based parallel ranging at megapixel-line rates[J]. Nature Communications, 2022, 13(1): 3280.
[46] LUM D J. Ultrafast time-of-flight 3D LiDAR[J]. Nature Photonics, 2020, 14(1): 2-4.
[47] ZHANG X, KWON K, HENRIKSSON J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603(7900): 253-258.
[48] DALGLEISH F R, CAIMI F M, BRITTON W B, et al. Improved LLS imaging performance in scattering-dominant waters[C]. proceedings of the Ocean sensing and monitoring, Orlando, Florida: SPIE, 2009: 89-100.
[49] 郭世杭. 基于模型参数估计的 Gm-APD 激光雷达透雾算法研究[D]. 哈尔滨工业大学, 2021.
[50] HONG Y H, MIAO W C, HSU W C, et al. Progress of photonic-crystal surface-emitting lasers: a paradigm shift in LiDAR application[J]. Crystals, 2022, 12(6): 800.
[51] WU Y, DENG L, YANG K, et al. Narrow linewidth external cavity laser capable of high repetition frequency tuning for FMCW LiDAR[J]. IEEE Photonics Technology Letters, 2022, 34(21): 1123-1126.
[52] FISHER E M. Principles and early historical development of silicon avalanche and Geiger-mode photodiodes[J]. Photon Counting—Fundamentals and Applications, 2017: 370-377.
[53] ACERBI F, GUNDACKER S. Understanding and simulating SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 16-35.
[54] BAHARMAST A, KURTTI S, KOSTAMOVAARA J. A wide dynamic range laser radar receiver based on input pulse-shaping techniques[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(8): 2566-2577.
[55] WANG X, MA R, LI D, et al. A wide dynamic range analog front-end with reconfigurable transimpedance amplifier for direct ToF LiDAR[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 70(3): 944-948.
[56] LIU M, LIU B, HU J, et al. A 16-channel analog CMOS SiPM with on-chip front-end for D-ToF LiDAR[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2376-2386.
[57] XIAO J, LIU M, ZHU Z. Low walk error multi-stage cascade comparator for tof lidar application[J]. Microelectronics Journal, 2021, 116: 105194.
[58] 李洪鹏, 李国元, 蔡志坚, 等. 全波形激光雷达回波分解方法[J]. 遥感学报, 2019, 23(1): 89-98.
[59] WALLACE A M, HALIMI A, BULLER G S. Full waveform LiDAR for adverse weather conditions[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7064-7077.
[60] LI X, LUO P. Boosting ranging performance of LiDAR using multi-pulse coherent average[J]. IEEE Sensors Journal, 2019, 19(15): 6270-6278.
[61] 辛超. 偏振单光子激光雷达回波信号特征分析与实验研究[D], 2022.
[62] 杨学博. 激光雷达波形模拟模型与定量化研究[D]. 中国科学院大学 (中国科学院空天信息创新研究院), 2021.
[63] 周昊, 毛庆洲, 李清泉. 采样频率和激光脉宽对全波形激光雷达测距精度的影响[J]. 红外与激光工程, 2022, 51(4): 202103631-202103639.
[64] BURNS H N, CHRISTODOULOU C G, BOREMAN G D. System design of a pulsed laser rangefinder[J]. Optical Engineering, 1991, 30(3): 323-329.
[65] HUANG J, ZHANG X, GUO F, et al. Design of an acoustic target classification system based on small-aperture microphone array[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(7): 2035-2043.
[66] DOKMANIĆ I, SCHEIBLER R, VETTERLI M. Raking the cocktail party[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(5): 825-836.
[67] BLAUERT J. Spatial hearing: the psychophysics of human sound localization[M]. Cambridge: MIT press, 1997: 234-246.
[68] XU J, SHI J, LIU G, et al. Modeling attention and memory for auditory selection in a cocktail party environment[C]. proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans: AAAI, 2018: 2564-2571.
[69] LUO Y, MESGARANI N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(8): 1256-1266.
[70] HAN C, O’SULLIVAN J, LUO Y, et al. Speaker-independent auditory attention decoding without access to clean speech sources[J]. Science Advances, 2019, 5(5): eaav6134.
[71] BIZLEY J K, COHEN Y E. The what, where and how of auditory-object perception[J]. Nature Reviews Neuroscience, 2013, 14(10): 693-707.
