中文版 | English
题名

移动机器人相控阵超声波雷达仿真器的设计与实现

其他题名
DESIGN AND IMPLEMENTATION OF A PHASED ARRAY ULTRASONIC RADAR SIMULATOR FOR MOBILE ROBOTS
姓名
姓名拼音
REN Jixiang
学号
12132675
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
马兆远
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

距离传感器对于移动机器人感知周围环境十分重要,典型的距离传感器如激光雷达和深度相机已经得到了广泛应用。然而它们都有其各自的限制,激光雷达通常价格相对高昂,并且激光在雨雾、沙尘等环境中的传输容易衰减,深度相机因容易受到其他光源的干扰而被限制在室内使用,以及它们无法直接探测到玻璃等透明物体。超声波传感器具有成本低、不受恶劣环境影响、能够探测透明物体等优势,把多个超声波传感器以阵列的形式组合成的超声相控阵能够实现三维的测距和成像。但是空气中的超声相控阵因为诸多挑战仍然没有得到广泛应用,为了探究超声相控阵适用于移动机器人的可能性,本文设计并实现了一套移动机器人相控阵超声波雷达仿真器。本研究设计了一款40 kHz 5×5的非均匀稀疏超声阵列,在硬件层面上验证了超声波束的指向性、偏转和扫描功能,并在软件层面上模拟了阵列的收发过程,得到了超声相控阵生成的超声点云。此外,本研究提出了一种超声与相机融合的三维重建方法,包含面元表征和重复扫描两种策略以应对不同类型的场景。该方法在搭建的不同仿真场景中得到了验证并与激光雷达、深度相机等其他传感器进行了比较,展示了其在精度、一致性和完整性等方面的优良表现。本文在部分硬件和软件层面将声学成像应用到空气中,期待为空气中的三维成像研究和应用提供支持和新的选择。

