[参考文献
[1] VON HEIJNE G. The membrane protein universe: what's out there and why bother? [J]. Journal of Internal Medicine, 2007, 261(6): 543-557.
[2] HEGDE R S, KEENAN R J. The mechanisms of integral membrane protein biogenesis [J]. Nature Reviews Molecular Cell Biology, 2022, 23(2): 107-124.
[3] LUCKEY M. Membrane Structural Biology [J]. Membrane Structural Biology, 2008.
[4] LOCHER K P. Mechanistic diversity in ATP-binding cassette (ABC) transporters [J]. Nature Structural & Molecular Biology, 2016, 23(6): 487-493.
[5] WANG J Q, WU Z X, YANG Y, et al. ATP‐binding cassette (ABC) transporters in cancer: a review of recent updates [J]. Journal of Evidence-Based Medicine, 2021, 14(3): 232-256.
[6] REES D C, JOHNSON E, LEWINSON O. ABC transporters: the power to change [J]. Nature Reviews Molecular Cell Biology, 2009, 10(3): 218-227.
[7] HILLGREN K M, KEPPLER D, ZUR A A, et al. Emerging transporters of clinical importance: an update from the international transporter consortium [J]. Clinical Pharmacology & Therapeutics, 2013, 94(1): 52-63.
[8] DEAN M, HAMON Y, CHIMINI G. The human ATP-binding cassette (ABC) transporter superfamily [J]. Journal of Lipid Research, 2001, 42(7): 1007-1017.
[9] ALAM A, LOCHER K P. Structure and mechanism of human ABC transporters [J]. Annual Review of Biophysics, 2023, 52(1): 275-300.
[10] KERR I D. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition [J]. Biochemical and Biophysical Research Communications, 2004, 315(1): 166-173.
[11] MURINA V, KASARI M, TAKADA H, et al. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life [J]. Journal of Molecular Biology, 2019, 431(18): 3568-3590.
[12] NAVARRO-QUILES C, MATEO-BONMATí E, MICOL J L. ABCE proteins: from molecules to development [J]. Frontiers in Plant Science, 2018, 9(8): 1-10.
[13] FITZGERALD M L, MUJAWAR Z, TAMEHIRO N. ABC transporters, atherosclerosis and inflammation [J]. Atherosclerosis, 2010, 211(2): 361-370.
[14] MADDIREVULA S, ALZAHRANI F, AL-OWAIN M, et al. Autozygome and high throughput confirmation of disease genes candidacy [J]. Genetics in Medicine, 2019, 21(3): 736-742.
[15] MICHAKI V, GUIX F X, VENNEKENS K L, et al. Down-regulation of the ATP-binding cassette transporter 2 (ABCA2) reduces amyloid-β production by altering nicastrin maturation and intracellular localization [J]. Journal of Biological Chemistry, 2012, 287(2): 1100-1111.
[16] MATSUMURA Y, SAKAI H, SASAKI M, et al. ABCA3‐mediated choline‐phospholipids uptake into intracellular vesicles in A549 cells [J]. FEBS Letters, 2007, 581(17): 3139-3144.
[17] ALLIKMETS R, SHROYER N F, SINGH N, et al. Mutation of the stargardt disease gene (ABCR) in age-related macular degeneration [J]. Science, 1997, 277(5333): 1805-1807.
[18] BORST P, SCHINKEL A H. P-glycoprotein ABCB1: a major player in drug handling by mammals [J]. Journal of Clinical Investigation, 2013, 123(10): 4131-4133.
[19] ANNESE V. Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis [J]. World Journal of Gastroenterology, 2006, 12(23): 3636.
[20] DE VREE J M L, JACQUEMIN E, STURM E, et al. Mutations in the MDR 3 gene cause progressive familial intrahepatic cholestasis [J]. Proceedings of the National Academy of Sciences, 1998, 95(1): 282-287.
[21] CUI Y X, XIA X Y, ZHOU Y, et al. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria [J]. PLoS ONE, 2013, 8(11): e79808.
[22] WANG L, HE F, BU J, et al. ABCB6 mutations cause ocular coloboma [J]. The American Journal of Human Genetics, 2012, 90(1): 40-48.
[23] HELIAS V, SAISON C, BALLIF B A, et al. ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis [J]. Nature Genetics, 2012, 44(2): 170-173.
