中文版 | English
题名

半透明反式CsPbI3钙钛矿太阳能电池及其叠层器件研究

其他题名
RESEARCH ON SEMITRANSPARENT INVERTED CsPbI3 PEROVSKITE SOLAR CELLS AND APPLICATIONS IN TANDEM SOLAR CELLS
姓名
姓名拼音
TANG Zhaoheng
学号
12132071
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
郭旭岗
导师单位
材料科学与工程系
外机构导师
姜岩
外机构导师单位
北京理工大学
论文答辩日期
2024-05-08
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着单结太阳能电池效率的不断提高,大幅提高效率的空间有限。为了突破单结器件的Shockley-Queisser 极限,叠层太阳能电池通过结合宽带隙和窄带隙半导体材料,可以吸收更广泛的太阳光谱,并减少总体的热能耗散,从而能够有效提高能量转换效率。CsPbI3钙钛矿的宽带隙和热稳定性高的特点使其成为与铜铟镓硒叠层太阳能电池的理想顶电池光吸收层材料。本工作主要关注反式CsPbI3钙钛矿及其半透明器件存在的问题,开发了一种有机小分子空穴传输材料和一种磁控溅射缓冲层材料。

        空穴传输材料2T-2TPA-2COOHCsPbI3钙钛矿有着良好的能级排列匹配,同时其具有较小的光学吸收和较高的空穴迁移率以及能够有效钝化钙钛矿界面。基于该空穴传输材料,制备反式CsPbI3钙钛矿太阳能电池,其最大能量转换效率达到了18.30%

         在基于2T-2TPA-2COOH的器件基础上,制备半透明CsPbI3钙钛矿器件,研究了缓冲层材料在磁控溅射透明电极中的作用。将原子层沉积氧化锡替换为纳米二氧化锡缓冲层,在CsPbI3钙钛矿器件上成功制备透明导电电极。基于该空穴传输材料与磁控溅射缓冲层材料,实现了半透明的反式CsPbI3钙钛矿太阳能电池的制备,其效率达到了16.73%。本工作的CsPbI3钙钛矿与铜铟镓硒太阳能电池组合的四端叠层器件效率为23.47%

综上所述,本工作探索了半透明反式CsPbI3钙钛矿太阳能电池器件存在的问题,关注空穴传输材料和磁控溅射缓冲材料,一定程度上解决了基础器件的效率问题和半透明器件的制备问题,展示了其在半透明太阳能电池和叠层太阳能电池中的研究潜力和应用前景。

其他摘要

As the efficiency of single-junction solar cells continues to improve, the scope for significant efficiency enhancements becomes limited. To surpass the Shockley-Queisser limit of single-junction devices, tandem solar cells combine wide-bandgap and narrow-bandgap semiconductor materials to absorb a broader spectrum of sunlight and reduce thermal energy dissipation, thereby effectively increasing the energy conversion efficiency. The wide bandgap and high thermal stability of CsPbI3 perovskite make it an ideal top-cell light absorber material for tandem solar cells in conjunction with copper indium gallium selenide (CIGS). This study primarily addresses the challenges associated with inverted CsPbI3 perovskite and its semi-transparent devices and develops an organic small molecule hole-transporting material and a magnetron sputtering buffer layer material.

         The hole-transporting material, 2T-2TPA-2COOH, exhibits good energy level alignment with CsPbI3 perovskite, along with minimal optical absorption, high hole mobility, and effective passivation of the perovskite interface. Based on this hole-transporting material, inverted CsPbI3 perovskite solar cells were fabricated, achieving a maximum power conversion efficiency of 18.30%.