其他摘要

Distance sensors are very important for mobile robots to perceive surrounding environment. Typical sensors like LiDARs and depth cameras have been widely used, yet each has its limitations. LiDARs’ are typically relatively expensive and laser transmission is prone to attenuation in rain, fog and dust, depth cameras’ limitation to indoor use due to their susceptibility to interference from other light sources, and their inability to detect transparent objects directly such as glass. Ultrasonic sensors have advantages such as low cost, resilience to harsh environments, and the capability to detect transparent objects. Combining multiple ultrasonic sensors in an ultrasonic phased array enables three-dimensional ranging and imaging. However, in-air ultrasonic phased arrays have not been widely applied due to various challenges. To explore the potential application of ultrasonic phased arrays for mobile robots, this thesis designs and implements a phased array ultrasonic radar simulator for mobile robots. This study designs a 40 kHz 5×5 non-uniform sparse ultrasonic array and validates the directivity, deflection and scanning capability of ultrasonic beams at the hardware level. Additionally, it emulates the process of phased array transmission and reception at the software level, obtaining ultrasonic point clouds generated by the ultrasonic phased array. Besides, this study proposes a three-dimensional reconstruction method fusing ultrasound and camera, including surfel characterization and repeated scanning strategies to handle different scenarios. The method is validated in different Gazebo scenarios and compared with other sensors like LiDARs and depth cameras. The experimental results reveal the method’s strong performance in terms of accuracy, consistency and completeness. This thesis applies acoustic imaging to air on both hardware and software levels, aiming to offer support and a new choice for three-dimensional imaging in the air.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] WANG Z J, WU Y, NIU Q Q. Multi-sensor fusion in automated driving: A survey[J]. IEEE Access, 2019, 8: 2847-2868.
[2] WALLACE A M, HALIMI A, BULLER G S. Full waveform LiDAR for adverse weather conditions[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7064-7077.
[3] TIBEBU H, ROCHE J, DE SILVA V, et al. Lidar-based glass detection for improved occupancy grid mapping[J]. Sensors, 2021, 21(7): 2263.
[4] ZHANG Y, YE M, MANOCHA D, et al. 3d reconstruction in the presence of glass and mirrors by acoustic and visual fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(8): 1785-1798.
[5] BALEMANS N, HELLINCKX P, STECKEL J. Predicting LiDAR data from sonar images[J]. IEEE Access, 2021, 9: 57897-57906.
[6] FAHIM A, HASAN M, CHOWDHURY M A. Smart parking systems: comprehensive review based on various aspects[J]. Heliyon, 2021, 7(5).
[7] YASIN J N, MOHAMED S A S, HAGHBAYAN M H, et al. Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots[J]. International Journal of Information Technology, 2021, 13: 97-107.
[8] BASS H E, SUTHERLAND L C, ZUCKERWAR A J. Atmospheric absorption of sound: Update[J]. The Journal of the Acoustical Society of America, 1990, 88(4): 2019-2021.
[9] KARAMAN M, WYGANT I O, ORALKAN Ö, et al. Minimally redundant 2-D array designs for 3-D medical ultrasound imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(7): 1051-1061.
[10] LOKESH B, THITTAI A K. Diverging beam transmit through limited aperture: A method to reduce ultrasound system complexity and yet obtain better image quality at higher frame rates[J]. Ultrasonics, 2019, 91: 150-160.
[11] YAN Q B, XIA Q, WANG Y D, et al. URadio: Wideband Ultrasound Communication for Smart Home Applications[J]. IEEE Internet of Things Journal, 2021, 9(15): 13113-13125.
[12] LONG Z L, ZHAO H, PENG H Y, et al. Acoustic levitation for large particle based on concave spherical transducer arrays[J]. IEEE Sensors Journal, 2022, 22(18): 18104-18113.
[13] SURAPPA S, DEGERTEKIN F L. Characterization of a parametric resonance based capacitive ultrasonic transducer in air for acoustic power transfer and sensing[J]. Sensors and Actuators A: Physical, 2020, 303: 111863.
[14] GUO S F, YA Z, WU P Y, et al. A review on acoustic vortices: Generation, characterization, applications and perspectives[J]. Journal of Applied Physics, 2022, 132(21): 210701
[15] BIRJIS Y, SWAMINATHAN S, NAZEMI H, et al. Piezoelectric Micromachined Ultrasonic Transducers (PMUTs): Performance Metrics, Advancements, and Applications[J]. Sensors, 2022, 22(23): 9151.
[16] KHAN T M, TAŞDELEN A S, YILMAZ M, et al. High-intensity airborne CMUT transmitter array with beam steering[J]. Journal of Microelectromechanical Systems, 2020, 29(6): 1537-1546.
[17] PULLANO S A, CRITELLO C D, BIANCO M G, et al. PVDF ultrasonic sensors for in-air applications: a review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(7): 2324-2335.
[18] ALLEVATO G, HINRICHS J, RUTSCH M, et al. Real-time 3-D imaging using an air-coupled ultrasonic phased-array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 68(3): 796-806.
[19] MAIER T, ALLEVATO G, RUTSCH M, et al. Single Microcontroller Air-coupled Waveguided Ultrasonic Sonar System[C]//2021 IEEE Sensors. IEEE, 2021: 1-4.