[24] BEKRI S, KISPAL G, LANGE H, et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation [J]. Blood, 2000, 96(9): 3256-3264.
[25] ICHIKAWA Y, BAYEVA M, GHANEFAR M, et al. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export [J]. Proceedings of the National Academy of Sciences, 2012, 109(11): 4152-4157.
[26] MAHAJAN A, TALIUN D, THURNER M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps [J]. Nature Genetics, 2018, 50(11): 1505-1513.
[27] ENGELEN M, KEMP S, DE VISSER M, et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management [J]. Orphanet Journal of Rare Diseases, 2012, 7(1): 51.
[28] FERDINANDUSSE S, JIMENEZ-SANCHEZ G, KOSTER J, et al. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3 [J]. Human Molecular Genetics, 2015, 24(2): 361-370.
[29] COELHO D, KIM J C, MIOUSSE I R, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism [J]. Nature Genetics, 2012, 44(10): 1152-1155.
[30] HUBACEK J A, BERGE K E, COHEN J C, et al. Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia [J]. Human Mutation, 2001, 18(4): 359-360.
[31] WILKENS S. Structure and mechanism of ABC transporters [J]. Prime Reports, 2015, 7(2): 1-9.
[32] SENIOR A E, AL-SHAWI M K, URBATSCH I L. The catalytic cycle of P-glycoprotein [J]. FEBS Letters, 1995, 377(3): 285-289.
[33] SIARHEYEVA A, LIU R, SHAROM F J. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides [J]. Journal of Biological Chemistry, 2010, 285(10): 7575-7586.
[34] HIGGINS C F, LINTON K J. The ATP switch model for ABC transporters [J]. Nature Structural & Molecular Biology, 2004, 11(10): 918-926.
[35] OLDHAM M L, CHEN J. Snapshots of the maltose transporter during ATP hydrolysis [J]. Proceedings of the National Academy of Sciences, 2011, 108(37): 15152-15156.
[36] KORKHOV V M, MIREKU S A, LOCHER K P. Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F [J]. Nature, 2012, 490(7420): 367-372.
[37] DAWSON R J, LOCHER K P. Structure of a bacterial multidrug ABC transporter [J]. Nature, 2006, 443(7108): 180-185.
[38] SHAROM F J. The P-glycoprotein multidrug transporter [J]. Essays Biochem, 2011, 50(1): 161-178.
[39] JOHNSON Z L, CHEN J. Structural basis of substrate recognition by the multidrug resistance protein MRP1 [J]. Cell, 2017, 168(6): 1075-1085.e1079.
[40] OLDHAM M L, HITE R K, STEFFEN A M, et al. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter [J]. Nature, 2016, 529(7587): 537-540.
[41] VERHALEN B, WILKENS S. P-glycoprotein retains drug-stimulated ATPase activity upon covalent linkage of the two nucleotide binding domains at their C-terminal ends [J]. Journal of Biological Chemistry, 2011, 286(12): 10476-10482.
[42] JONES P M, GEORGE A M. A reciprocating twin-channel model for ABC transporters [J]. Quarterly Reviews of Biophysics, 2014, 47(3): 189-220.
[43] LIU F, ZHANG Z, CSANáDY L, et al. Molecular structure of the human CFTR ion channel [J]. Cell, 2017, 169(1): 85-95.e88.
[44] MOREAU C, PROST A L, DERAND R, et al. SUR, ABC proteins targeted by KATP channel openers [J]. Journal of Molecular and Cellular Cardiology, 2005, 38(6): 951-963.
[45] JULIANO R L, LING V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants [J]. Biochimica et Biophysica Acta, 1976, 455(1): 152-162.
[46] FLETCHER J I, HABER M, HENDERSON M J, et al. ABC transporters in cancer: more than just drug efflux pumps [J]. Nature Reviews Cancer, 2010, 10(2): 147-156.
[47] KADIOGLU O, SAEED M E M, MUNDER M, et al. Effect of ABC transporter expression and mutational status on survival rates of cancer patients [J]. Biomedicine & Pharmacotherapy, 2020, 131: 110718.
[48] BOONSTRA R, TIMMER-BOSSCHA H, VAN ECHTEN-ARENDS J, et al. Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation [J]. British Journal of Cancer, 2004, 90(12): 2411-2417.
