中文版 | English
题名

各向异性木纤维水凝胶及其在临界骨缺损修复的应用研究

其他题名
THE STUDY OF ANISOTROPIC WOOD FIBER HYDROGEL AND ITS APPLICATION IN BONE DEFECT REPAIR
姓名
姓名拼音
YAN Jianfeng
学号
12132091
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
任富增
导师单位
材料科学与工程系
论文答辩日期
2024-05-14
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

骨是一种天然的羟基磷灰石/胶原蛋白复合材料,表现出特殊的多层次各向异性结构。在临床骨缺损治疗领域,传统的自体或者同种异体骨移植具有一定的局限性,而植入骨组织工程支架能够避免这些问题。但大多数基于胶原蛋白的骨组织工程支架与天然骨结构特征差异较大,导致治疗效果不理想。针对该问题,本研究利用天然木材的多层次各向异性结构作为模板,制备一种具有良好骨诱导性的木材纤维基仿生水凝胶支架,通过结合机械刺激和生化刺激的方法,促进支架的骨修复性能。

本课题对松木和杨木两组木材进行脱木素处理,再使用2,2,6,6-四甲基哌啶氧化物介导的氧化体系进行表面改性,制备羧基化木质模板。通过脱木素处理,使支架管壁变薄并增大孔隙率,有利于后续氧化反应。羧基化后松木和杨木的孔隙率分别达到62.7%和78.1%,压缩模量约为430 kPa,并且均表现出木材特有的X射线衍射峰和红外吸收谱,保留了木材的基本结构。根据骨修复支架的结构需求,本课题选择羧基化杨木作为结构模板。

通过偶联反应交联胶原蛋白与羧基化杨木,获得复合支架(WH);而胶原蛋白水凝胶(Col)作为实验对照。扫描电镜图像表明,胶原与模板结合紧密,并且沿纤维分布,而红外吸收光谱和X射线光电子能谱证明两者以酰胺键方式交联。模拟矿化后Col和WH均能沉积钙盐,且形态分别呈球形和片状。在细胞实验中,Col与WH的细胞存活率相近但形态存在差别,WH表面的细胞表现出明显的轴向性。此外,WH可显著增强碱性磷酸酶等成骨细胞活性标志物的基因表达。通过构建大鼠颅骨缺损模型发现,WH组的再生骨的骨体积和骨密度均高于其余实验组,说明WH对体内骨再生有明显的刺激作用。

本课题证明了与骨具有相似各向异性结构的材料能促进骨再生,讨论了各向异性结构诱导细胞成骨分化的机理,探究了一种多尺度模拟骨组织具备的多级取向结构的新方法,有利于推动具有取向性结构的骨修复支架的构建和应用。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] CASANOVA E A, RODRIGUEZ-PALOMO A, STÄHLI L, et al. SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model[J]. Biomaterials, 2023, 294: 121989.
[2] SHIGEMITSU Y, NAGASHIMA H, MATSUNARI H, et al. In vivo evaluation of calcium phosphate ceramics with highly-interconnected pores using porcine tibia defect model[J]. Solid State Phenomena, 2022, 340: 113–117.
[3] SU N, VILLICANA C, BARATI D, et al. Stem cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model[J]. Advanced Materials, 2023, 35(10): 2208781.
[4] TORRES-TORRILLAS M, DAMIÁ E, PELÁEZ P, et al. Intra-osseous infiltration of adipose mesenchymal stromal cells and plasma rich in growth factors to treat acute full depth cartilage defects in a rabbit model: serum osteoarthritis biomarkers and macroscopical assessment[J]. Frontiers in Veterinary Science, 2022, 9: 1057079.
[5] 李雪雯,刘尧,李波.生物支架材料在骨组织工程中的应用[J]. 中国医科大学学报, 2019, 48(11): 1024–1028.
[6] KOUSHIK T M, MILLER C M, ANTUNES E. Bone tissue engineering scaffolds: Function of multi‐material hierarchically structured scaffolds[J]. Advanced Healthcare Materials, 2023, 12: 2202766.
