中文版 | English
题名

机器人感知中先进光学技术的原理与应用

其他题名
PRINCIPLE AND APPLICATION OF ADVANCED OPTICAL TECHNOLOGY IN ROBOT SENSING
姓名
姓名拼音
GUO Xiao
学号
12031304
学位类型
博士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
马兆远
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-08
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自21世纪以来,机器人技术已取得长足发展且已融入人们日常生活之中。类似于人类通过感官获得信息的方式,机器人的感知能力是其智能化的先决条件之一。在众多的感知技术中,光学感知技术被认为具有最大潜力。一方面,机器人所处环境中物质的光学特性、位置姿态以及运动状态等信息都可以通过光波携带的丰富信息维度进行感知和编码,从而使得机器人能够理解其周围环境。另一方面,在工业领域,激光的产生、调制、探测和集成等技术已经日趋成熟。因此,结合机器人特定的感知需求和先进的光学技术,可以创造性地增强机器人的感知能力并拓展其感知边界。

本文旨在研究以激光雷达为代表的主动光电感知技术,以解决机器人感知领域的实际问题。首先,本文建立了激光雷达系统级测距性能模型。该模型综合考虑了激光雷达的测量机制、光学过程、光收发器件、信号处理电路、算法以及不同天气条件等方面涉及的物理和数学模型。该模型可为激光雷达产业界提供指导,帮助研发人员从感知需求出发进行光机设计、波长选择、探测器选择、算法选择以及测量机制选择。该模型具有详实的理论支撑和高度可操作性的工程价值。

  其次,本文进行了光学感知机理和样机落地的新尝试。针对鸡尾酒会场景中的人机语音交互问题,本研究研制出名为激光实现的机器人耳朵(Robot Ear Accomplished by Laser,REAL)的样机。REAL利用振动表面散射光的光强变化,从说话人的口罩或喉咙表面无接触获取清晰的语音内容。该方法不受环境中的声学噪声影响,同时具备十几米的测量范围。该技术有望彻底解决语音交互领域的鸡尾酒会问题。

最后,本文进行了感知系统集成和算法开发的工作。针对无人机入侵问题,本文将非重复扫描的远距离激光雷达、相机和自研64通道非均匀麦克风阵列集成,研制了一套多模态小型无人机三维轨迹追踪系统(Multimodal Unmanned Aerial Vehicle 3D Trajectory Exposure System,MUTES)。MUTES同时具备麦克风阵列远量程宽视场角、相机像素精度高识别率高以及激光雷达测距精度高的优点。该系统采用了粗到精和被动到主动的定位策略,其有效性被现场实验验证。MUTES具备业界最远的探测范围(500米半径的半球)、最高的三维定位精度(小于距离的1.5%)、强大的抗干扰能力和可接受的成本,可应用于反无人机窃听、反无人机侦查和野外无人机高精度定位等任务。

通过上述研究工作,本论文在激光雷达的基本原理和系统建模、光学感知机理创新和样机开发、感知系统集成和算法开发等方面进行了深入研究和探索,为主动光电感知技术在机器人领域的应用提供了重要的理论和实践基础。

其他摘要

Since the 21st century, robot technology has made significant advances and has become integrated into people's daily lives. Similar to humans acquiring information through their senses, the perceptual ability of robots is one of the prerequisites for their intelligence. Among various perceptual technologies, optical sensing technology is considered to have the greatest potential. On the one hand, the rich information dimension carried by light waves allows for the perception and encoding of optical characteristics, position, posture, and motion of substances in the robot sensing environment, enabling the robot to understand its surroundings. On the other hand, in the industrial field, the generation, modulation, detection, and integration of lasers, technology has become increasingly mature. Therefore, by combining the specific perceptual needs of robots with advanced optical technology, the perceptual ability of robots can be creatively enhanced, and their perceptual boundaries expanded.

This thesis aims to investigate active optoelectronic sensing technology, particularly Lidar, to address practical problems in the field of robot perception. Firstly, a Lidar system-level ranging performance model is established, integrating physical and mathematical models related to Lidar's measurement mechanism, optical processes, transceiver components, signal processing circuits, algorithms, and diverse weather conditions. This model provides guidance for the Lidar industry, aiding research and development personnel in optical mechanical design, wavelength selection, detector selection, algorithm selection, and measurement mechanism selection based on sensing requirements. It offers substantial theoretical support and high practical engineering value.