[49] EFFERTH T, GILLET J-P, SAUERBREY A, et al. Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia [J]. Molecular Cancer Therapeutics, 2006, 5(8): 1986-1994.
[50] OHTSUKI S, KAMOI M, WATANABE Y, et al. Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor [J]. Biological and Pharmaceutical Bulletin, 2007, 30(6): 1144-1146.
[51] ODA Y, SAITO T, TATEISHI N, et al. ATP‐binding cassette superfamily transporter gene expression in human soft tissue sarcomas [J]. International Journal of Cancer, 2005, 114(6): 854-862.
[52] LOUPHRASITTHIPHOL P, CHAUHAN J, GODING C R. ABCB5 is activated by MITF and β‐catenin and is associated with melanoma differentiation [J]. Pigment Cell & Melanoma Research, 2020, 33(1): 112-118.
[53] GRIMM M, KRIMMEL M, POLLIGKEIT J, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma [J]. European Journal of Cancer, 2012, 48(17): 3186-3197.
[54] LEUNG I C Y, CHONG C C N, CHEUNG T T, et al. Genetic variation in ABCB5 associates with risk of hepatocellular carcinoma [J]. Journal of Cellular and Molecular Medicine, 2020, 24(18): 10705-10713.
[55] WANG S, TANG L, LIN J, et al. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability [J]. Biochemical and Biophysical Research Communications, 2017, 492(1): 18-26.
[56] SZAKáCS G, VáRADI A, ÖZVEGY-LACZKA C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox) [J]. Drug Discovery Today, 2008, 13(9-10): 379-393.
[57] WANG J Q, YANG Y, CAI C Y, et al. Multidrug resistance proteins (MRPs): structure, function and the overcoming of cancer multidrug resistance [J]. Drug resistance updates, 2021, 54(12): 100743.
[58] BANDLER P E, WESTLAKE C J, GRANT C E, et al. Identification of regions required for apical membrane localization of human multidrug resistance protein 2 [J]. Molecular Pharmacology, 2008, 74(1): 9-19.
[59] YAN F F, LIN Y W, MACMULLEN C, et al. Congenital hyperinsulinism-associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels [J]. Diabetes, 2007, 56(9): 2339-2348.
[60] MARTIN G M, YOSHIOKA C, REX E A, et al. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating [J]. eLife, 2017, 6.
[61] LEE K P K, CHEN J, MACKINNON R. Molecular structure of human KATP in complex with ATP and ADP [J]. eLife, 2017, 6: 1-23.
[62] BICKERS S C, BENLEKBIR S, RUBINSTEIN J L, et al. Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters [J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e2025853118.
[63] DEELEY R G, WESTLAKE C, COLE S P C. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins [J]. Physiological Reviews, 2006, 86(3): 849-899.
[64] KRUH G D, ZENG H, REA P A, et al. MRP subfamily transporters and resistance to anticancer agents [J]. Journal of bioenergetics and biomembranes, 2001, 33(6): 493-501.
[65] DEELEY R G, COLE S P C. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1) [J]. FEBS Letters, 2006, 580(4): 1103-1111.
[66] YIN J Y, HUANG Q, YANG Y, et al. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population [J]. Pharmacogenetics and Genomics, 2009, 19(3): 206-216.
[67] LU J F, POKHAREL D, BEBAWY M. MRP1 and its role in anticancer drug resistance [J]. Drug Metabolism Reviews, 2015, 47(4): 406-419.
[68] JOHNSON Z L, CHEN J. ATP binding enables substrate release from multidrug resistance protein 1 [J]. Cell, 2018, 172(1-2): 81-89.e10.
[69] WANG L, JOHNSON Z L, WASSERMAN M R, et al. Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses [J]. eLife, 2020, 9: 1-20.
[70] CHEUNG L, FLEMMING C L, WATT F, et al. High-throughput screening identifies ceefourin 1 and ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4) [J]. Biochemical Pharmacology, 2014, 91(1): 97-108.
[71] BELINSKY M G, BAIN L J, BALSARA B B, et al. Characterization of MOAT-C and MOAT-D, new members of the MRP/cMOAT subfamily of transporter proteins [J]. Journal of the National Cancer Institute, 1998, 90(22): 1735-1741.