         Semi-transparent CsPbI3 perovskite devices were prepared based on the 2T-2TPA-2COOH devices. The role of the buffer layer material in magnetron sputtering transparent conductive electrodes was investigated. The transparent conductive electrodes fabricated successfully on CsPbI3 perovskite devices through replacing atomic layer deposited tin oxide with nano particle tin-dioxide buffer layers. Utilizing this hole-transporting material and magnetron sputtering buffer layer material, semi-transparent inverted CsPbI3 perovskite solar cells were prepared, achieving an efficiency of 16.73%. The four-terminal tandem device combining CsPbI3 perovskite with CIGS solar cells demonstrated an efficiency of 23.47%.

         In summary, this study addresses the challenges of semi-transparent inverted CsPbI3 perovskite solar cell devices, focusing on hole-transporting materials and magnetron sputtering buffer materials, which to some extent resolve efficiency and fabrication issues of basic and semi-transparent devices. This demonstrates their research potential and application prospects in semi-transparent and tandem solar cells.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] AWASTHI A, SHUKLA A K, MURALI MANOHAR S R, et.al. Review on sun tracking technology in solar PV system[J/OL]. Energy Reports, 2020, 6: 392-405
[2024-03-06]. DOI:10.1016/J.EGYR.2020.02.004.
[2] AL-EZZI A. The market of solar panels in the United Kingdom[J/OL]. Applied Solar Energy (English translation of Geliotekhnika), 2017, 53(1): 78-84
[2024-03-06]. https://link.springer.com/article/10.3103/S0003701X17010029. DOI:10.3103/S0003701X17010029/METRICS.
[3] ALBERI K, BERRY J J, CORDELL J J, et.al. A roadmap for tandem photovoltaics[J/OL].Joule,2024. https://linkinghub.elsevier.com/retrieve/pii/S2542435124000448. DOI:10.1016/j.joule.2024.01.017.
[4] CAO F, BIAN L, LI L. Perovskite solar cells with high-efficiency exceeding 25%: a review[J/OL]. Energy Materials and Devices, 2024. DOI:10.26599/emd.2024.9370018.
[5] KRANZ L, ABATE A, FEURER T, et.al. High-efficiency polycrystalline thin film tandem solar cells[J/OL]. Journal of Physical Chemistry Letters, 2015, 6(14): 2676-2681. DOI:10.1021/acs.jpclett.5b01108.
[6] EPERON G E, HÖRANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[M/OL]//Nature Reviews Chemistry. Nature Research, 2017. DOI:10.1038/S41570-017-0095.
[7] BAILIE C D, CHRISTOFORO M G, MAILOA J P, et.al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J/OL]. Energy and Environmental Science, 2015, 8(3): 956-963. DOI:10.1039/c4ee03322a.
[8] LIU K, CHEN B, YU Z J, et.al. Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells[J/OL]. Journal of Materials Chemistry A, 2022, 10(3): 1343-1349. DOI:10.1039/d1ta09143c.
[9] FRAAS L M, O’NEILL M J. Low-Cost Solar Electric Power[J/OL]. Low-Cost Solar Electric Power, 2023
[2024-03-06]. DOI:10.1007/978-3-031-30812-3.
[10] XING Y, HAN P, WANG S, et.al. A review of concentrator silicon solar cells[J/OL]. Renewable and Sustainable Energy Reviews, 2015, 51: 1697-1708
[2024-03-06]. DOI:10.1016/J.RSER.2015.07.035.
[11] SHARMA K, SHARMA V, SHARMA S S. Dye-Sensitized Solar Cells: Fundamentals and Current Status[J/OL]. Nanoscale Research Letters 2018 13:1, 2018, 13(1): 1-46
[2024-03-06]. https://link.springer.com/article/10.1186/s11671-018-2760-6. DOI:10.1186/S11671-018-2760-6.
[12] PAN Z, RAO H, MORA-SERÓ I, et.al. Quantum dot-sensitized solar cells[J/OL]. Chemical Society Reviews, 2018, 47(20): 7659-7702
[2024-03-06]. https://pubs.rsc.org/en/content/articlehtml/2018/cs/c8cs00431e. DOI:10.1039/C8CS00431E.