[7] OMAR E B, NASREDDINE E O, ABDELAALI B, et al. Extraction methods, characterization and biomedical applications of collagen: a review[J]. Biointerface Research in Applied Chemistry, 2021, 11(5): 13587–13613.
[8] NORRIS C J, MEADWAY G J, O’SULLIVAN M J, et a1. Self-healing fibre reinforced composites via a bioinspired vasculature[J]. Advanced Functional Materials. 2011, 21(19): 3624–3633.
[9] LIU X, MA P X. Polymeric scaffolds for bone tissue engineering[J]. Annals of Biomedical Engineering, 2004, 32(3): 477–486.
[10] WEGST U, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23–36.
[11] WANG X, XU S, ZHOU S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127–141.
[12] KATTIMANI V S, KONDAKA S, LINGAMANENI K P. Hydroxyapatite–-past, present, and future in bone regeneration[J]. Bone and Tissue Regeneration Insights, 2016, 7: 9–19.
[13] 廖欣宇,王福科,王国梁.骨组织工程支架的进展与挑战[J].中国组织工程研究, 2021, 25(28): 4553–4560.
[14] LIU Y, LUO D, WANG T. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering[J]. Small, 2016, 12(34): 4611–4632.
[15] LIEBERMAN D E, POLK J D, DEMES B. Predicting long bone loading from cross-sectional geometry[J]. American Journal of Physical Anthropology, 2004, 123(2): 156–171.
[16] BOHNER M, MIRON R J. A proposed mechanism for material-induced heterotopic ossification[J]. Materials Today, 2019, 22: 132–141.
[17] EBACHER V, WANG R Z. A unique microcracking process associated with the inelastic deformation of haversian bone[J]. Advanced Functional Materials, 2009, 19(1): 57–66.
[18] 王成龙. 负载SDF-1α的3D打印PCL/BG复合支架对原位骨缺损修复的研究[D]. 长春: 吉林大学, 2022.
[19] DU X, FU S, ZHU Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview[J]. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(27): 4397–4412.
[20] BUSSE B, HAHN M, SOLTAU M, et al. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae[J]. Bone, 2009, 45(6): 1034–1043.
[21] KAUR G, KUMAR V, BAINO F, et al. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges[J]. Materials Science and Engineering: C, 2019, 104: 109895.
[22] CHEN Q, ZHU C, THOUAS G A. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites[J]. Progress in Biomaterials, 2012, 1(1): 2.
[23] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003, 24(13): 2161–2175.
[24] ZHU G, ZHANG T, CHEN M, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds[J]. Bioactive Materials, 2021, 6(11): 4110–4140.
[25] WASCHER D C, BULTHUIS L. Extremity trauma: Field management of sports injuries[J]. Current Reviews in Musculoskeletal Medicine, 2014, 7(4): 387–393.
[26] Xue N N, Ding X F, Huang R Z, et al. Bone tissue engineering in the treatment of bone defects[J]. Pharmaceuticals, 2022, 15(7): 879.
[27] ANNAMALAI R T, HONG X, SCHOTT N G, et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects[J]. Biomaterials, 2019, 208: 32–44.
[28] SCHEMITSCH E H. Size matters: Defining critical in bone defect size! [J]. Journal of Orthopaedic Trauma, 2017, 31(5): S20–S22.
[29] FAOUR O, DIMITRIOU R, COUSINS C A, et al. The use of bone graft substitutes in large cancellous voids: Any specific needs? [J]. Injury, 2011, 42: S87–S90.
[30] XIE C, YE J, LIANG R, et al. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration[J]. Advanced Healthcare Materials, 2021, 10(14): 2100408.
[31] HO-SHUI-LING A, BOLANDER J, RUSTOM L E, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives[J]. Biomaterials, 2018, 180: 143–162.
[32] LOI F, CÓRDOVA L A, PAJARINEN J, et al. Inflammation, fracture and bone repair [J]. Bone, 2016, 86: 119–130.
[33] Einhorn T A, Gerstenfeld L C. Fracture healing: Mechanisms and interventions[J]. Nature Reviews Rheumatology, 2015, 11(1): 45–54.