[72] EPHRAT A, MOSSERI I, LANG O, et al. Looking to listen at the cocktail party: a speaker-independent audio-visual model for speech separation[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-11.
[73] GU R, ZHANG S-X, XU Y, et al. Multi-modal multi-channel target speech separation[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 530-541.
[74] BELL A G. The photophone[J]. Science, 1880, 1(11): 130-134.
[75] SCHAWLOW A L, TOWNES C H. Infrared and optical masers[J]. Physical Review, 1958, 112(6): 1940.
[76] WISSMEYER G, PLEITEZ M A, ROSENTHAL A, et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 2018, 7(1): 1-16.
[77] WEIHONG L, MING L, ZHIGANG Z, et al. LDV remote voice acquisition and enhancement[C]. proceedings of the 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006: 262-265.
[78] QU Y, WANG T, ZHU Z. Vision-aided laser Doppler vibrometry for remote automatic voice detection[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(6): 1110-1119.
[79] SUN L, DU J, XIE Z, et al. Auxiliary features from laser-Doppler vibrometer sensor for deep neural network based robust speech recognition[J]. Journal of Signal Processing Systems, 2018, 90(7): 975-983.
[80] PENG S, LV T, HAN X, et al. Remote speaker recognition based on the enhanced LDV-captured speech[J]. Applied Acoustics, 2019, 143: 165-170.
[81] MOSES J M, TROUT K. A simple laser microphone for classroom demonstration[J]. The Physics Teacher, 2006, 44(9): 600-603.
[82] NASSI B, PIRUTIN Y, SHAMIR A, et al. Lamphone: real-time passive sound recovery from light bulb vibrations[J]. IACR Cryptol ePrint Arch, 2020, 2020: 708.
[83] SHIN H, CHOI K, PARK Y, et al. Security analysis of FHSS-type drone controller[C]. proceedings of the International Workshop on Information Security Applications, Jeju Island: Springer, 2015: 240-253.
[84] HALUZA M, ČECHáK J. Analysis and decoding of radio signals for remote control of drones[C]. proceedings of the 2016 New Trends in Signal Processing (NTSP), Bucharest: IEEE, 2016: 1-5.
[85] FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Classification of loaded/unloaded micro‐drones using multistatic radar[J]. Electronics Letters, 2015, 51(22): 1813-1815.
[86] DROZDOWICZ J, WIELGO M, SAMCZYNSKI P, et al. 35 GHz FMCW drone detection system[C]. proceedings of the 2016 17th International Radar Symposium (IRS), Daejeon: IEEE, 2016: 1-4.
[87] NALAMATI M, KAPOOR A, SAQIB M, et al. Drone detection in long-range surveillance videos[C]. proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taiwan: IEEE, 2019: 1-6.
[88] ZHENG Y, CHEN Z, LV D, et al. Air-to-air visual detection of micro-UAVs: An experimental evaluation of deep learning[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1020-1027.
[89] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, 2018: 4490-4499.
[90] HAMMER M, HEBEL M, LAURENZIS M, et al. Lidar-based detection and tracking of small UAVs[C]. proceedings of the Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, Berlin: SPIE, 2018: 177-185.
[91] DOGRU S, MARQUES L. Drone detection using sparse lidar measurements[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3062-3069.
[92] JEON S, SHIN J-W, LEE Y-J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks[C]. proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island: IEEE, 2017: 1858-1862.
[93] TONG J, XIE W, HU Y-H, et al. Estimation of low-altitude moving target trajectory using single acoustic array[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1848-1858.
[94] CHANG X, YANG C, WU J, et al. A surveillance system for drone localization and tracking using acoustic arrays[C]. proceedings of the 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield: IEEE, 2018: 573-577.
[95] GUVENC I, KOOHIFAR F, SINGH S, et al. Detection, tracking, and interdiction for amateur drones[J]. IEEE Communications Magazine, 2018, 56(4): 75-81.
[96] CHRISTNACHER F, HENGY S, LAURENZIS M, et al. Optical and acoustical UAV detection[C]. proceedings of the Electro-Optical Remote Sensing X, Edinburgh, Scotland: SPIE, 2016: 83-95.
[97] LIU H, WEI Z, CHEN Y, et al. Drone detection based on an audio-assisted camera array[C]. proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), California: IEEE, 2017: 402-406.