[13] GU X, LAI X, ZHANG Y, et.al. Organic Solar Cell With Efficiency Over 20% and VOC Exceeding 2.1 V Enabled by Tandem With All-Inorganic Perovskite and Thermal Annealing-Free Process[J/OL]. Advanced Science, 2022, 9(28): 2200445
[2024-03-06]. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200445. DOI:10.1002/ADVS.202200445.
[14] REHMAN F, SYED I H, KHANAM S, et.al. Fourth-generation solar cells: a review[M/OL]//Energy Advances. Royal Society of Chemistry, 2023: 1239-1262. DOI:10.1039/d3ya00179b.
[15] LEI H, HARDY D, GAO F, et.al. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives[J/OL]. Advanced Functional Materials,2021,31(49):2105898
[2024-0308]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202105898.DOI:10.1002/ADFM.202105898.
[16] LIU S, BIJU V P, QI Y, et.al. Recent progress in the development of high-efficiency inverted perovskite solar cells[M/OL]//NPG Asia Materials. Nature Research, 2023. DOI:10.1038/s41427-023-00474-z.
[17] WAN-JIAN YIN S, WEI S H, YIN W J, et.al. As featured in: Title: Halide perovskite materials for solar cells: a theoretical review An extensive review of recent investigations into the structural, electrical, and optical properties of halide perovskite materials in relation to their applications and challenges in solar cells Halide perovskite materials for solar cells: a theoretical review[J/OL]. 2015
[2024-03-06]. www.rsc.org/MaterialsA. DOI:10.1039/c4ta05033a.
[18] BARTEL C J, SUTTON C, GOLDSMITH B R, et.al. New tolerance factor to predict the stability of perovskite oxides and halides[R/OL]. (2019). https://www.science.org.
[19] LI M H, QIU F Z, WANG S, et.al. Hole transporting materials in inorganic CsPbI3−xBrx solar cells: Fundamentals, criteria and opportunities[M/OL]//Materials Today. Elsevier B.V., 2022: 250-268. DOI:10.1016/j.mattod.2021.11.017.
[20] SHARMA D, MEHRA R, RAJ B. Comparative analysis of photovoltaic technologies for high efficiency solar cell design[J/OL]. Superlattices and Microstructures, 2021, 153: 106861
[2024-03-06]. DOI:10.1016/J.SPMI.2021.106861.
[21] WARBY J, SHAH S, THIESBRUMMEL J, et.al. Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells[J/OL]. Advanced Energy Materials, 2023, 13(48): 2303135
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202303135. DOI:10.1002/AENM.202303135.
[22] MIYASAKA T, KULKARNI A, KIM G M, et.al. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free?[J/OL]. Advanced Energy Materials, 2020, 10(13): 1902500
[2024-03-03]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201902500. DOI:10.1002/AENM.201902500.
[23] WANG Z, SHI Z, LI T, et.al. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion[J/OL]. Angewandte Chemie International Edition, 2017, 56(5): 1190-1212
[2024-03-03]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201603694. DOI:10.1002/ANIE.201603694.
[24] CHEN C, SONG Z, XIAO C, et.al. Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration[J/OL]. ACS Energy Letters, 2020, 5(8): 2560-2568. DOI:10.1021/acsenergylett.0c01350.
[25] YU P, ZHANG W, REN F, et.al. Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: mechanisms and processes[M/OL]//Journal of Materials Chemistry C. Royal Society of Chemistry, 2022: 4999-5023. DOI:10.1039/d1tc05851g.
[26] FU S, SUN N, LE J, et.al. Tailoring Defects Regulation in Air-Fabricated CsPbI3for Efficient Inverted All-Inorganic Perovskite Solar Cells with Vocof 1.225 V[J/OL]. ACS Applied Materials and Interfaces, 2022, 14(27): 30937-30945. DOI:10.1021/acsami.2c07420.