[34] KOLAR P, SCHMIDT-BLEEK K, SCHELL H, et al. The early fracture hematoma and its potential role in fracture healing[J]. Tissue Engineering - Part B: Reviews, 2010, 16(4): 427–434.
[35] PRYSTAZ K, KAISER K, KOVTUN A, et al. Distinct effects of il-6 classic and trans-signaling in bone fracture healing[J]. American Journal of Pathology, 2018, 188(2): 474–490.
[36] SCHLUNDT C, EL KHASSAWNA T, SERRA A, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification[J]. Bone, 2018, 106: 78–89.
[37] GERSTENFELD L C, CULLINANE D M, BARNES G L, et al. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation[J]. Journal of Cellular Biochemistry, 2003, 88(5): 873–884.
[38] BAHNEY C S, ZONDERVAN R L, ALLISON P, et al. Cellular biology of fracture healing[J]. Journal of Orthopaedic Research, 2019, 37(1): 35–50.
[39] LEE J, LEE S, AHMAD T, et al. Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering[J]. Biomaterials, 2020, 255: 120192.
[40] PAPAGEORGIOU P, VALLMAJO-MARTIN Q, KISIELOW M, et al. Expanded skeletal stem and progenitor cells promote and participate in induced bone regeneration at subcritical BMP-2 dose [J]. Biomaterials, 2019, 217: 119278.
[41] NIU H, MA Y, WU G, et al. Multicellularity-interweaved bone regeneration of BMP-2 loaded scaffold with orchestrated kinetics of resorption and osteogenesis[J]. Biomaterials, 2019, 216: 119216.
[42] RAINA D B, QAYOOM I, LARSSON D, et al. Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery[J]. Biomaterials, 2019, 188: 38–49.
[43] SCHINDELER A, MCDONALD M M, BOKKO P, et al. Bone remodeling during fracture repair: The cellular picture[J]. Seminars in Cell & Developmental Biology, 2008, 19(5), 459–466.
[44] ZAIDI M, CARDOZO C P. Receptor becomes a ligand to control bone remodelling[J]. Nature, 2018, 561(7722): 180–181.
[45] LI L, LU H, ZHAO Y, et al. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives[J]. Materials Science adn Engineering: C, 2019, 98: 1241–1251.
[46] CAO S, ZHAO Y, HU Y, et al. New perspectives: In-situ tissue engineering for bone repair scaffold[J]. Composites Part B: Engineering, 2020, 202: 108445.
[47] PENG D, HAN B, KONG Y, et al. Facile synthesis and characterization of Au nanoparticles-loaded kaolin mediated by Thymbra spicata extract and its application on bone regeneration in a rat calvaria defect model and screening system[J]. Journal of Experimental Nanoscience, 2022, 17(1): 86–99.
[48] KOYANAGI M, FUJIOKA-KOBAYASHI M, INADA R, et al. Skin and bone regeneration of solid bone marrow aspirate concentrate versus platelet-rich fibrin[J]. Tissue Engineering Part A, 2023, 29(5-6): 141–149.
[49] XU F, TAN F, ZHENG Z, et al. Effects of pre-osteogenic differentiation on the bone regeneration potentiality of marrow mesenchymal stem cells/poly (ethylene glycol)-diacrylate hydrogel using a rat cranial defect model[J]. Journal of Biomaterials Applications, 2022, 37(5): 786–794.
[50] ORYAN A, ALIDADI S, MOSHIRI A, et al. Bone Regenerative Medicine: Classic Options, Novel Strategies, and Future Directions[J]. Journal of Orthopaedic Surgery and Research, 2014, 9(1): 18.
[51] HANY E, EL-WASSEFY N, YAHIA S, et al. Characterization of a nanocomposite scaffold and assessment of its osteogenic influence in a rabbit mandibular bone defect model[J]. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2023, 35(1): 76–84.
[52] LEVINGSTONE T J, SHEEHY E J, MORAN C J, et al. Evaluation of a co-culture of rapidly isolated chondrocytes and stem cells seeded on tri-layered collagen-based scaffolds in a caprine osteochondral defect model[J]. Biomaterials and Biosystems, 2022, 8: 100066.