Secondly, this thesis presents novel attempts in optical perception mechanisms and prototype development. To address human-robot speech interaction in a cocktail party scenario, we devised a prototype named Robot Ear Accomplished by Laser (REAL). REAL obtains clear speech content from the speaker's mask or throat surface without contact, using the intensity changes of scattered laser from the vibrating surface. This method is not affected by acoustic noise in the environment and has a measurement range of more than ten meters. This technology is expected to completely solve the cocktail party problem in the field of voice interaction.

Finally, this thesis conducted work on perception system integration and algorithm development. Focusing on the issue of unmanned aerial vehicle intrusion, the study integrated non-repetitive scanning long-range Lidar, a camera, and a self-developed 64-channel non-uniform microphone array to develop a Multimodal UAV (Unmanned Aerial Vehicle) 3D Trajectory Tracking System (MUTES). The MUTES has advantages of a long-range wide field of view of microphone array, high-resolution and high identification rate of camera, and high ranging precision of Lidar. The system applies a positioning strategy from coarse to fine and passive to active, and its effectiveness has been validated through experiments. The MUTES system has the industry's farthest detection range (a hemispherical radius of 500 meters), the highest three-dimensional positioning accuracy (less than 1.5% of the distance), strong anti-interference capability, and acceptable costs, making it applicable for tasks such as anti-drone eavesdropping, anti-drone reconnaissance, and high-precision positioning of drones in the field.

