[1] AWASTHI A, SHUKLA A K, MURALI MANOHAR S R, et.al. Review on sun tracking technology in solar PV system[J/OL]. Energy Reports, 2020, 6: 392-405
[2024-03-06]. DOI:10.1016/J.EGYR.2020.02.004.
[2] AL-EZZI A. The market of solar panels in the United Kingdom[J/OL]. Applied Solar Energy (English translation of Geliotekhnika), 2017, 53(1): 78-84
[2024-03-06]. https://link.springer.com/article/10.3103/S0003701X17010029. DOI:10.3103/S0003701X17010029/METRICS.
[3] ALBERI K, BERRY J J, CORDELL J J, et.al. A roadmap for tandem photovoltaics[J/OL].Joule,2024. https://linkinghub.elsevier.com/retrieve/pii/S2542435124000448. DOI:10.1016/j.joule.2024.01.017.
[4] CAO F, BIAN L, LI L. Perovskite solar cells with high-efficiency exceeding 25%: a review[J/OL]. Energy Materials and Devices, 2024. DOI:10.26599/emd.2024.9370018.
[5] KRANZ L, ABATE A, FEURER T, et.al. High-efficiency polycrystalline thin film tandem solar cells[J/OL]. Journal of Physical Chemistry Letters, 2015, 6(14): 2676-2681. DOI:10.1021/acs.jpclett.5b01108.
[6] EPERON G E, HÖRANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[M/OL]//Nature Reviews Chemistry. Nature Research, 2017. DOI:10.1038/S41570-017-0095.
[7] BAILIE C D, CHRISTOFORO M G, MAILOA J P, et.al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J/OL]. Energy and Environmental Science, 2015, 8(3): 956-963. DOI:10.1039/c4ee03322a.
[8] LIU K, CHEN B, YU Z J, et.al. Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells[J/OL]. Journal of Materials Chemistry A, 2022, 10(3): 1343-1349. DOI:10.1039/d1ta09143c.
[9] FRAAS L M, O’NEILL M J. Low-Cost Solar Electric Power[J/OL]. Low-Cost Solar Electric Power, 2023
[2024-03-06]. DOI:10.1007/978-3-031-30812-3.
[10] XING Y, HAN P, WANG S, et.al. A review of concentrator silicon solar cells[J/OL]. Renewable and Sustainable Energy Reviews, 2015, 51: 1697-1708
[2024-03-06]. DOI:10.1016/J.RSER.2015.07.035.
[11] SHARMA K, SHARMA V, SHARMA S S. Dye-Sensitized Solar Cells: Fundamentals and Current Status[J/OL]. Nanoscale Research Letters 2018 13:1, 2018, 13(1): 1-46
[2024-03-06]. https://link.springer.com/article/10.1186/s11671-018-2760-6. DOI:10.1186/S11671-018-2760-6.
[12] PAN Z, RAO H, MORA-SERÓ I, et.al. Quantum dot-sensitized solar cells[J/OL]. Chemical Society Reviews, 2018, 47(20): 7659-7702
[2024-03-06]. https://pubs.rsc.org/en/content/articlehtml/2018/cs/c8cs00431e. DOI:10.1039/C8CS00431E.
[13] GU X, LAI X, ZHANG Y, et.al. Organic Solar Cell With Efficiency Over 20% and VOC Exceeding 2.1 V Enabled by Tandem With All-Inorganic Perovskite and Thermal Annealing-Free Process[J/OL]. Advanced Science, 2022, 9(28): 2200445
[2024-03-06]. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200445. DOI:10.1002/ADVS.202200445.
[14] REHMAN F, SYED I H, KHANAM S, et.al. Fourth-generation solar cells: a review[M/OL]//Energy Advances. Royal Society of Chemistry, 2023: 1239-1262. DOI:10.1039/d3ya00179b.
[15] LEI H, HARDY D, GAO F, et.al. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives[J/OL]. Advanced Functional Materials,2021,31(49):2105898
[2024-0308]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202105898.DOI:10.1002/ADFM.202105898.
[16] LIU S, BIJU V P, QI Y, et.al. Recent progress in the development of high-efficiency inverted perovskite solar cells[M/OL]//NPG Asia Materials. Nature Research, 2023. DOI:10.1038/s41427-023-00474-z.