[53] SHI Z, YANG F, PANG Q, et al. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing[J]. International Journal of Biological Macromolecules, 2023, 224: 533–543.
[54] QU H, FU H, HAN Z, et al. Biomaterials for bone tissue engineering scaffolds: a review[J]. RSC Advance, 2019, 9(45): 26252–26262.
[55] WU Y, WOODBINE L, CARR A M, et al. 3D printed calcium phosphate cement (CPC) scaffolds for anti-cancer drug delivery[J]. Pharmaceutics, 2020, 12(11): 1077.
[56] GAHARWAR A K, SINGH I, KHADEMHOSSEINI A. Engineered Biomaterials for in situ Tissue Regeneration[J]. Nature Reviews Materials, 2020, 5: 686–705.
[57] ZHANG F, KING M W. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds[J]. Advanced Healthcare Materials, 2020, 9(13): 58.
[58] DE WITTE T, FRATILA-APACHITEI L E, ZADPOOR A A, et al. Bone Tissue Engineering via growth factor delivery: From scaffolds to complex matrices[J]. Regenerative Biomaterials, 2018, 5(4), 197–211.
[59] FARZIN A, HASSAN S, EBRAHIMI-BAROUGH S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications[J]. Materials Science and Engineering: C, 2019, 105: 110009.
[60] BUSHKALOVA R, FARNO M, TENAILLEAU C, et al. Alginate-chitosan PEC scaffolds: A useful tool for soft tissues cell therapy[J]. International Journal of Pharmaceutics, 2019, 571: 118692.
[61] LI Y, XIAO Y, LIU C. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering[J]. Chemical Reviews, 2017, 117(5): 4376–4421.
[62] DU Z, LENG H, GUO L, et al. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion[J]. Composites Part B: Engineering, 2020, 190: 107937.
[63] CORONA-GOMEZ J, CHEN X, YANG Q. Effect of nanoparticle incorporation and surface coating on mechanical properties of bone scaffolds: A brief review[J]. Journal of Functional Biomaterials, 2016, 7(3): 18.
[64] KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials, 2020, 5(8): 584–603.
[65] PAJARINEN J, LIN T, GIBON E, et al. Mesenchymal stem cell-macrophage crosstalk and Bone Healing[J]. Biomaterials, 2019, 196: 80–89.
[66] KOHANE D S, LANGER R. Biocompatibility and Drug Delivery Systems[J]. Chemical Science, 2010, 1(4): 441–446.
[67] LEI M, QU X, LIU H, et al. Programmable electrofabrication of porous Janus films with tunable Janus balance for anisotropic cell guidance and tissue regeneration[J]. Advanced Functional Materials, 2019, 29(18): 65.
[68] LU J, CHENG C, HE Y, et al. Multilayered graphene hydrogel membranes for guided bone regeneration[J]. Advanced Materials, 2016, 28(21): 4025–4031.
[69] BLOKHUIS T J, ARTS J J C. Bioactive and osteoinductive bone graft substitutes: Definitions, facts and Myths[J]. Injury, 2011, 42(2): S26–S29.
[70] GAHARWAR A K, MIHAIL S M, SWAMI A, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells[J]. Advanced Materials, 2013, 25(24): 3329–3336.
[71] HOPPE A, GÜLDAL N S, BOCCACCINI A R. A review of the Biological Response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32(11): 2757–2774.
[72] MA Q L, ZHAO L Z, LIU R R, et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization[J]. Biomaterials, 2014, 35(37): 9853–9867.
[73] SCHENK R K, BUSER D. Osseointegration: A reality[J]. Periodontology 2000, 1998, 17(1): 22–35.
[74] AGARWAL R, GARCÍA A J. Biomaterial strategy for engineering implants for enhanced osseointegration and Bone Repair[J]. Advanced Drug Delivery Reviews, 2015, 94, 53–62.
[75] TAKIZAWA T, NAKAYAMA N, HANIU H, et al. Titanium fiber plates for bone tissue repair[J]. Advanced Materials, 2107, 30(4).