[72] PRATT S, SHEPARD R L, KANDASAMY R A, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites [J]. Molecular Cancer Therapeutics, 2005, 4(5): 855-863.
[73] WIELINGA P, HOOIJBERG J H, GUNNARSDOTTIR S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates [J]. Cancer Research, 2005, 65(10): 4425-4430.
[74] VAN AUBEL R A M H, SMEETS P H E, PETERS J G P, et al. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP [J]. Journal of the American Society of Nephrology, 2002, 13(3): 595-603.
[75] CHEN Z S, GUO Y, BELINSKY M G, et al. Transport of bile acids, sulfated steroids, estradiol 17-β-d-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11) [J]. Molecular Pharmacology, 2005, 67(2): 545-557.
[76] LEGGAS M, ADACHI M, SCHEFFER G L, et al. MRP4 confers resistance to topotecan and protects the brain from chemotherapy [J]. Molecular and Cellular Biology, 2004, 24(17): 7612-7621.
[77] RIUS M. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane [J]. Hepatology, 2003, 38(2): 374-384.
[78] REID G, WIELINGA P, ZELCER N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs [J]. Proceedings of the National Academy of Sciences, 2003, 100(16): 9244-9249.
[79] ZELCER N, REID G, WIELINGA P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4) [J]. Biochemical Journal, 2003, 371(2): 361-367.
[80] VAN AUBEL R A M H, SMEETS P H E, VAN DEN HEUVEL J J M W, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites [J]. American Journal of Physiology-Renal Physiology, 2005, 288(2): 327-333.
[81] SAUNA Z E, NANDIGAMA K, AMBUDKAR S V. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis [J]. Journal of Biological Chemistry, 2004, 279(47): 48855-48864.
[82] RIUS M, THON W F, KEPPLER D, et al. Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract [J]. Journal of Urology, 2005, 174(6): 2409-2414.
[83] ZAMEK-GLISZCZYNSKI M J, NEZASA K I, TIAN X, et al. Evaluation of the role of multidrug resistance-associated protein (MRP) 3 and MRP4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in Abcc3–/– and Abcc4–/– mice [J]. Journal of Pharmacology and Experimental Therapeutics, 2006, 319(3): 1485-1491.
[84] LIN Z P, ZHU Y L, JOHNSON D R, et al. Disruption of cAMP and prostaglandin E2 transport by multidrug rresistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response [J]. Molecular Pharmacology, 2008, 73(1): 243-251.
[85] MAYR B, MONTMINY M. Transcriptional regulation by the phosphorylation-dependent factor CREB [J]. Nature Reviews Molecular Cell Biology, 2001, 2(8): 599-609.
[86] LEE K. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells [J]. Journal of the National Cancer Institute, 2000, 92(23): 1934-1940.
[87] SCHUETZ J D, CONNELLY M C, SUN D, et al. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs [J]. Nature Medicine, 1999, 5(9): 1048-1051.
[88] ADACHI M, SAMPATH J, LAN L B, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing [J]. Journal of Biological Chemistry, 2002, 277(41): 38998-39004.
[89] TIAN Q, ZHANG J, TAN T M C, et al. Human multidrug resistance associated protein 4 confers resistance to camptothecins [J]. Pharmaceutical Research, 2005, 22(11): 1837-1853.
[90] BELINSKY M G, GUO P, LEE K, et al. Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage [J]. Cancer Research, 2007, 67(1): 262-268.
[91] ANDERSON P L, LAMBA J, AQUILANTE C L, et al. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults [J]. Journal of Acquired Immune Deficiency Syndromes, 2006, 42(4): 441-449.
[92] IMAOKA T, KUSUHARA H, ADACHI M, et al. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir [J]. Molecular Pharmacology, 2007, 71(2): 619-627.
[93] WIELINGA P R, REID G, CHALLA E E, et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells [J]. Molecular Pharmacology, 2002, 62(6): 1321-1331.
[94] CHEN Z S, LEE K, WALTHER S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system [J]. Cancer Research, 2002, 62(11): 3144-3150.
[95] DENK G U, SOROKA C J, TAKEYAMA Y, et al. Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat [J]. Journal of Hepatology, 2004, 40(4): 585-591.
[96] RUSSEL F G M, KOENDERINK J B, MASEREEUW R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules [J]. Trends in Pharmacological Sciences, 2008, 29(4): 200-207.