[27] FU S, LE J, GUO X, et.al. Polishing the Lead-Poor Surface for Efficient Inverted CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2022, 34(38). DOI:10.1002/adma.202205066.
[28] WANG S, LI M H, ZHANG Y, et.al. Surface n-type band bending for stable inverted CsPbI3 perovskite solar cells with over 20% efficiency[J/OL]. Energy and Environmental Science, 2023, 16(6): 2572-2578. DOI:10.1039/d3ee00423f.
[29] SUN N, FU S, LI Y, et.al. Tailoring Crystallization Dynamics of CsPbI3 for Scalable Production of Efficient Inorganic Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2024, 34(6). DOI:10.1002/adfm.202309894.
[30] JOŠT M, KÖHNEN E, AL-ASHOURI A, et.al. Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and beyond[J/OL]. ACS Energy Letters, 2022, 7(4): 1298-1307. DOI:10.1021/acsenergylett.2c00274.
[31] GARCÍA CERRILLO J, DISTLER A, MATTEOCCI F, et.al. Matching the Photocurrent of 2-Terminal Mechanically-Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width[J/OL]. Solar RRL, 2024, 8(3). DOI:10.1002/solr.202300767.
[32] WANG Z, SONG Z, YAN Y, et.al. Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit[M/OL]//Advanced Science. John Wiley and Sons Inc., 2019. DOI:10.1002/advs.201801704.
[33] X-ray Diffraction Analysis Principle Instrument and Applications I Definition, Methods, XRD analysis, and 5 Advantages.[EB/OL].
[2024-03-05]. https://physicswave.com/x-ray-diffraction-analysis-principle-instrument-and-applications/.
[34] VAN DER POL T P A, DATTA K, WIENK M M, et.al. The Intrinsic Photoluminescence Spectrum of Perovskite Films[J/OL]. Advanced Optical Materials, 2022, 10(8): 2102557
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202102557. DOI:10.1002/ADOM.202102557.
[35] Measuring the Resistivity and Determining the Conductivity Type of Semiconductor Materials Using a Four-Point Collinear Probe and the Model 6221 DC and AC Current Source Application Note Se ries[R].
[36] Two-Wire vs. Four-Wire Resistance Measurements: Which Configuration Makes Sense for Your Application? | Tektronix[EB/OL].
[2024-03-05]. https://www.tek.com/en/documents/technical-article/two-wire-vs-four-wire-resistance-measurements-which-configuration-makes-s.
[37] Field Emission Scanning Electron Microscopy (FESEM) – PhotoMetrics[EB/OL].
[2024-03-05]. https://photometrics.net/field-emission-scanning-electron-microscopy-fesem/.
[38] LIU W, JIANG Z, LIU P, et.al. Perovskite Phase Analysis by SEM Facilitating Efficient Quasi-2D Perovskite Light-Emitting Device Designs[J/OL]. Advanced Optical Materials, 2022, 10(16): 2200518
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202200518. DOI:10.1002/ADOM.202200518.
[39] SI H, ZHANG S, MA S, et.al. Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells[J/OL]. Advanced Energy Materials, 2020, 10(10): 1903922
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201903922. DOI:10.1002/AENM.201903922.
[40] SUN J, MA K, LIN Z Y, et.al. Tailoring Molecular-Scale Contact at the Perovskite/Polymeric Hole-Transporting Material Interface for Efficient Solar Cells[J/OL]. Advanced Materials, 2023, 35(26): 2300647
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202300647. DOI:10.1002/ADMA.202300647.
[41] SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J/OL]. Surface and Interface Analysis, 1979, 1(1): 2-11
[2024-03-07]. https://onlinelibrary.wiley.com/doi/full/10.1002/sia.740010103. DOI:10.1002/SIA.740010103.