[76] POBLOTH A M, CHECA S, RAZI H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep[J]. Science Translational Medicine, 2018, 10(423).
[77] BOCCACCIO A, UVA A E, FIORENTINO M, et al. Geometry design optimization of functionally graded scaffolds for Bone Tissue Engineering: A mechanobiological approach[J]. PLOS ONE, 2016, 11(1): e0146935–e0146935.
[78] SU P, TIAN Y, YANG C, et al. Mesenchymal stem cell migration during bone formation and Bone Diseases therapy[J]. International Journal of Molecular Sciences, 2018, 19(8): 2343.
[79] IVIGLIA G, KARGOZAR S, BAINO F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration[J]. Journal of Functional Biomaterials, 2019, 10(1): 3.
[80] LIN T H, WANG H C, CHENG W H, et al. Osteochondral tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model[J]. International Journal of Molecular Sciences, 2019, 20(2): 326.
[81] MA P X, CHOI J W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network[J]. Tissue Engineering, 2001, 7(1): 23–33.
[82] WANG Q, WANG Q, WAN C. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro[J]. Anais Da Academia Brasileira de Ciências, 2012, 84(1): 9–16.
[83] ARORA A, KOTHARI A, KATTI D S. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 169–183.
[84] YOU F, LI Y, ZOU Q, et al. Fabrication and osteogenesis of a porous nanohydroxyapatite/polyamide scaffold with an anisotropic architecture[J]. ACS Biomaterials Science & Engineering, 2015, 1(9): 825–833.
[85] FAGER C, GEBÄCK T, HJÄRTSTAM J, et al. Correlating 3D porous structure in polymer films with mass transport properties using FIB-Sem Tomography[J]. Chemical Engineering Science: X, 2021, 12: 100109.
[86] BINI F, PICA A, MARINOZZI A, et al. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone[J]. PLOS ONE, 2017, 12(12): e0189041.
[87] QIN D, YOU X, WANG H, et al. Natural micropatterned fish scales combing direct osteogenesis and osteoimmunomodulatory functions for enhancing bone regeneration[J]. Composites Part B: Engineering, 2023, 255: 110620.
[88] YIM E K F, PANG S W, LEONG K W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage[J]. Experimental Cell Research, 2007, 313(9): 1820–1829.
[89] RELAN N K, YANG Y, BEQAJ S, et al. Cell elongation induces laminin α2 chain expression in mouse embryonic mesenchymal cells[J]. The Journal of Cell Biology, 1999, 147(6): 1341–1350.
[90] THOMAS C H, COLLIER J H, SFEIR C S, et al. Engineering gene expression and protein synthesis by modulation of nuclear shape[J]. Proceedings of the National Academy of Sciences, 2002, 99(4): 1972–1977.
[91] ITANO N, OKAMOTO S, ZHANG D, et al. Cell spreading controls endoplasmic and nuclear calcium: A physical gene regulation pathway from the cell surface to the nucleus[J]. Proceedings of the National Academy of Sciences, 2003, 100(9): 5181–5186.
[92] LIU C, LOU Y, SUN Z, et al. 4D printing of personalized‐tunable biomimetic periosteum with anisotropic microstructure for accelerated vascularization and Bone Healing[J]. Advanced Healthcare Materials, 2023, 12(22): 2202868.
[93] HWANG J H, LEE D H, BYUN M R, et al. Nanotopological plate stimulates osteogenic differentiation through Taz activation[J]. Scientific Reports, 2017, 7(1): 3632–10.
[94] YANG W, HAN W, HE W, et al. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Materials Science and Engineering: C, 2016, 60: 45–53.
[95] ZHANG Y, GONG H, SUN Y, et al. Enhanced osteogenic differentiation of MC3T3-E1 cells on grid‐topographic surface and evidence for involvement of yap mediator[J]. Journal of Biomedical Materials Research Part A, 2016, 104(5), 1143–1152.
[96] SHOULDERS M D, RAINES R T. Collagen structure and stability[J]. Annual Review of Biochemistry, 2009, 78(1), 929–958.