[17] WAN-JIAN YIN S, WEI S H, YIN W J, et.al. As featured in: Title: Halide perovskite materials for solar cells: a theoretical review An extensive review of recent investigations into the structural, electrical, and optical properties of halide perovskite materials in relation to their applications and challenges in solar cells Halide perovskite materials for solar cells: a theoretical review[J/OL]. 2015
[2024-03-06]. www.rsc.org/MaterialsA. DOI:10.1039/c4ta05033a.
[18] BARTEL C J, SUTTON C, GOLDSMITH B R, et.al. New tolerance factor to predict the stability of perovskite oxides and halides[R/OL]. (2019). https://www.science.org.
[19] LI M H, QIU F Z, WANG S, et.al. Hole transporting materials in inorganic CsPbI3−xBrx solar cells: Fundamentals, criteria and opportunities[M/OL]//Materials Today. Elsevier B.V., 2022: 250-268. DOI:10.1016/j.mattod.2021.11.017.
[20] SHARMA D, MEHRA R, RAJ B. Comparative analysis of photovoltaic technologies for high efficiency solar cell design[J/OL]. Superlattices and Microstructures, 2021, 153: 106861
[2024-03-06]. DOI:10.1016/J.SPMI.2021.106861.
[21] WARBY J, SHAH S, THIESBRUMMEL J, et.al. Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells[J/OL]. Advanced Energy Materials, 2023, 13(48): 2303135
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202303135. DOI:10.1002/AENM.202303135.
[22] MIYASAKA T, KULKARNI A, KIM G M, et.al. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free?[J/OL]. Advanced Energy Materials, 2020, 10(13): 1902500
[2024-03-03]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201902500. DOI:10.1002/AENM.201902500.
[23] WANG Z, SHI Z, LI T, et.al. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion[J/OL]. Angewandte Chemie International Edition, 2017, 56(5): 1190-1212
[2024-03-03]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201603694. DOI:10.1002/ANIE.201603694.
[24] CHEN C, SONG Z, XIAO C, et.al. Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration[J/OL]. ACS Energy Letters, 2020, 5(8): 2560-2568. DOI:10.1021/acsenergylett.0c01350.
[25] YU P, ZHANG W, REN F, et.al. Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: mechanisms and processes[M/OL]//Journal of Materials Chemistry C. Royal Society of Chemistry, 2022: 4999-5023. DOI:10.1039/d1tc05851g.
[26] FU S, SUN N, LE J, et.al. Tailoring Defects Regulation in Air-Fabricated CsPbI3for Efficient Inverted All-Inorganic Perovskite Solar Cells with Vocof 1.225 V[J/OL]. ACS Applied Materials and Interfaces, 2022, 14(27): 30937-30945. DOI:10.1021/acsami.2c07420.
[27] FU S, LE J, GUO X, et.al. Polishing the Lead-Poor Surface for Efficient Inverted CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2022, 34(38). DOI:10.1002/adma.202205066.
[28] WANG S, LI M H, ZHANG Y, et.al. Surface n-type band bending for stable inverted CsPbI3 perovskite solar cells with over 20% efficiency[J/OL]. Energy and Environmental Science, 2023, 16(6): 2572-2578. DOI:10.1039/d3ee00423f.
[29] SUN N, FU S, LI Y, et.al. Tailoring Crystallization Dynamics of CsPbI3 for Scalable Production of Efficient Inorganic Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2024, 34(6). DOI:10.1002/adfm.202309894.
[30] JOŠT M, KÖHNEN E, AL-ASHOURI A, et.al. Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and beyond[J/OL]. ACS Energy Letters, 2022, 7(4): 1298-1307. DOI:10.1021/acsenergylett.2c00274.
[31] GARCÍA CERRILLO J, DISTLER A, MATTEOCCI F, et.al. Matching the Photocurrent of 2-Terminal Mechanically-Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width[J/OL]. Solar RRL, 2024, 8(3). DOI:10.1002/solr.202300767.
[32] WANG Z, SONG Z, YAN Y, et.al. Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit[M/OL]//Advanced Science. John Wiley and Sons Inc., 2019. DOI:10.1002/advs.201801704.
[33] X-ray Diffraction Analysis Principle Instrument and Applications I Definition, Methods, XRD analysis, and 5 Advantages.[EB/OL].
[2024-03-05]. https://physicswave.com/x-ray-diffraction-analysis-principle-instrument-and-applications/.