[42] STEVIE F A, DONLEY C L. Introduction to x-ray photoelectron spectroscopy [J/OL]. J. Vac. Sci. Technol. A, 2020, 38: 63204
[2024-03-05]. https://doi.org/10.1116/6.0000412. DOI:10.1116/6.0000412.
[43] LIN W C, LO W C, LI J X, et.al. In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition[J/OL].
[2024-03-05].https://doi.org/10.1038/s41529-021-00162-9. DOI:10.1038/s41529-021-00162-9.
[44] Fermi level | Electron Energy, Band Gap & Conduction | Britannica[EB/OL].
[2024-03-02]. https://www.britannica.com/science/Fermi-level.
[45] WANG Y, LIU X, ZHANG T, et.al. The Role of Dimethylammonium Iodide in CsPbI3 Perovskite Fabrication: Additive or Dopant?[J/OL]. Angewandte Chemie International Edition, 2019, 58(46): 16691-16696
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201910800. DOI:10.1002/ANIE.201910800.
[46] WANG Y, DUAN L, ZHANG M, et.al. PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review[M/OL]//Solar RRL. John Wiley and Sons Inc, 2022. DOI:10.1002/solr.202200234.
[47] LIU X, ZHENG B, SHI L, et.al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive[J/OL]. Nature Photonics 202217:1,2022,17(1):96-105
[2024-03-06]. https://www.nature.com/articles/s41566-022-01111-x. DOI:10.1038/s41566-022-01111-x.
[48] LI M H, WANG S, MA X, et.al. Hydrogen bonding facilitated dimethylammonium extraction for stable and efficient CsPbI3 solar cells with environmentally benign processing[R].
[49] CUI Y, SHI J, MENG F, et.al. A Versatile Molten-Salt Induction Strategy to Achieve Efficient CsPbI3 Perovskite Solar Cells with a High Open-Circuit Voltage>1.2V[J/OL]. Advanced Materials, 2022, 34(45).DOI:10.1002/adma.202205028.
[50] FU S, LI X, WAN J, et.al. In Situ Stabilized CsPbI3 for Air-Fabricated Inverted Inorganic Perovskite Photovoltaics with Wide Humidity Operating Window[J/OL]. Advanced Functional Materials, 2022, 32(14). DOI:10.1002/adfm.202111116.
[51] FU S, ZHANG W, LI X, et.al. Humidity-Assisted Chlorination with Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI3Perovskite Solar Cells[J/OL]. ACS Energy Letters, 2021, 6(10): 3661-3668. DOI:10.1021/acsenergylett.1c01817.
[52] WU T, WANG Y, DAI Z, et.al. Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups[J/OL]. Advanced Materials, 2019, 31(24): 1900605
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900605. DOI:10.1002/ADMA.201900605.
[53] HEO J H, ZHANG F, PARK J K, et.al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells[J/OL]. Joule, 2022, 6(7): 1672-1688
[2024-03-08]. http://www.cell.com/article/S2542435122002409/fulltext. DOI:10.1016/j.joule.2022.05.013.
[54] JI R, ZHANG Z, HOFSTETTER Y J, et.al. Perovskite phase heterojunction solar cells[J/OL]. Nature Energy 2022 7:12, 2022, 7(12): 1170-1179
[2024-03-08].https://www.nature.com/articles/s41560-022-01154-y. DOI:10.1038/s41560-022-01154-y.
[55] YU G, JIANG K J, GU W M, et.al. Vacuum-Assisted Thermal Annealing of CsPbI3 for Highly Stable and Efficient Inorganic Perovskite Solar Cells[J/OL]. Angewandte Chemie International Edition, 2022, 61(27): e202203778
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202203778. DOI:10.1002/ANIE.202203778.
[56] SUN N, FU S, LI Y, et.al. Tailoring Crystallization Dynamics of CsPbI3 for Scalable Production of Efficient Inorganic Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2024, 34(6). DOI:10.1002/adfm.202309894.