Through the aforementioned research work, this thesis extensively explores the basic principles and system modeling of Lidar, as well as mechanism innovation, prototype development, system integration, and algorithm development. These efforts provide a crucial theoretical and practical foundation for the application of active optoelectronic sensing technology in the field of robotics.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] 罗连发, 储梦洁, 刘俊俊. 机器人的发展: 中国与国际的比较[J]. 宏观质量研究, 2019, 7(3): 38-50.
[2] WU T, HE S, LIU J, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122-1136.
[3] DURANT H, YOU J. Getting a feel for the world[J]. Science, 2014, 346(6206): 184-185.
[4] MARKET.US. Global LiDAR Market 2022-2032[Z].
[2024.3.15]. https://market.us/report/lidar-market/.
[5] CHERRY E C. Some experiments on the recognition of speech, with one and with two ears[J]. The Journal of the Acoustical Society of America, 1953, 25(5): 975-979.
[6] HAYKIN S, CHEN Z. The cocktail party problem[J]. Neural Computation, 2005, 17(9): 1875-1902.
[7] MIDDLEBROOKS J C, SIMON J Z, POPPER A N, et al. The auditory system at the cocktail party[M]. New York: Springer, 2017.
[8] WANG D, CHEN J. Supervised speech separation based on deep learning: An overview[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(10): 1702-1726.
[9] FLOREANO D, WOOD R J. Science, technology and the future of small autonomous drones[J]. Nature, 2015, 521(7553): 460-466.
[10] YAACOUB J-P, NOURA H, SALMAN O, et al. Security analysis of drones systems: Attacks, limitations, and recommendations[J]. Internet of Things, 2020, 11: 100218.
[11] PARK S, KIM H T, LEE S, et al. Survey on anti-drone systems: Components, designs, and challenges[J]. IEEE Access, 2021, 9: 42635-42659.
[12] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]. proceedings of the Computer Vision–ECCV 2016: 14th European Conference, The Netherlands: Springer, 2016: 21-37.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada: IEEE, 2016: 779-788.
[14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. preprint at https://arxivorg/abs/201011929, 2020.
[15] RICHMOND R D, CAIN S C. Direct-detection LADAR systems[M]. Washington: SPIE Press, 2010.
[16] MAIMAN T. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[17] MCMANAMON P F. Field guide to Lidar[M]. Washington: SPIE Press, 2015.
[18] FLOOD M. Laser altimetry: From science to commerical lidar mapping[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(11): 1209-1211.
[19] LIU Z, ZHANG F, HONG X. Low-cost retina-like robotic lidars based on incommensurable scanning[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(1): 58-68.
[20] AREANN M-C, BOSCH T, LESCURE M. Laser ranging: a critical review of usual techniques for distance measurement[J]. Opt Eng, 2001, 40(1): 10-19.
[21] WINKER D M, HUNT W H, MCGILL M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): L19803:19801-19805.
[22] MCMANAMON P F, KAMERMAN G, HUFFAKER M. A history of laser radar in the United States[C]. proceedings of the Laser Radar Technology and Applications XV, Orlando, Florida: International Society for Optics and Photonics, 2010: 76840T.
[23] VONDRAK R, KELLER J, CHIN G, et al. Lunar Reconnaissance Orbiter (LRO): Observations for lunar exploration and science[J]. Space Science Reviews, 2010, 150(1): 7-22.
[24] ZHOU Y, CHEN Y, ZHAO H, et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties[J]. Light: Science & Applications, 2022, 11(1): 261.
[25] ZHOU G, LI C, ZHANG D, et al. Overview of underwater transmission characteristics of oceanic LiDAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8144-8159.
[26] ZHANG J, SINGH S. LOAM: Lidar Odometry and Mapping in Real-time[C]. proceedings of the Robotics: Science and Systems, Berkeley, CA: MIT Press, 2014: 1-9.
[27] JAFARBIGLU H, POURREZA A. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops[J]. Computers and Electronics in Agriculture, 2022, 197: 106844.
[28] WU C, YUAN Y, TANG Y, et al. Application of terrestrial laser scanning (TLS) in the architecture, engineering and construction (AEC) industry[J]. Sensors, 2021, 22(1): 265.
[29] RISBøL O, GUSTAVSEN L. LiDAR from drones employed for mapping archaeology–potential, benefits and challenges[J]. Archaeological Prospection, 2018, 25(4): 329-338.
[30] BASTOS D, MONTEIRO P P, OLIVEIRA A S, et al. An overview of LiDAR requirements and techniques for autonomous driving[C]. proceedings of the 2021 Telecoms Conference: IEEE, 2021: 1-6.
[31] WARREN M E. Automotive LIDAR technology[C]. proceedings of the 2019 Symposium on VLSI Circuits, Kyoto: IEEE, 2019: 254-255.