[34] VAN DER POL T P A, DATTA K, WIENK M M, et.al. The Intrinsic Photoluminescence Spectrum of Perovskite Films[J/OL]. Advanced Optical Materials, 2022, 10(8): 2102557
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202102557. DOI:10.1002/ADOM.202102557.
[35] Measuring the Resistivity and Determining the Conductivity Type of Semiconductor Materials Using a Four-Point Collinear Probe and the Model 6221 DC and AC Current Source Application Note Se ries[R].
[36] Two-Wire vs. Four-Wire Resistance Measurements: Which Configuration Makes Sense for Your Application? | Tektronix[EB/OL].
[2024-03-05]. https://www.tek.com/en/documents/technical-article/two-wire-vs-four-wire-resistance-measurements-which-configuration-makes-s.
[37] Field Emission Scanning Electron Microscopy (FESEM) – PhotoMetrics[EB/OL].
[2024-03-05]. https://photometrics.net/field-emission-scanning-electron-microscopy-fesem/.
[38] LIU W, JIANG Z, LIU P, et.al. Perovskite Phase Analysis by SEM Facilitating Efficient Quasi-2D Perovskite Light-Emitting Device Designs[J/OL]. Advanced Optical Materials, 2022, 10(16): 2200518
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202200518. DOI:10.1002/ADOM.202200518.
[39] SI H, ZHANG S, MA S, et.al. Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells[J/OL]. Advanced Energy Materials, 2020, 10(10): 1903922
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201903922. DOI:10.1002/AENM.201903922.
[40] SUN J, MA K, LIN Z Y, et.al. Tailoring Molecular-Scale Contact at the Perovskite/Polymeric Hole-Transporting Material Interface for Efficient Solar Cells[J/OL]. Advanced Materials, 2023, 35(26): 2300647
[2024-03-05]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202300647. DOI:10.1002/ADMA.202300647.
[41] SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J/OL]. Surface and Interface Analysis, 1979, 1(1): 2-11
[2024-03-07]. https://onlinelibrary.wiley.com/doi/full/10.1002/sia.740010103. DOI:10.1002/SIA.740010103.
[42] STEVIE F A, DONLEY C L. Introduction to x-ray photoelectron spectroscopy [J/OL]. J. Vac. Sci. Technol. A, 2020, 38: 63204
[2024-03-05]. https://doi.org/10.1116/6.0000412. DOI:10.1116/6.0000412.
[43] LIN W C, LO W C, LI J X, et.al. In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition[J/OL].
[2024-03-05].https://doi.org/10.1038/s41529-021-00162-9. DOI:10.1038/s41529-021-00162-9.
[44] Fermi level | Electron Energy, Band Gap & Conduction | Britannica[EB/OL].
[2024-03-02]. https://www.britannica.com/science/Fermi-level.
[45] WANG Y, LIU X, ZHANG T, et.al. The Role of Dimethylammonium Iodide in CsPbI3 Perovskite Fabrication: Additive or Dopant?[J/OL]. Angewandte Chemie International Edition, 2019, 58(46): 16691-16696
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201910800. DOI:10.1002/ANIE.201910800.
[46] WANG Y, DUAN L, ZHANG M, et.al. PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review[M/OL]//Solar RRL. John Wiley and Sons Inc, 2022. DOI:10.1002/solr.202200234.
[47] LIU X, ZHENG B, SHI L, et.al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive[J/OL]. Nature Photonics 202217:1,2022,17(1):96-105
[2024-03-06]. https://www.nature.com/articles/s41566-022-01111-x. DOI:10.1038/s41566-022-01111-x.
[48] LI M H, WANG S, MA X, et.al. Hydrogen bonding facilitated dimethylammonium extraction for stable and efficient CsPbI3 solar cells with environmentally benign processing[R].
[49] CUI Y, SHI J, MENG F, et.al. A Versatile Molten-Salt Induction Strategy to Achieve Efficient CsPbI3 Perovskite Solar Cells with a High Open-Circuit Voltage>1.2V[J/OL]. Advanced Materials, 2022, 34(45).DOI:10.1002/adma.202205028.
[50] FU S, LI X, WAN J, et.al. In Situ Stabilized CsPbI3 for Air-Fabricated Inverted Inorganic Perovskite Photovoltaics with Wide Humidity Operating Window[J/OL]. Advanced Functional Materials, 2022, 32(14). DOI:10.1002/adfm.202111116.