[97] LONG W A, RUBIN L J. Prostacyclin and PGE1 treatment of pulmonary hypertension [J]. American Review of Respiratory Disease, 1987, 136(3): 773-776.
[98] LIPPTON H L, KADOWITZ P J. Inhibition of vasoconstrictor and vasodilator responses by PGE1 in the intestinal vascular bed of the cat [J]. Prostaglandins and Medicine, 1981, 7(6): 537-552.
[99] HARI GOPAL S, PATEL N, FERNANDES C J. Use of prostaglandin E1 in the management of congenital diaphragmatic hernia-a review [J]. Frontiers in Pediatrics, 2022, 10(7).
[100] ZHOU S F, WANG L L, DI Y, et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development [J]. Current Medicinal Chemistry, 2008, 15(20): 1981-2039.
[101] KOCHEL T J, FULTON A M. Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer [J]. Prostaglandins & Other Lipid Mediators, 2015, 116-117: 99-103.
[102] YUE W, ZHAO X, GUO Y, et al. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer [J]. OncoTargets and Therapy, 2014, 7: 343-343.
[103] COPSEL S, GARCIA C, DIEZ F, et al. Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation [J]. Journal of Biological Chemistry, 2011, 286(9): 6979-6988.
[104] JEDLITSCHKY G, TIRSCHMANN K, LUBENOW L E, et al. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage [J]. Blood, 2004, 104(12): 3603-3610.
[105] LI C, KRISHNAMURTHY P C, PENMATSA H, et al. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia [J]. Cell, 2007, 131(5): 940-951.
[106] KOHLER J J, HOSSEINI S H, GREEN E, et al. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters [J]. Laboratory Investigation, 2011, 91(6): 852-858.
[107] WOLF R, GRAMMBAUER S, PALANKAR R, et al. Specific inhibition of the transporter MRP4/ABCC4 affects multiple signaling pathways and thrombus formation in human platelets [J]. Haematologica, 2022, 107(9): 2206-2217.
[108] YIN T, WANG G, YE T, et al. Sulindac, a non-steroidal anti-inflammatory drug, mediates breast cancer inhibition as an immune modulator [J]. Scientific Reports, 2016, 6(1): 19534.
[109] EL-SHEIKH A A K, VAN DEN HEUVEL J J M W, KOENDERINK J B, et al. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein MRP2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport [J]. Journal of Pharmacology and Experimental Therapeutics, 2007, 320(1): 229-235.
[110] KOOL M, HAA M D, SCHEFFER G L, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4 and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines [J]. Cancer Research, 1997, 57: 3537-3547.
[111] MEYER ZU SCHWABEDISSEN H E U, GRUBE M, HEYDRICH B, et al. Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts [J]. The American Journal of Pathology, 2005, 166(1): 39-48.
[112] HANSSEN K M, WHEATLEY M S, YU D M T, et al. GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators [J]. FEBS Journal, 2022, 289(13): 3854-3875.
[113] BORST P, EVERS R, KOOL M, et al. A family of drug transporters: the multidrug resistance-associated proteins [J]. Journal of the National Cancer Institute, 2000, 92(16): 1295-1302.
[114] ZHANG Z, CHEN J. Atomic structure of the cystic fibrosis transmembrane conductance regulator [J]. Cell, 2016, 167(6): 1586-1597.
[115] KHANDELWAL N K, MILLAN C R, ZANGARI S I, et al. The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation [J]. Nature Communications, 2022, 13(1): 1278.
[116] JEDLITSCHKY G, BURCHELL B, KEPPLER D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides [J]. Journal of Biological Chemistry, 2000, 275(39): 30069-30074.
[117] CHEN Z S, LEE K, KRUH G D. Transport of cyclic nucleotides and estradiol 17-β-d-glucuronide by multidrug resistance protein 4 [J]. Journal of Biological Chemistry, 2001, 276(36): 33747-33754.
[118] WIJNHOLDS J, MOL C A A M, VAN DEEMTER L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs [J]. Proceedings of the National Academy of Sciences, 2000, 97(13): 7476-7481.
[119] JANSEN R S, MAHAKENA S, DE HAAS M, et al. ATP-binding cassette subfamily C member 5 (ABCC5) functions as an efflux transporter of glutamate conjugates and analogs [J]. Journal of Biological Chemistry, 2015, 290(51): 30429-30440.