[57] WANG Y, IBRAHIM DAR M, ONO L K, et.al. Thermodynamically stabilized b-CsPbI3–based perovskite solar cells with efficiencies >18%[J/OL]. Science,2019,365(6453):591-595
[2024-03-08]. https://www.science.org/doi/10.1126/science.aav8680.DOI:10.1126/SCIENCE.AAV8680/SUPPL_FILE/AAV8680_WANG_SM.PDF.
[58] TAN S, SHI J, YU B, et.al. Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2021, 31(21): 2010813
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010813. DOI:10.1002/ADFM.202010813.
[59] YU B, SHI J, TAN S, et.al. Efficient (>20 %) and Stable All-Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts[J/OL]. Angewandte Chemie International Edition, 2021, 60(24): 13436-13443
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202102466. DOI:10.1002/ANIE.202102466.
[60] YOON S M, MIN H, KIM J B, et.al. Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells[J/OL]. Joule, 2021, 5(1): 183-196. DOI:10.1016/j.joule.2020.11.020.
[61] TAN S, YU B, CUI Y, et.al. Temperature-Reliable Low-Dimensional Perovskites Passivated Black-Phase CsPbI3 toward Stable and Efficient Photovoltaics[J/OL]. Angewandte Chemie - International Edition, 2022, 61(23). DOI:10.1002/anie.202201300.
[62] ZHANG J, CHE B, ZHAO W, et.al. Polar Species for Effective Dielectric Regulation to Achieve High-Performance CsPbI3 Solar Cells[J/OL]. Advanced Materials, 2022, 34(41): 2202735
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202202735. DOI:10.1002/ADMA.202202735.
[63] CUI Y, SHI J, MENG F, et.al. A Versatile Molten-Salt Induction Strategy to Achieve Efficient CsPbI3 Perovskite Solar Cells with a High Open-Circuit Voltage >1.2 V[J/OL]. Advanced Materials, 2022, 34(45): 2205028
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202205028. DOI:10.1002/ADMA.202205028.
[64] DU Y, TIAN Q, WANG S, et.al. Manipulating the Formation of 2D/3D Heterostructure in Stable High-Performance Printable CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2023, 35(5): 2206451
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202206451. DOI:10.1002/ADMA.202206451.
[65] XU C, ZHANG S, FAN W, et.al. Pushing the Limit of Open-Circuit Voltage Deficit via Modifying Buried Interface in CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2023, 35(7): 2207172
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202207172. DOI:10.1002/ADMA.202207172.
[66] SUN X, SHAO Z, LI Z, et.al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell[J/OL]. Joule, 2022, 6(4): 850-860
[2024-03-08]. http://www.cell.com/article/S2542435122000708/fulltext. DOI:10.1016/j.joule.2022.02.004.
[67] FU S, LI X, WAN L, et.al. Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92%[J/OL]. Nano-Micro Letters, 2020, 12(1)
[2024-03-01]. DOI:10.1007/S40820-020-00509-Y.
[68] JIANG K, WANG J, WU F, et.al. Dopant-Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells[J/OL]. Advanced Materials, 2020, 32(16)
[2024-03-01]. DOI:10.1002/ADMA.201908011.
[69] ZHANG D, XU P, WU T, et.al. Cyclopenta[hi]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells[J/OL]. Journal of Materials Chemistry A, 2019, 7(10): 5221-5226
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2019/ta/c8ta12139g. DOI:10.1039/C8TA12139G.
[70] YIN X, SONG Z, LI Z, et.al. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J/OL]. Energy & Environmental Science, 2020, 13(11): 4057-4086
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/ee/d0ee02337j. DOI:10.1039/D0EE02337J.
[71] YUAN J, LING X, YANG D, et.al. Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells[J/OL]. Joule, 2018, 2(11): 2450-2463
[2024-03-01]. DOI:10.1016/J.JOULE.2018.08.011.