[32] KAMMEL S, ZIEGLER J, PITZER B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[J]. Journal of Field Robotics, 2008, 25(9): 615-639.
[33] BOHREN J, FOOTE T, KELLER J, et al. Little ben: The ben franklin racing team's entry in the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 598-614.
[34] LEONARD J, HOW J, TELLER S, et al. A perception‐driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774.
[35] CHEN J D, MIAO W C, HONG Y H, et al. Recent advances in light detection and ranging: optical modulation solutions and novel nanotechnologies[J]. Advanced Quantum Technologies, 2023: 2300157.
[36] SUN X, ZHANG L, ZHANG Q, et al. Si photonics for practical LiDAR solutions[J]. Applied Sciences, 2019, 9(20): 4225.
[37] RORIZ R, CABRAL J, GOMES T. Automotive LiDAR technology: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6282-6297.
[38] KIM I, MARTINS R J, JANG J, et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 2021, 16(5): 508-524.
[39] BROCK J C, WRIGHT C W, SALLENGER A H, et al. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies[J]. Journal of Coastal Research, 2002: 1-13.
[40] 胡春生. 脉冲半导体激光器高速三维成像激光雷达研究[D], 2005.
[41] KASHANI A G, OLSEN M J, PARRISH C E, et al. A review of LiDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration[J]. Sensors, 2015, 15(11): 28099-28128.
[42] SANDBORN P A M. FMCW Lidar: scaling to the chip-level and improving phase-noise-limited performance[D]. University of California, Berkeley, 2017.
[43] QIAN R, ZHOU K C, ZHANG J, et al. Video-rate high-precision time-frequency multiplexed 3D coherent ranging[J]. Nature Communications, 2022, 13(1): 1476.
[44] RIEMENSBERGER J, LUKASHCHUK A, KARPOV M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170.
[45] LUKASHCHUK A, RIEMENSBERGER J, KARPOV M, et al. Dual chirped microcomb based parallel ranging at megapixel-line rates[J]. Nature Communications, 2022, 13(1): 3280.
[46] LUM D J. Ultrafast time-of-flight 3D LiDAR[J]. Nature Photonics, 2020, 14(1): 2-4.
[47] ZHANG X, KWON K, HENRIKSSON J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603(7900): 253-258.
[48] DALGLEISH F R, CAIMI F M, BRITTON W B, et al. Improved LLS imaging performance in scattering-dominant waters[C]. proceedings of the Ocean sensing and monitoring, Orlando, Florida: SPIE, 2009: 89-100.
[49] 郭世杭. 基于模型参数估计的 Gm-APD 激光雷达透雾算法研究[D]. 哈尔滨工业大学, 2021.
[50] HONG Y H, MIAO W C, HSU W C, et al. Progress of photonic-crystal surface-emitting lasers: a paradigm shift in LiDAR application[J]. Crystals, 2022, 12(6): 800.
[51] WU Y, DENG L, YANG K, et al. Narrow linewidth external cavity laser capable of high repetition frequency tuning for FMCW LiDAR[J]. IEEE Photonics Technology Letters, 2022, 34(21): 1123-1126.
[52] FISHER E M. Principles and early historical development of silicon avalanche and Geiger-mode photodiodes[J]. Photon Counting—Fundamentals and Applications, 2017: 370-377.
[53] ACERBI F, GUNDACKER S. Understanding and simulating SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 16-35.
[54] BAHARMAST A, KURTTI S, KOSTAMOVAARA J. A wide dynamic range laser radar receiver based on input pulse-shaping techniques[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(8): 2566-2577.
[55] WANG X, MA R, LI D, et al. A wide dynamic range analog front-end with reconfigurable transimpedance amplifier for direct ToF LiDAR[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 70(3): 944-948.
[56] LIU M, LIU B, HU J, et al. A 16-channel analog CMOS SiPM with on-chip front-end for D-ToF LiDAR[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2376-2386.
[57] XIAO J, LIU M, ZHU Z. Low walk error multi-stage cascade comparator for tof lidar application[J]. Microelectronics Journal, 2021, 116: 105194.
[58] 李洪鹏, 李国元, 蔡志坚, 等. 全波形激光雷达回波分解方法[J]. 遥感学报, 2019, 23(1): 89-98.
[59] WALLACE A M, HALIMI A, BULLER G S. Full waveform LiDAR for adverse weather conditions[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7064-7077.
[60] LI X, LUO P. Boosting ranging performance of LiDAR using multi-pulse coherent average[J]. IEEE Sensors Journal, 2019, 19(15): 6270-6278.
[61] 辛超. 偏振单光子激光雷达回波信号特征分析与实验研究[D], 2022.
[62] 杨学博. 激光雷达波形模拟模型与定量化研究[D]. 中国科学院大学 (中国科学院空天信息创新研究院), 2021.
[63] 周昊, 毛庆洲, 李清泉. 采样频率和激光脉宽对全波形激光雷达测距精度的影响[J]. 红外与激光工程, 2022, 51(4): 202103631-202103639.
[64] BURNS H N, CHRISTODOULOU C G, BOREMAN G D. System design of a pulsed laser rangefinder[J]. Optical Engineering, 1991, 30(3): 323-329.