[97] RAMACHANDRAN G N, KARTHA G. Structure of collagen[J]. Nature, 1954, 174(4423): 269–270.
[98] RICH A, CRICK F H. The molecular structure of collagen[J]. Journal of Molecular Biology, 1961, 3: 483–506.
[99] KRUGER T E, MILLER A H, WANG J. Collagen scaffolds in bone sialoprotein-mediated bone regeneration[J]. The Scientific World Journal, 2013, 2013: 1–6.
[100] HUANG S, FU X. Naturally derived materials-based cell and drug delivery systems in skin regeneration[J]. Journal of Controlled Release, 2010, 142(2): 149–159.
[101] LI Z, DU T, RUAN C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering[J]. Bioactive Materials, 2021, 6(5): 1491–1511.
[102] TAUBENBERGER A V, WOODRUFF M A, BAI H, et al. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation[J]. Biomaterials, 2010, 31(10): 2827–2835.
[103] PENG Y Y, STOICHEVSKA V, VASHI A, et al. Non–animal collagens as new options for cosmetic formulation[J]. International Journal of Cosmetic Science, 2015, 37(6): 636–641.
[104] MINAMIDE A, YOSHIDA M, KAWAKAMI M, et al. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion[J]. Spine, 2005, 30(10): 1134–1138.
[105] ARDELEAN I L, GUDOVAN D, FICAI D, et al. Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing[J]. Materials Letters, 2018, 231, 179–182.
[106] MONTALBANO G, MOLINO G, FIORILLI S, et al. Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds[J]. Journal of the European Ceramic Society, 2020, 40(11): 3689–3697.
[107] LEE H, YANG G H, KIM M, et al. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration[J]. Materials Science and Engineering: C, 2018, 84: 140–147.
[108] AL-AHMADY H H, ABD ELAZEEM A F, BELLAH AHMED N E, et al. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with nano hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration[J]. Journal of Cranio-Maxillofacial Surgery, 2018, 46(9): 1593–1600.
[109] TOOSI S, NADERI-MESHKIN H, KALALINIA F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid[J]. Journal of Materials Science: Materials in Medicine, 2019, 30(3): 4–13.
[110] ZHANG B, LUO Q, DENG B, et al. Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities[J]. Acta Biomaterialia, 2018, 74: 247–259.
[111] SUN X C, WANG H, LI J, et al. Repair of alveolar cleft bone defects by bone collagen particles combined with human umbilical cord mesenchymal stem cells in Rabbit[J]. BioMedical Engineering OnLine, 2020, 19(1): 62.
[112] SAITO M, MARUMO K. Effects of collagen crosslinking on bone material properties in health and disease[J]. Calcified Tissue International, 2015, 97(3): 242–261.
[113] LI Z, ZHOU Y, YAO H, et al. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering[J]. International Journal of Nanomedicine, 2015, 10(1): 3203–3215.
[114] DHAND C, ONG S T, DWIVEDI N, et al. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering[J]. Biomaterials, 2016, 104: 323–338.
[115] KWAK S, HAIDER A, GUPTA K C, et al. Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering[J]. Nanoscale Research Letters, 2016, 11(1): 323.
[116] GUO S, HE L, YANG R, et al. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration[J]. Journal of Biomaterials Science, Polymer Edition, 2019, 31(2): 155–168.
[117] WANG X F, FANG J, ZHU W W, et al. Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair[J]. Advanced functional materials, 2021, 31(20).
[118] LIU J, YU P, WANG D, et al. Wood-derived hybrid scaffold with highly anisotropic features on mechanics and liquid transport toward cell migration and alignment[J]. ACS Applied Materials Interfaces, 2020, 12(15), 17957–17966.
[119] CHEN J, HE X, SUN T, et al. Highly elastic and anisotropic wood‐derived composite scaffold with antibacterial and angiogenic activities for bone repair[J]. Advanced Healthcare Materials, 2023, 12(21).
[120] HU Z, LU J, HU A, et al. Engineering bpqds/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy[J]. Chemical Engineering Journal, 2022, 446: 137269.