[72] WANG K, JIN Z, LIANG L, et.al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J/OL]. Nature Communications, 2018, 9(1)
[2024-03-01]. DOI:10.1038/S41467-018-06915-6.
[73] YIN X, SONG Z, LI Z, et.al. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J/OL]. Energy & Environmental Science, 2020, 13(11): 4057-4086
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/ee/d0ee02337j. DOI:10.1039/D0EE02337J.
[74] MA J, LI Y, LI J, et.al. Constructing highly efficient all-inorganic perovskite solar cells with efficiency exceeding 17% by using dopant-free polymeric electron-donor materials[J/OL]. Nano Energy, 2020, 75: 104933
[2024-03-01]. DOI:10.1016/J.NANOEN.2020.104933.
[75] WANG P, WANG H, JEONG M, et.al. Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84%[J/OL]. Journal of Materials Chemistry C, 2020, 8(25): 8507-8514
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/tc/d0tc01892a. DOI:10.1039/D0TC01892A.
[76] JIANG Y, FEURER T, CARRON R, et.al. High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2Tandem Solar Cells[J/OL]. ACS Nano, 2020, 14(6): 7502-7512. DOI:10.1021/acsnano.0c03265.
[77] CHEN W, ZHANG J, XU G, et.al. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency[J/OL]. Advanced Materials, 2018, 30(21). DOI:10.1002/adma.201800855.
[78] FENG X, FU S, MIAO R, et.al. Heating-insulating and semitransparent inorganic perovskite solar cells[J/OL]. Solar Energy Materials and Solar Cells, 2022, 240. DOI:10.1016/j.solmat.2022.111683.
[79] YANG S C, LIN T Y, OCHOA M, et.al. Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process[J/OL]. Nature Energy, 2023, 8(1): 40-51. DOI:10.1038/s41560-022-01157-9.
[80] WANG Y, WENISCH R, SCHLATMANN R, et.al. Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite-CIGSe Tandem Solar Cells[M/OL]//Advanced Energy Materials. Wiley-VCH Verlag, 2018. DOI:10.1002/aenm.201801692.
[81] TODOROV T, GERSHON T, GUNAWAN O, et.al. Monolithic Perovskite-CIGS Tandem Solar Cells via in Situ Band Gap Engineering[J/OL]. Advanced Energy Materials, 2015, 5(23). DOI:10.1002/aenm.201500799.
[82] HAN Q, HSIEH Y T, MENG L, et.al. High-performance perovskite/ Cu(In,Ga)Se 2 monolithic tandem solar cells Downloaded from[R/OL]. (2018). http://science.sciencemag.org/.
[83] SHRIVASTAV N, KASHYAP S, MADAN J, et.al. Perovskite-CIGS Monolithic Tandem Solar Cells with 29.7% Efficiency: A Numerical Study[J/OL]. Energy and Fuels, 2023, 37(4): 3083-3090. DOI:10.1021/acs.energyfuels.2c03973.
[84] JOŠT M, BERTRAM T, KOUSHIK D, et.al. 21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se 2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces[J/OL]. ACS Energy Letters, 2019, 4(2): 583-590. DOI:10.1021/acsenergylett.9b00135.
[85] LIU K, CHEN B, YU Z J, et.al. Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A[R]//This journal is. 2021.
[86] FU F, FEURER T, WEISS T P, et.al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration[J/OL]. Nature Energy, 2017, 2(1). DOI:10.1038/nenergy.2016.190.
[87] SHEN H, DUONG T, PENG J, et.al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity[J/OL]. Energy and Environmental Science, 2018, 11(2): 394-406. DOI:10.1039/c7ee02627g.
[88] FU F, PISONI S, WEISS T P, et.al. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells[J/OL]. Advanced Science, 2018, 5(3). DOI:10.1002/advs.201700675.