[20] KONETZKE E, RUTSCH M, HOFFMANN M, et al. Phased array transducer for emitting 40-kHz air-coupled ultrasound without grating lobes[C]//2015 IEEE International Ultrasonics Symposium (IUS). IEEE, 2015: 1-4.
[21] ALLEVATO G, RUTSCH M, HINRICHS J, et al. Spiral air-coupled ultrasonic phased array for high resolution 3D imaging[C]//2020 IEEE International Ultrasonics Symposium (IUS). IEEE, 2020: 1-4.
[22] STECKEL J. Sonar system combining an emitter array with a sparse receiver array for air-coupled applications[J]. IEEE Sensors Journal, 2015, 15(6): 3446-3452.
[23] STECKEL J, BOEN A, PEREMANS H. Broadband 3-D sonar system using a sparse array for indoor navigation[J]. IEEE Transactions on Robotics, 2012, 29(1): 161-171.
[24] KERSTENS R, LAURIJSSEN D, STECKEL J. ERTIS: A fully embedded real time 3d imaging sonar sensor for robotic applications[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 1438-1443.
[25] VERELLEN T, KERSTENS R, STECKEL J. High-resolution ultrasound sensing for robotics using dense microphone arrays[J]. IEEE Access, 2020, 8: 190083-190093.
[26] JANSEN W, LAURIJSSEN D, STECKEL J. Real-time sonar fusion for layered navigation controller[J]. Sensors, 2022, 22(9): 3109.
[27] BALASUBRAMANIAN A B, MAGEE D P, TAYLOR D G. 3-d ultrasonic sensing in air with a narrowband transmitter and a receiver microphone array[C]//IECON 202147th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2021: 1-6.
[28] KUMAR S, FURUHASHI H. Long-range measurement system using ultrasonic range sensor with high-power transmitter array in air[J]. Ultrasonics, 2017, 74: 186-195.
[29] NAIR S K A, JOLADARASHI S, GANESH N. Evaluation of ultrasonic sensor in robot mapping[C]//2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2019: 638-641.
[30] MCCONNELL J, MARTIN J D, ENGLOT B. Fusing concurrent orthogonal wideaperture sonar images for dense underwater 3D reconstruction[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 1653-1660.
[31] PARR B, LEGG M, BRADLEY S, et al. Occluded grape cluster detection and vine canopy visualisation using an ultrasonic phased array[J]. Sensors, 2021, 21(6): 2182.
[32] FURUHASHI H, KUZUYA Y, UCHIDA Y, et al. Three-dimensional imaging sensor system using an ultrasonic array sensor and a camera[C]//SENSORS, 2010 IEEE. IEEE, 2010: 713-718.
[33] CHRISTENSEN J H, HORNAUER S, STELLA X Y. Batvision: Learning to see 3d spatial layout with two ears[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 1581-1587.
[34] ZHAO J, KNEIP L, HE Y J, et al. Minimal case relative pose computation using raypoint-ray features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1176-1190.
[35] HE Y J, LIU X Y, LIU X, et al. Structure Reconstruction Using Ray-Point-Ray Features: Representation and Camera Pose Estimation[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 5388-5394.
[36] GIANNOCCARO N I, SPEDICATO L, DI CASTRI C. A new strategy for spatial reconstruction of orthogonal planes using a rotating array of ultrasonic sensors[J]. IEEE Sensors Journal, 2011, 12(5): 1307-1316.
[37] OHARA R, YASUDA Y, HAMABE R, et al. 3D Reconstruction from Outdoor Ultrasonic Image Using Variation Autoencoder[C]//2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022: 1-5.
[38] 马惠铖.压电效应以及压电材料的研究[J].科技资讯,2010(30):119.
[39] 刘晓宙,龚秀芬,陆荣荣.新型复合结构超声换能器的研制[J].上海交通大学学报,2000,(12):1733-1737.
[40] 李继容.导纳圆图在压电式超声波换能器中的研究[J].仪表技术,2007,(11):62-64.
[41] KAPOOR R, RAMASAMY S, GARDI A, et al. Acoustic sensors for air and surface navigation applications[J]. Sensors, 2018, 18(2): 499.
[42] KANG L, FEENEY A, SU R L, et al. Two-dimensional flexural ultrasonic phased array for flow measurement[C]//2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017: 1-4.
[43] YUAN C, XIE C Z, LI L C, et al. Ultrasonic phased array detection of internal defects in composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 525-531.
[44] WANG Z P, LUO Y, ZHAO G Q, et al. Design and optimization of an OPFC ultrasonic linear phased array transducer[J]. International Journal of Mechanics and Materials in Design, 2017, 13: 57-69.
[45] BALANIS C A. Antenna theory: analysis and design[M]. John Wiley & Sons, 2016.
[46] 韩明华,袁乃昌.整体退火遗传算法在不等间距线天线阵的综合中的应用[J].电子科学学刊,1999,(02):226-231.
[47] NAYAK J, SWAPNAREKHA H, NAIK B, et al. 25 years of particle swarm optimization: Flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2023, 30(3): 1663-1725.
[48] MOHAN A, RAJ A A B. Array thinning of beamformers using simple genetic algorithm[C]//2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE). IEEE, 2020: 1-4.
[49] LI J X, REN S, GUO C J. Synthesis of Sparse Arrays Based On CIGA (Convex Improved Genetic Algorithm)[J]. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2020, 19: 444-456.
[50] LINDELL D B, WETZSTEIN G, KOLTUN V. Acoustic non-line-of-sight imaging[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 6780-6789.

所在学位评定分委会
力学
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766093
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
任纪翔. 移动机器人相控阵超声波雷达仿真器的设计与实现[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132675-任纪翔-系统设计与智能(5274KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[任纪翔]的文章
百度学术
百度学术中相似的文章
[任纪翔]的文章
必应学术
必应学术中相似的文章
[任纪翔]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。