[65] HUANG J, ZHANG X, GUO F, et al. Design of an acoustic target classification system based on small-aperture microphone array[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(7): 2035-2043.
[66] DOKMANIĆ I, SCHEIBLER R, VETTERLI M. Raking the cocktail party[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(5): 825-836.
[67] BLAUERT J. Spatial hearing: the psychophysics of human sound localization[M]. Cambridge: MIT press, 1997: 234-246.
[68] XU J, SHI J, LIU G, et al. Modeling attention and memory for auditory selection in a cocktail party environment[C]. proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans: AAAI, 2018: 2564-2571.
[69] LUO Y, MESGARANI N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(8): 1256-1266.
[70] HAN C, O’SULLIVAN J, LUO Y, et al. Speaker-independent auditory attention decoding without access to clean speech sources[J]. Science Advances, 2019, 5(5): eaav6134.
[71] BIZLEY J K, COHEN Y E. The what, where and how of auditory-object perception[J]. Nature Reviews Neuroscience, 2013, 14(10): 693-707.
[72] EPHRAT A, MOSSERI I, LANG O, et al. Looking to listen at the cocktail party: a speaker-independent audio-visual model for speech separation[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-11.
[73] GU R, ZHANG S-X, XU Y, et al. Multi-modal multi-channel target speech separation[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 530-541.
[74] BELL A G. The photophone[J]. Science, 1880, 1(11): 130-134.
[75] SCHAWLOW A L, TOWNES C H. Infrared and optical masers[J]. Physical Review, 1958, 112(6): 1940.
[76] WISSMEYER G, PLEITEZ M A, ROSENTHAL A, et al. Looking at sound: optoacoustics with all-optical ultrasound detection[J]. Light: Science & Applications, 2018, 7(1): 1-16.
[77] WEIHONG L, MING L, ZHIGANG Z, et al. LDV remote voice acquisition and enhancement[C]. proceedings of the 18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006: 262-265.
[78] QU Y, WANG T, ZHU Z. Vision-aided laser Doppler vibrometry for remote automatic voice detection[J]. IEEE/ASME Transactions on Mechatronics, 2010, 16(6): 1110-1119.
[79] SUN L, DU J, XIE Z, et al. Auxiliary features from laser-Doppler vibrometer sensor for deep neural network based robust speech recognition[J]. Journal of Signal Processing Systems, 2018, 90(7): 975-983.
[80] PENG S, LV T, HAN X, et al. Remote speaker recognition based on the enhanced LDV-captured speech[J]. Applied Acoustics, 2019, 143: 165-170.
[81] MOSES J M, TROUT K. A simple laser microphone for classroom demonstration[J]. The Physics Teacher, 2006, 44(9): 600-603.
[82] NASSI B, PIRUTIN Y, SHAMIR A, et al. Lamphone: real-time passive sound recovery from light bulb vibrations[J]. IACR Cryptol ePrint Arch, 2020, 2020: 708.
[83] SHIN H, CHOI K, PARK Y, et al. Security analysis of FHSS-type drone controller[C]. proceedings of the International Workshop on Information Security Applications, Jeju Island: Springer, 2015: 240-253.
[84] HALUZA M, ČECHáK J. Analysis and decoding of radio signals for remote control of drones[C]. proceedings of the 2016 New Trends in Signal Processing (NTSP), Bucharest: IEEE, 2016: 1-5.
[85] FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Classification of loaded/unloaded micro‐drones using multistatic radar[J]. Electronics Letters, 2015, 51(22): 1813-1815.
[86] DROZDOWICZ J, WIELGO M, SAMCZYNSKI P, et al. 35 GHz FMCW drone detection system[C]. proceedings of the 2016 17th International Radar Symposium (IRS), Daejeon: IEEE, 2016: 1-4.
[87] NALAMATI M, KAPOOR A, SAQIB M, et al. Drone detection in long-range surveillance videos[C]. proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taiwan: IEEE, 2019: 1-6.
[88] ZHENG Y, CHEN Z, LV D, et al. Air-to-air visual detection of micro-UAVs: An experimental evaluation of deep learning[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1020-1027.
[89] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]. proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, 2018: 4490-4499.
[90] HAMMER M, HEBEL M, LAURENZIS M, et al. Lidar-based detection and tracking of small UAVs[C]. proceedings of the Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, Berlin: SPIE, 2018: 177-185.
[91] DOGRU S, MARQUES L. Drone detection using sparse lidar measurements[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3062-3069.
[92] JEON S, SHIN J-W, LEE Y-J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks[C]. proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island: IEEE, 2017: 1858-1862.