[120] CHO J H, KIM S A, PARK S B, KIM H M, SONG S Y. Suppression of pancreatic adenocarcinoma upregulated factor (PAUF) increases the sensitivity of pancreatic cancer to gemcitabine and 5-FU, and inhibits the formation of pancreatic cancer stem like cells [J]. Oncotarget, 2017, 8(44): 76398-76407.
[121] NAMBARU P K, HUBNER T, KOCK K, et al. Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines to the nucleoside anticancer drug 5-fluorouracil [J]. Drug Metab Dispos, 2011, 39(1): 132-139.
[122] BORGHAEI H, LANGER C J, GADGEEL S, et al. Pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer [J]. Journal of Thoracic Oncology, 2019, 14(1): 124-129.
[123] FAJARDO A M, PIAZZA G A, TINSLEY H N. The role of cyclic nucleotide signaling pathways in cancer: targets for prevention and treatment [J]. Cancers, 2014, 6(1): 436-458.
[124] SCHINKEL A H, JONKER J W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview [J]. Advanced Drug Delivery Reviews, 2003, 55(1): 3-29.
[125] SZAKáCS G, PATERSON J K, LUDWIG J A, et al. Targeting multidrug resistance in cancer [J]. Nature Reviews Drug Discovery, 2006, 5(3): 219-234.
[126] HAGMANN W, FAISSNER R, SCHNöLZER M, et al. Membrane drug transporters and chemoresistance in human pancreatic carcinoma [J]. Cancers, 2010, 3(1): 106-125.
[127] PAE H O, YOO J C, JUN C D, et al. Increased intracellular cAMP renders HL-60 cells resistant to cytotoxicity of taxol [J]. Immunopharmacology and Immunotoxicology, 1999, 21(2): 233-245.
[128] YIN Y, ALLEN P D, JIA L, et al. 8-Cl-adenosine mediated cytotoxicity and sensitization of T-lymphoblastic leukemia cells to TNFα-induced apoptosis is via inactivation of NF-κB [J]. Leukemia Research, 2001, 25(5): 423-431.
[129] RAMA A R, ALVAREZ P J, MADEDDU R, et al. ABC transporters as differentiation markers in glioblastoma cells [J]. Molecular Biology Reports, 2014, 41(8): 4847-4851.
[130] XU H L, WOLDE H M, GAVRILYUK V, et al. cAMP modulates cGMP-mediated cerebral arteriolar relaxation in vivo [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2004, 287(6): 2501-2509.
[131] KOROLNEK T, ZHANG J, BEARDSLEY S, et al. Control of metazoan heme homeostasis by a conserved multidrug resistance protein [J]. Cell Metabolism, 2014, 19(6): 1008-1019.
[132] CHAMBERS I G, KUMAR P, LICHTENBERG J, et al. MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function [J]. Proceedings of the National Academy of Sciences, 2022, 119(6): e2111617119.
[133] DANø K. Active outward transport of daunomycin in resistant ehrlich ascites tumor cells [J]. Biochimica et Biophysica Acta, 1973, 323(3): 466-483.
[134] LEPPER E R, NOOTER K, VERWEIJ J, et al. Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABC1 and ABCG2 [J]. Pharmacogenomics, 2005, 6(2): 115-138.
[135] COLE S, BHARDWAJ G, GERLACH J, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line [J]. Science, 1992, 258(5088): 1650-1654.
[136] DOYLE L A, YANG W, ABRUZZO L V, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proceedings of the National Academy of Sciences, 1998, 95(26): 15665-15670.
[137] WATTEL E, SOLARY E, HECQUET B, et al. Quinine improves results of intensive chemotherapy (IC) in Myelodysplastic Syndromes (MDS) expressing P-glycoprotein (Pgp) [M]. 1999: 35-46.
[138] HöLL V, KOUBA M, DIETEL M, et al. Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein [J]. Biochemical Pharmacology, 1992, 43(12): 2601-2608.
[139] GUNS E S, DENYSSEVYCH T, DIXON R, et al. Drug interaction studies between paclitaxel (Taxol) and OC144-093-a new modulator of MDR in cancer chemotherapy [J]. European Journal of Drug Metabolism and Pharmacokinetics, 2002, 27(2): 119-126.