[98] LEE H, HAN S, BYEON J-I, et al. 10CNN-based UAV detection and classification using sensor fusion[J]. IEEE Access, 2023: 68791-68808.
[99] COUNCIL N R. Laser radar: progress and opportunities in active electro-optical sensing[M]. Washington: National Academies Press, 2014: 468-496.
[100] CHEN Z, LIU B, WANG S, et al. Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator[J]. Applied Optics, 2018, 57(27): 7750-7757.
[101] CHEN Z, LIU B, WANG S, et al. Efficient subpixel registration for polarization-modulated 3D imaging[J]. Optics Express, 2018, 26(18): 23040-23050.
[102] 田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13(5): 321.
[103] SCHäFERMEIER C, JEŽEK M, MADSEN L S, et al. Deterministic phase measurements exhibiting super-sensitivity and super-resolution[J]. Optica, 2018, 5(1): 60-64.
[104] KASNECI E, SEßLER K, KüCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274.
[105] CASTILLóN M, PALOMER A, FOREST J, et al. State of the art of underwater active optical 3D scanners[J]. Sensors, 2019, 19(23): 5161.
[106] 颜跃武, 安俊明, 张家顺, 等. 光学相控阵技术研究进展[J]. 激光与光电子学进展, 2018, 55(2): 52-62.
[107] HANSARD M, LEE S, CHOI O, et al. Time-of-flight cameras: principles, methods and applications[M]. Berlin: Springer Science & Business Media, 2012: 20-180.
[108] OKANO M, CHONG C. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source[J]. Optics Express, 2020, 28(16): 23898-23915.
[109] 马乐. Gm-APD 激光雷达信号提取算法研究[D]. 哈尔滨工业大学, 2019.
[110] GUNDACKER S, HEERING A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector[J]. Physics in Medicine & Biology, 2020, 65(17): 17TR01.
[111] VILLA F, SEVERINI F, MADONINI F, et al. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR)[J]. Sensors, 2021, 21(11): 3839.
[112] GNECCHI S, DUTTON N A, PARMESAN L, et al. Digital silicon photomultipliers with OR/XOR pulse combining techniques[J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1105-1110.
[113] KUMAGAI O, OHMACHI J, MATSUMURA M, et al. A 189x600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems[C]. proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), Virtual: IEEE, 2021: 110-112.
[114] LIVOX. Mid40 and mid100[Z].
[2024.3.15]. https://www.livoxtech.com/mid-40-and-mid-100.
[115] BEHROOZPOUR B, SANDBORN P A, WU M C, et al. Lidar system architectures and circuits[J]. IEEE Communications Magazine, 2017, 55(10): 135-142.
[116] VASILYEV A. The optoelectronic swept-frequency laser and its applications in ranging, three-dimensional imaging, and coherent beam combining of chirped-seed amplifiers[D]. California Institute of Technology, 2013.
[117] BARRY J R, LEE E A. Performance of coherent optical receivers[J]. Proceedings of the IEEE, 1990, 78(8): 1369-1394.
[118] LAMBERT J-H. Photometria, sive de Mensura et gradibus luminis, colorum et umbrae[M]. Augsburg: Sumptibus viduae E. Klett, 1760.
[119] BOLL S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 1979, 27(2): 113-120.
[120] GUO X, DING S, PENG T, et al. Robot hearing through optical channel in a cocktail party environment[J]. Advanced Intelligent Systems, 2023, 5(1): 2200143.
[121] MORISE M, YOKOMORI F, OZAWA K. WORLD: a vocoder-based high-quality speech synthesis system for real-time applications[J]. IEICE Transactions on Information and Systems, 2016, 99(7): 1877-1884.
[122] DOBREV I, SIM J H, STENFELT S, et al. Sound wave propagation on the human skull surface with bone conduction stimulation[J]. Hearing Research, 2017, 355: 1-13.
[123] COREY R M, JONES U, SINGER A C. Acoustic effects of medical, cloth, and transparent face masks on speech signals[J]. The Journal of the Acoustical Society of America, 2020, 148(4): 2371-2375.
[124] MENDEL L L, GARDINO J A, ATCHERSON S R. Speech understanding using surgical masks: a problem in health care?[J]. Journal of the American Academy of Audiology, 2008, 19(9): 686-695.