[93] TONG J, XIE W, HU Y-H, et al. Estimation of low-altitude moving target trajectory using single acoustic array[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1848-1858.
[94] CHANG X, YANG C, WU J, et al. A surveillance system for drone localization and tracking using acoustic arrays[C]. proceedings of the 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield: IEEE, 2018: 573-577.
[95] GUVENC I, KOOHIFAR F, SINGH S, et al. Detection, tracking, and interdiction for amateur drones[J]. IEEE Communications Magazine, 2018, 56(4): 75-81.
[96] CHRISTNACHER F, HENGY S, LAURENZIS M, et al. Optical and acoustical UAV detection[C]. proceedings of the Electro-Optical Remote Sensing X, Edinburgh, Scotland: SPIE, 2016: 83-95.
[97] LIU H, WEI Z, CHEN Y, et al. Drone detection based on an audio-assisted camera array[C]. proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), California: IEEE, 2017: 402-406.
[98] LEE H, HAN S, BYEON J-I, et al. 10CNN-based UAV detection and classification using sensor fusion[J]. IEEE Access, 2023: 68791-68808.
[99] COUNCIL N R. Laser radar: progress and opportunities in active electro-optical sensing[M]. Washington: National Academies Press, 2014: 468-496.
[100] CHEN Z, LIU B, WANG S, et al. Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator[J]. Applied Optics, 2018, 57(27): 7750-7757.
[101] CHEN Z, LIU B, WANG S, et al. Efficient subpixel registration for polarization-modulated 3D imaging[J]. Optics Express, 2018, 26(18): 23040-23050.
[102] 田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13(5): 321.
[103] SCHäFERMEIER C, JEŽEK M, MADSEN L S, et al. Deterministic phase measurements exhibiting super-sensitivity and super-resolution[J]. Optica, 2018, 5(1): 60-64.
[104] KASNECI E, SEßLER K, KüCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274.
[105] CASTILLóN M, PALOMER A, FOREST J, et al. State of the art of underwater active optical 3D scanners[J]. Sensors, 2019, 19(23): 5161.
[106] 颜跃武, 安俊明, 张家顺, 等. 光学相控阵技术研究进展[J]. 激光与光电子学进展, 2018, 55(2): 52-62.
[107] HANSARD M, LEE S, CHOI O, et al. Time-of-flight cameras: principles, methods and applications[M]. Berlin: Springer Science & Business Media, 2012: 20-180.
[108] OKANO M, CHONG C. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source[J]. Optics Express, 2020, 28(16): 23898-23915.
[109] 马乐. Gm-APD 激光雷达信号提取算法研究[D]. 哈尔滨工业大学, 2019.
[110] GUNDACKER S, HEERING A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector[J]. Physics in Medicine & Biology, 2020, 65(17): 17TR01.
[111] VILLA F, SEVERINI F, MADONINI F, et al. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR)[J]. Sensors, 2021, 21(11): 3839.
[112] GNECCHI S, DUTTON N A, PARMESAN L, et al. Digital silicon photomultipliers with OR/XOR pulse combining techniques[J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1105-1110.
[113] KUMAGAI O, OHMACHI J, MATSUMURA M, et al. A 189x600 back-illuminated stacked SPAD direct time-of-flight depth sensor for automotive LiDAR systems[C]. proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), Virtual: IEEE, 2021: 110-112.
[114] LIVOX. Mid40 and mid100[Z].
[2024.3.15]. https://www.livoxtech.com/mid-40-and-mid-100.
[115] BEHROOZPOUR B, SANDBORN P A, WU M C, et al. Lidar system architectures and circuits[J]. IEEE Communications Magazine, 2017, 55(10): 135-142.
[116] VASILYEV A. The optoelectronic swept-frequency laser and its applications in ranging, three-dimensional imaging, and coherent beam combining of chirped-seed amplifiers[D]. California Institute of Technology, 2013.
[117] BARRY J R, LEE E A. Performance of coherent optical receivers[J]. Proceedings of the IEEE, 1990, 78(8): 1369-1394.
[118] LAMBERT J-H. Photometria, sive de Mensura et gradibus luminis, colorum et umbrae[M]. Augsburg: Sumptibus viduae E. Klett, 1760.
[119] BOLL S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 1979, 27(2): 113-120.
[120] GUO X, DING S, PENG T, et al. Robot hearing through optical channel in a cocktail party environment[J]. Advanced Intelligent Systems, 2023, 5(1): 2200143.
[121] MORISE M, YOKOMORI F, OZAWA K. WORLD: a vocoder-based high-quality speech synthesis system for real-time applications[J]. IEICE Transactions on Information and Systems, 2016, 99(7): 1877-1884.
[122] DOBREV I, SIM J H, STENFELT S, et al. Sound wave propagation on the human skull surface with bone conduction stimulation[J]. Hearing Research, 2017, 355: 1-13.
[123] COREY R M, JONES U, SINGER A C. Acoustic effects of medical, cloth, and transparent face masks on speech signals[J]. The Journal of the Acoustical Society of America, 2020, 148(4): 2371-2375.