[140] HEIKE Y, HAMADA H, INAMURA N, et al. Monoclonal anti-P-glycoprotein antibody-dependent killing of multidrug-resistant tumor cells by human mononuclear cells [J]. Japanese Journal of Cancer Research, 1990, 81(11): 1155-1161.
[141] MORIZONO K, XIE Y, RINGPIS G E, et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection [J]. Nature Medicine, 2005, 11(3): 346-352.
[142] OGURI T, ISOBE T, SUZUKI T, et al. Increased expression of the MRP5 gene is associated with exposure to platinum drugs in lung cancer [J]. International Journal of Cancer, 2000, 86(1): 95-100.
[143] GUO Y, KÖCK K, RITTER C A, et al. Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival [J]. Clinical Cancer Research, 2009, 15(5): 1762-1769.
[144] KöNIG J, HARTEL M, NIES A T, et al. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma [J]. International Journal of Cancer, 2005, 115(3): 359-367.
[145] ALEXIOU G A, GOUSSIA A, VOULGARIS S, et al. Prognostic significance of MRP5 immunohistochemical expression in glioblastoma [J]. Cancer Chemotherapy and Pharmacology, 2012, 69(5): 1387-1391.
[146] HAGMANN W, JESNOWSKI R, LöHR J M. Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells [J]. Neoplasia, 2010, 12(9): 740-747.
[147] MARING J G, GROEN H J M, WACHTERS F M, et al. Genetic factors influencing pyrimidine-antagonist chemotherapy [J]. The Pharmacogenomics Journal, 2005, 5(4): 226-243.
[148] PRATT S, CHEN V, PERRY W I, et al. Kinetic validation of the use of carboxydichlorofluorescein as a drug surrogate for MRP5-mediated transport [J]. European Journal of Pharmaceutical Sciences, 2006, 27(5): 524-532.
[149] KATHAWALA R J, GUPTA P, ASHBY C R, JR., et al. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade [J]. Drug Resistance Updates, 2015, 18: 1-17.
[150] HOU Y, ZHU Q, LI Z, et al. The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells [J]. Cell Death & Disease, 2017, 8(3): e2659-e2659.
[151] BERTOLLOTTO G M, DE OLIVEIRA M G, ALEXANDRE E C, et al. Inhibition of multidrug resistance proteins by MK571 enhances bladder, prostate, and urethra relaxation through cAMP or cGMP accumulation [J]. Journal Of Pharmacology And Experimental Therapeutics, 2018, 367(1): 138-146.
[152] EL-READI M Z, EID S, ASHOUR M L, et al. Modulation of multidrug resistance in cancer cells by chelidonine and chelidonium majus alkaloids [J]. Phytomedicine, 2013, 20(3-4): 282-294.
[153] MALDE A K, HILL T A, IYER A, et al. Crystal structures of protein-bound cyclic peptides [J]. Chemical Reviews, 2019, 119(17): 9861-9914.
[154] HENNINOT A, COLLINS J C, NUSS J M. The current state of peptide drug discovery: back to the future? [J]. Journal of Medicinal Chemistry, 2018, 61(4): 1382-1414.
[155] FOSGERAU K, HOFFMANN T. Peptide therapeutics: current status and future directions [J]. Drug Discovery Today, 2015, 20(1): 122-128.
[156] SMITH M C, GESTWICKI J E. Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity [J]. Expert Reviews in Molecular Medicine, 2012, 14(7): e16.
[157] FAIVRE S, DEMETRI G, SARGENT W, et al. Molecular basis for sunitinib efficacy and future clinical development [J]. Nature Reviews Drug Discovery, 2007, 6(9): 734-745.
[158] WANG L, WANG N, ZHANG W, et al. Therapeutic peptides: current applications and future directions [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 48.
[159] LAU J L, DUNN M K. Therapeutic peptides: historical perspectives, current development trends, and future directions [J]. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2700-2707.
[160] DIAO L, MEIBOHM B. Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides [J]. Clinical Pharmacokinetics, 2013, 52(10): 855-868.
[161] AHUJA S, ROUGE L, SWEM D L, et al. Structural analysis of bacterial ABC transporter inhibition by an antibody fragment [J]. Structure, 2015, 23(4): 713-723.