[125] CHODOSH J, WEINSTEIN B E, BLUSTEIN J. Face masks can be devastating for people with hearing loss[J]. British Medical Journal, 2020: m3326.
[126] MATHEW L R, PRIYA G, GOPAKUMAR K. Piezoelectric throat microphone based voice analysis[C]. proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Virtual: IEEE, 2021: 1603-1608.
[127] VINCENT E, GRIBONVAL R, FéVOTTE C. Performance measurement in blind audio source separation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4): 1462-1469.
[128] TAAL C H, HENDRIKS R C, HEUSDENS R, et al. A short-time objective intelligibility measure for time-frequency weighted noisy speech[C]. proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Texas: IEEE, 2010: 4214-4217.
[129] PARK S R, LEE J. A fully convolutional neural network for speech enhancement[J]. preprint at https://arxivorg/abs/160907132, 2016.
[130] OORD A V D, DIELEMAN S, ZEN H, et al. Wavenet: A generative model for raw audio[J]. preprint at https://arxivorg/abs/160903499, 2016.
[131] WANG Q, MUCKENHIRN H, WILSON K, et al. Voicefilter: Targeted voice separation by speaker-conditioned spectrogram masking[J]. preprint at https://arxivorg/abs/181004826, 2018.
[132] SHEN J, PANG R, WEISS R J, et al. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions[C]. proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver: IEEE, 2018: 4779-4783.
[133] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[C]. proceedings of the 31st Conference on Neural Information Processing Systemss (NIPS) Montreal: IEEE, 2017: 1-4.
[134] YU D, KOLBæK M, TAN Z-H, et al. Permutation invariant training of deep models for speaker-independent multi-talker speech separation[C]. proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans: IEEE, 2017: 241-245.
[135] ESPOSITO E. Laser Doppler Vibrometry[M]. Brussels: COST Office, 2008: 80-236.
[136] DAINTY J C. Laser speckle and related phenomena[M]. Berlin: Springer science & business Media, 2013: 5-100.
[137] PFISTER T, FISCHER A, CZARSKE J. Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces[J]. Measurement Science and Technology, 2011, 22(5): 055301.
[138] LV T, HAN X, WU S, et al. The effect of speckles noise on the Laser Doppler Vibrometry for remote speech detection[J]. Optics Communications, 2019, 440: 117-125.
[139] JIANG L A, ALBOTA M A, HAUPT R W, et al. Laser vibrometry from a moving ground vehicle[J]. Applied Optics, 2011, 50(15): 2263-2273.
[140] HILL C A, HARRIS M, RIDLEY K D, et al. Lidar frequency modulation vibrometry in the presence of speckle[J]. Applied Optics, 2003, 42(6): 1091-1100.
[141] THOMAS T. Characterization of surface roughness[J]. Precision Engineering, 1981, 3(2): 97-104.
[142] VAN TREES H L. Optimum array processing: Part IV of detection, estimation, and modulation theory[M]. John Wiley & Sons, 2002: 204-321.
[143] GENTILHO JR E, SCALASSARA P R, ABRãO T. Direction-of-arrival estimation methods: A performance-complexity tradeoff perspective[J]. Journal of Signal Processing Systems, 2020, 92(2): 239-256.
[144] DING S, GUO X, PENG T, et al. Drone detection and tracking system based on fused acoustical and optical approaches[J]. Advanced Intelligent Systems, 2023, 5(10): 2300251.
[145] GRONDIN F, MICHAUD F. Lightweight and optimized sound source localization and tracking methods for open and closed microphone array configurations[J]. Robotics and Autonomous Systems, 2019, 113: 63-80.
[146] DUDA A, FRESE U. Accurate detection and localization of checkerboard corners for calibration[C]. Newcastle: BMVC, 2018: 126.
[147] CUI J, NIU J, HE Y, et al. ACLC: Automatic Calibration for non-repetitive scanning LiDAR-Camera system based on point cloud noise optimization[J]. IEEE Transactions on Instrumentation and Measurement, 2023: 5001614.
[148] UNLU E, ZENOU E, RIVIERE N, et al. Deep learning-based strategies for the detection and tracking of drones using several cameras[J]. IPSJ Transactions on Computer Vision and Applications, 2019, 11(1): 1-13.
修改评论