[124] MENDEL L L, GARDINO J A, ATCHERSON S R. Speech understanding using surgical masks: a problem in health care?[J]. Journal of the American Academy of Audiology, 2008, 19(9): 686-695.
[125] CHODOSH J, WEINSTEIN B E, BLUSTEIN J. Face masks can be devastating for people with hearing loss[J]. British Medical Journal, 2020: m3326.
[126] MATHEW L R, PRIYA G, GOPAKUMAR K. Piezoelectric throat microphone based voice analysis[C]. proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Virtual: IEEE, 2021: 1603-1608.
[127] VINCENT E, GRIBONVAL R, FéVOTTE C. Performance measurement in blind audio source separation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4): 1462-1469.
[128] TAAL C H, HENDRIKS R C, HEUSDENS R, et al. A short-time objective intelligibility measure for time-frequency weighted noisy speech[C]. proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Texas: IEEE, 2010: 4214-4217.
[129] PARK S R, LEE J. A fully convolutional neural network for speech enhancement[J]. preprint at https://arxivorg/abs/160907132, 2016.
[130] OORD A V D, DIELEMAN S, ZEN H, et al. Wavenet: A generative model for raw audio[J]. preprint at https://arxivorg/abs/160903499, 2016.
[131] WANG Q, MUCKENHIRN H, WILSON K, et al. Voicefilter: Targeted voice separation by speaker-conditioned spectrogram masking[J]. preprint at https://arxivorg/abs/181004826, 2018.
[132] SHEN J, PANG R, WEISS R J, et al. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions[C]. proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver: IEEE, 2018: 4779-4783.
[133] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[C]. proceedings of the 31st Conference on Neural Information Processing Systemss (NIPS) Montreal: IEEE, 2017: 1-4.
[134] YU D, KOLBæK M, TAN Z-H, et al. Permutation invariant training of deep models for speaker-independent multi-talker speech separation[C]. proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans: IEEE, 2017: 241-245.
[135] ESPOSITO E. Laser Doppler Vibrometry[M]. Brussels: COST Office, 2008: 80-236.
[136] DAINTY J C. Laser speckle and related phenomena[M]. Berlin: Springer science & business Media, 2013: 5-100.
[137] PFISTER T, FISCHER A, CZARSKE J. Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces[J]. Measurement Science and Technology, 2011, 22(5): 055301.
[138] LV T, HAN X, WU S, et al. The effect of speckles noise on the Laser Doppler Vibrometry for remote speech detection[J]. Optics Communications, 2019, 440: 117-125.
[139] JIANG L A, ALBOTA M A, HAUPT R W, et al. Laser vibrometry from a moving ground vehicle[J]. Applied Optics, 2011, 50(15): 2263-2273.
[140] HILL C A, HARRIS M, RIDLEY K D, et al. Lidar frequency modulation vibrometry in the presence of speckle[J]. Applied Optics, 2003, 42(6): 1091-1100.
[141] THOMAS T. Characterization of surface roughness[J]. Precision Engineering, 1981, 3(2): 97-104.
[142] VAN TREES H L. Optimum array processing: Part IV of detection, estimation, and modulation theory[M]. John Wiley & Sons, 2002: 204-321.
[143] GENTILHO JR E, SCALASSARA P R, ABRãO T. Direction-of-arrival estimation methods: A performance-complexity tradeoff perspective[J]. Journal of Signal Processing Systems, 2020, 92(2): 239-256.
[144] DING S, GUO X, PENG T, et al. Drone detection and tracking system based on fused acoustical and optical approaches[J]. Advanced Intelligent Systems, 2023, 5(10): 2300251.
[145] GRONDIN F, MICHAUD F. Lightweight and optimized sound source localization and tracking methods for open and closed microphone array configurations[J]. Robotics and Autonomous Systems, 2019, 113: 63-80.
[146] DUDA A, FRESE U. Accurate detection and localization of checkerboard corners for calibration[C]. Newcastle: BMVC, 2018: 126.
[147] CUI J, NIU J, HE Y, et al. ACLC: Automatic Calibration for non-repetitive scanning LiDAR-Camera system based on point cloud noise optimization[J]. IEEE Transactions on Instrumentation and Measurement, 2023: 5001614.
[148] UNLU E, ZENOU E, RIVIERE N, et al. Deep learning-based strategies for the detection and tracking of drones using several cameras[J]. IPSJ Transactions on Computer Vision and Applications, 2019, 11(1): 1-13.

所在学位评定分委会
力学
国内图书分类号
TP212.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766092
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
郭虓. 机器人感知中先进光学技术的原理与应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031304-郭虓-系统设计与智能制(32140KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭虓]的文章
百度学术
百度学术中相似的文章
[郭虓]的文章
必应学术
必应学术中相似的文章
[郭虓]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。