[121] NADEEM D, SMITH C A, DALBY M J, et al. Three-dimensional cap/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering[J]. Biofabrication, 2015, 7(1): 015005.
[122] PELAEZ‐VARGAS A, GALLEGO‐PEREZ D, CARVALHO A, et al. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration—in vitro study[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2013, 101B(5): 762–769.
[123] ZHU M, YE H, FANG J, et al. Engineering high-resolution micropatterns directly onto titanium with optimized contact guidance to promote osteogenic differentiation and bone regeneration[J]. ACS Applied Materials Interfaces, 2019, 11(47): 43888–43901.
[124] AZEEM A, ENGLISH A, KUMAR P, et al. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis[J]. Nanomedicine, 2015, 10(5): 693–711.
[125] MALEKI H, SHAHBAZI M A, MONTES S, et al. Mechanically strong silica-silk fibroin Bioaerogel: A hybrid scaffold with ordered honeycomb micromorphology and multiscale porosity for Bone Regeneration[J]. ACS Applied Materials Interfaces, 2019, 11(19): 17256–17269.
[126] SU C, SU Y, LI Z, et al. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method[J]. Materials Science and Engineering: C, 2017, 77: 76–83.
[127] WANG L, LIAN J, XIA Y, et al. A study on in vitro and in vivo bioactivity of silk fibroin/nano-hydroxyapatite/graphene oxide composite scaffolds with directional channels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129886.
[128] SERRANO-BELLO J, CRUZ-MAYA I, SUASTE-OLMOS F, et al. In vivo regeneration of mineralized bone tissue in anisotropic biomimetic sponges[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 587.
[129] LIN X, XING X, LI S, et al. Anisotropic hybrid hydrogels constructed via the noncovalent assembly for Biomimetic Tissue Scaffold[J]. Advanced Functional Materials, 2022, 32(21).
[130] ZHANG Y, LI J, MOUSER V H, et al. Biomimetic mechanically strong one-dimensional hydroxyapatite/poly(D, L-lactide) composite inducing formation of anisotropic collagen matrix[J]. ACS Nano, 2021, 15(11): 17480–17498.
[131] WU H, SHANG Y, ZHANG J, et al. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process[J]. Journal of Biomaterials Applications, 2017, 32(4): 492–503.
[132] HE Y, TIAN M, LI X, et al. A hierarchical‐structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive functions for enhanced alveolar bone regeneration[J]. Advanced Healthcare Materials, 2021, 11(3): e2102236.
[133] HUANG B, ASLAN E, JIANG Z, et al. Engineered dual-scale poly(ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration[J]. Additive Manufacturing, 2020, 36: 101452.
[134] SANKAR S, KAKUNURI M, D ESWARAMOORTHY S, et al. Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: Biomimicking Bone[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): e2073–e2084.
[135] FAN Z, LIU H, SHI S, et al. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration[J]. Materials Today Bio, 2022, 15: 100283.
[136] KIUMARSI N, NAJMODDIN N. Systematically engineered GO with magnetic CuFe2O4 to enhance bone regeneration on 3D printed PCL scaffold[J]. Surfaces and Interfaces, 2023, 39: 102973.
[137] KANWAR S, AL-KETAN O, VIJAYAVENKATARAMAN S. A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering[J]. Materials Design, 2022, 220: 110857.
[138] SUN Y, WU Q, ZHANG Y, et al. 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/Fak Signaling Axis[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2021, 37: 102426.
[139] CHEN C J, HU L B. Nanocellulose toward advanced energy storage devices: structure and electrochemistry[J]. Accounts of Chemical Research, 2018, 51(12): 3154–3165.
[140] BURGERT I, CABANE E, ZOLLFRANK C, et al. Bio-inspired functional wood-based materials-hybrids and replicates[J]. International Materials Reviews, 2016, 60(8): 431–450.
[141] CHEN C J, KUANG Y D, ZHU S Z, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642–666.
[142] ZHU H L, LUO W, CIESIELSKI P N, et al. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications[J]. Chemical Reviews, 2016, 116(16): 9305–9374.