[162] PIETZ H L, ABBAS A, JOHNSON Z L, et al. A macrocyclic peptide inhibitor traps MRP1 in a catalytically incompetent conformation [J]. Proceedings of the National Academy of Sciences, 2023, 120(11): e2220012120.
[163] SHAFFER B C, GILLET J P, PATEL C, et al. Drug resistance: still a daunting challenge to the successful treatment of AML [J]. Drug Resistance Updates, 2012, 15(1-2): 62-69.
[164] GOTE V, NOOKALA A R, BOLLA P K, et al. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue [J]. International Journal of Molecular Sciences, 2021, 22(9).
[165] JUAN-CARLOS P-D M, PERLA-LIDIA P-P, STEPHANIE-TALIA M-M, et al. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine [J]. Molecular Biology Reports, 2021, 48(2): 1883-1901.
[166] HUANG X, ZHANG X, AN N, et al. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25 [J]. Nature Plants, 2023, 9(10): 1709-1719.
[167] HUANG J, RAUSCHER S, NAWROCKI G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins [J]. Nature Methods, 2017, 14(1): 71-73.
[168] VANOMMESLAEGHE K, HATCHER E, ACHARYA C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields [J]. Journal of Computational Chemistry, 2009, 32(1): 671-690.
[169] ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers [J]. SoftwareX, 2015, 1-2: 19-25.
[170] COLóN-RAMOS D A, LA RIVIERE P, SHROFF H, et al. Promoting transparency and reproducibility in enhanced molecular simulations [J]. Nature Methods, 2019, 16(8): 670-673.
[171] BLOCH M, RAJ I, PAPE T, et al. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4 [J]. Structure, 2023, 31(11): 1407-1418.e6.
[172] POURMAL S, GREEN E, BAJAJ R, et al. Structural basis of prostaglandin efflux by MRP4 [J]. Nature Structural & Molecular Biology, 2024.
[173] CHEN Y, WANG L, HOU W T, et al. Structural insights into human ABCC4-mediated transport of platelet agonist and antagonist [J]. Nature Cardiovascular Research, 2023, 2(7): 693-701.
[174] WEN J, LUO J, HUANG W, et al. The pharmacological and physiological role of multidrug-resistant protein 4 [J]. Journal of Pharmacology and Experimental Therapeutics, 2015, 354(3): 358-375.
[175] FORSBERG B O, SHAH P N M, BURT A. A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps [J]. Nature Communications, 2023, 14(1): 5802.
[176] LEMMON M A. Membrane recognition by phospholipid-binding domains [J]. Nature Reviews Molecular Cell Biology, 2008, 9(2): 99-111.
[177] DI PAOLO G, DE CAMILLI P. Phosphoinositides in cell regulation and membrane dynamics [J]. Nature, 2006, 443(7112): 651-657.
[178] KHANDELWAL N K, TOMASIAK T M. Structural basis for autoinhibition by the dephosphorylated regulatory domain of Ycf1 [J]. Nature Communications, 2024, 15(1): 2389.
[179] NOSOL K, ROMANE K, IROBALIEVA R N, et al. cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1 [J]. Proceedings of the National Academy of Sciences, 2020, 117(42): 26245-26253.
[180] ALLER S G, YU J, WARD A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding [J]. Science, 2009, 323(5922): 1718-1722.
[181] TAYLOR N M I, MANOLARIDIS I, JACKSON S M, et al. Structure of the human multidrug transporter ABCG2 [J]. Nature, 2017, 546(7659): 504-509.
[182] NITESH A, KHANDELWAL K, TOMASIAK T M. Structural Basis for Autoinhibition by the Dephosphorylated Regulatory Domain of Ycf1 [J]. Nature Communications, 2024, 15(1):2389.
[183]TAN N C, YU P, KWON Y U, et al. High-throughput evaluation of relative cell permeability between peptoids and peptides [J]. Bioorganic & Medicinal Chemistry, 2008, 16(11): 5853-5861.
[184] KWON Y U, KODADEK T. Quantitative comparison of the relative cell permeability of cyclic and linear peptides [J]. Chemistry & Biology, 2007, 14(6): 671-677.
[185] WATSON J L, JUERGENS D, BENNETT N R, et al. De novo design of protein structure and function with RFdiffusion [J]. Nature, 2023, 620(7976): 1089-1100.
修改评论