[89] FU F, FEURER T, JÄGER T, et.al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications[J/OL]. Nature Communications, 2015, 6. DOI:10.1038/ncomms9932.
[90] PRESS RELEASE 1 RECORD BREAKING 23% EFFICIENCY PROVED FOR FLEXIBLE PEROVSKITE/CIGS-TANDEM[R/OL]. www.imec-int.com.
[91] PAETZOLD U W, JAYSANKAR M, GEHLHAAR R, et.al. Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%[J/OL]. Journal of Materials Chemistry A, 2017, 5(20): 9897-9906. DOI:10.1039/c7ta01651d.
[92] ZHANG C, CHEN M, FU F, et.al. CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics[J/OL]. Energy and Environmental Science, 2022, 15(4): 1536-1544. DOI:10.1039/d1ee04008a.
[93] SHEN H, DUONG T, PENG J, et.al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity[J/OL]. Energy and Environmental Science, 2018, 11(2): 394-406. DOI:10.1039/c7ee02627g.
[94] LIU X, ZHANG J, TANG L, et.al. Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching[J/OL]. Energy and Environmental Science, 2023, 16(11): 5029-5042. DOI:10.1039/d3ee00869j.
[95] JANG Y H, LEE J M, SEO J W, et.al. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer[J/OL]. Journal of Materials Chemistry A, 2017, 5(36): 19439-19446. DOI:10.1039/c7ta06163c.
[96] NAKAMURA M, LIN C C, NISHIYAMA C, et.al. Semi-transparent Perovskite Solar Cells for Four-Terminal Perovskite/CIGS Tandem Solar Cells[J/OL]. ACS Applied Energy Materials, 2022, 5(7): 8103-8111. DOI:10.1021/acsaem.2c00620.
[97] KIM D H, MUZZILLO C P, TONG J, et.al. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS[J/OL]. Joule, 2019, 3(7): 1734-1745. DOI:10.1016/j.joule.2019.04.012.
[98] FEENEY T, HOSSAIN I M, GHARIBZADEH S, et.al. Four-Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells: Unveiling the Path to >27% in Power Conversion Efficiency[J/OL]. Solar RRL, 2022, 6(12). DOI:10.1002/solr.202200662.
[99] AL-ASHOURI A, MAGOMEDOV A, ROSS M, et.al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J/OL]. Energy and Environmental Science, 2019, 12(11): 3356-3369. DOI:10.1039/c9ee02268f.
[100]BETT A J, WINKLER K M, BIVOUR M, et.al. Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications[J/OL]. ACS Applied Materials and Interfaces, 2019, 11(49): 45796-45804. DOI:10.1021/acsami.9b17241.
[101]ZHAO K ;, XIE J ;, ZHAO Y ;, et.al. Investigation on Transparent, Conductive ZnO:Al Films Deposited by Atomic Layer Deposition Process[J/OL]. Nanomaterials 2022, Vol. 12, Page 172, 2022, 12(1): 172
[2024-03-04]. https://www.mdpi.com/2079-4991/12/1/172/htm. DOI:10.3390/NANO12010172.
[102]JIANG Y, FEURER T, CARRON R, et.al. High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2Tandem Solar Cells[J/OL]. ACS Nano, 2020, 14(6): 7502-7512. DOI:10.1021/acsnano.0c03265.
[103]AYDIN E, ALTINKAYA C, SMIRNOV Y, et.al. Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies[M/OL]//Matter. Cell Press, 2021: 3549-3584. DOI:10.1016/j.matt.2021.09.021.

所在学位评定分委会
材料科学与工程
国内图书分类号
TM914.4+2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766096
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
汤兆恒. 半透明反式CsPbI3钙钛矿太阳能电池及其叠层器件研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132071-汤兆恒-材料科学与工程(4815KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[汤兆恒]的文章
百度学术
百度学术中相似的文章
[汤兆恒]的文章
必应学术
必应学术中相似的文章
[汤兆恒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。