[143] REITERER A, LICHTENEGGER H, TSCHEGG S, et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls[J]. Philosophical Magazine A, 1999, 79(9): 2173–2184.
[144] BARTHELAT F, YIN Z, BUEHLER M J. Structure and mechanics of interfaces in biological materials[J]. Nature Reviews Materials, 2016, 1(4).
[145] TAMPIERI A, SPRIO S, RUFFINI A, et al. From wood to bone: Multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering[J]. Journal of Materials Chemistry, 2009, 19(28): 4973.
[146] KLEMM D, HEUBLEIN B, FINK H, et al. Cellulose: Fascinating biopolymer and sustainable raw material[J]. ChemInform, 2005, 36(36): 238.
[147] WANG Y, QIAN J, ZHAO N, et al. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for Bone Tissue Engineering[J]. Carbohydrate Polymers, 2017, 167: 44–51.
[148] SALIMI S, SOTUDEH-GHAREBAGH R, ZARGHAMI R, et al. Production of nanocellulose and its applications in drug delivery: A critical review[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15800–15827.
[149] OPREA M, VOICU S I. Recent advances in composites based on cellulose derivatives for biomedical applications[J]. Carbohydrate Polymers, 2020, 247: 116683.
[150] Dutta S D, Patel D K, Lim K T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering[J]. Journal of Biological Engineering, 2019, 13(1): 55.
[151] JANMOHAMMADI M, NAZEMI Z, SALEHI A O, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery[J]. Bioactive Materials, 2023, 20: 137–163.
[152] GUTIÉRREZ-HERNÁNDEZ J M, ESCOBAR-GARCÍA D M, ESCALANTE A, et al. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration[J]. Materials Science and Engineering: C, 2017, 75: 445–453.
[153] LIMA F D, PINTO F C, ANDRADE-DA-COSTA B L, et al. Biocompatible bacterial cellulose membrane in dural defect repair of rat[J]. Journal of Materials Science: Materials in Medicine, 2017, 28(3): 37.
[154] HOU J, WANG Y, XUE H, et al. Biomimetic growth of hydroxyapatite on Electrospun Ca/PVP core-shell nanofiber membranes[J]. Polymers, 2018, 10(9): 1032.
[155] SINGH B N, PANDA N N, MUND R, et al. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application[J]. Carbohydrate Polymers, 2016, 151: 335–347.
[156] SASKA S, TEIXEIRA L N, TAMBASCO DE OLIVEIRA P, et al. Bacterial cellulose-collagen nanocomposite for bone tissue engineering[J]. Journal of Materials Chemistry, 2012, 22(41): 22102.
[157] NOH Y K, DOS SANTOS DA COSTA A, PARK Y S, et al. Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells[J]. Carbohydrate Polymers, 2019, 219: 210–218.
[158] ISOGAI A, SAITO T, FUKUZUMI H. Tempo-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71–85.
[159] KUIJPERS A J, ENGBERS G H M, KRIJGSVELD J, et al. Cross-linking and characterisation of gelatin matrices for biomedical applications[J]. Journal of Biomaterials Science. Polymer Ed., 2000, 11(3): 225–243.
[160] SI R, WU C, YU D, et al. Novel TEMPO-oxidized cellulose nanofiber/polyvinyl alcohol/polyethyleneimine nanoparticles for Cu2+ removal in water[J]. Cellulose, 2021, 28(17): 10999–11011.
[161] HAN X, WANG Z, ZHANG Q, et al. An effective technique for constructing wood composite with superior dimensional stability[J]. Holzforschung, 2020, 74(5): 435–443.
[162] WEINER S, TRAUB W, PARKER S B. Macromolecules in mollusc shells and their functions in biomineralization[J]. Philosophical Transactions of the Royal Society of London Biological Sciences, 1984, 304(1121): 425–434.

所在学位评定分委会
材料科学与工程
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766094
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
严健丰. 各向异性木纤维水凝胶及其在临界骨缺损修复的应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132091-严健丰-材料科学与工程(5983KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[严健丰]的文章
百度学术
百度学术中相似的文章
[严健丰]的文章
必应学术
必应学术中相似的文章
[严健丰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。