[51] FU S, ZHANG W, LI X, et.al. Humidity-Assisted Chlorination with Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI3Perovskite Solar Cells[J/OL]. ACS Energy Letters, 2021, 6(10): 3661-3668. DOI:10.1021/acsenergylett.1c01817.
[52] WU T, WANG Y, DAI Z, et.al. Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups[J/OL]. Advanced Materials, 2019, 31(24): 1900605
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900605. DOI:10.1002/ADMA.201900605.
[53] HEO J H, ZHANG F, PARK J K, et.al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells[J/OL]. Joule, 2022, 6(7): 1672-1688
[2024-03-08]. http://www.cell.com/article/S2542435122002409/fulltext. DOI:10.1016/j.joule.2022.05.013.
[54] JI R, ZHANG Z, HOFSTETTER Y J, et.al. Perovskite phase heterojunction solar cells[J/OL]. Nature Energy 2022 7:12, 2022, 7(12): 1170-1179
[2024-03-08].https://www.nature.com/articles/s41560-022-01154-y. DOI:10.1038/s41560-022-01154-y.
[55] YU G, JIANG K J, GU W M, et.al. Vacuum-Assisted Thermal Annealing of CsPbI3 for Highly Stable and Efficient Inorganic Perovskite Solar Cells[J/OL]. Angewandte Chemie International Edition, 2022, 61(27): e202203778
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202203778. DOI:10.1002/ANIE.202203778.
[56] SUN N, FU S, LI Y, et.al. Tailoring Crystallization Dynamics of CsPbI3 for Scalable Production of Efficient Inorganic Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2024, 34(6). DOI:10.1002/adfm.202309894.
[57] WANG Y, IBRAHIM DAR M, ONO L K, et.al. Thermodynamically stabilized b-CsPbI3–based perovskite solar cells with efficiencies >18%[J/OL]. Science,2019,365(6453):591-595
[2024-03-08]. https://www.science.org/doi/10.1126/science.aav8680.DOI:10.1126/SCIENCE.AAV8680/SUPPL_FILE/AAV8680_WANG_SM.PDF.
[58] TAN S, SHI J, YU B, et.al. Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Functional Materials, 2021, 31(21): 2010813
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010813. DOI:10.1002/ADFM.202010813.
[59] YU B, SHI J, TAN S, et.al. Efficient (>20 %) and Stable All-Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts[J/OL]. Angewandte Chemie International Edition, 2021, 60(24): 13436-13443
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202102466. DOI:10.1002/ANIE.202102466.
[60] YOON S M, MIN H, KIM J B, et.al. Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells[J/OL]. Joule, 2021, 5(1): 183-196. DOI:10.1016/j.joule.2020.11.020.
[61] TAN S, YU B, CUI Y, et.al. Temperature-Reliable Low-Dimensional Perovskites Passivated Black-Phase CsPbI3 toward Stable and Efficient Photovoltaics[J/OL]. Angewandte Chemie - International Edition, 2022, 61(23). DOI:10.1002/anie.202201300.
[62] ZHANG J, CHE B, ZHAO W, et.al. Polar Species for Effective Dielectric Regulation to Achieve High-Performance CsPbI3 Solar Cells[J/OL]. Advanced Materials, 2022, 34(41): 2202735
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202202735. DOI:10.1002/ADMA.202202735.
[63] CUI Y, SHI J, MENG F, et.al. A Versatile Molten-Salt Induction Strategy to Achieve Efficient CsPbI3 Perovskite Solar Cells with a High Open-Circuit Voltage >1.2 V[J/OL]. Advanced Materials, 2022, 34(45): 2205028
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202205028. DOI:10.1002/ADMA.202205028.
[64] DU Y, TIAN Q, WANG S, et.al. Manipulating the Formation of 2D/3D Heterostructure in Stable High-Performance Printable CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2023, 35(5): 2206451
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202206451. DOI:10.1002/ADMA.202206451.
[65] XU C, ZHANG S, FAN W, et.al. Pushing the Limit of Open-Circuit Voltage Deficit via Modifying Buried Interface in CsPbI3 Perovskite Solar Cells[J/OL]. Advanced Materials, 2023, 35(7): 2207172
[2024-03-08]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202207172. DOI:10.1002/ADMA.202207172.
[66] SUN X, SHAO Z, LI Z, et.al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell[J/OL]. Joule, 2022, 6(4): 850-860
[2024-03-08]. http://www.cell.com/article/S2542435122000708/fulltext. DOI:10.1016/j.joule.2022.02.004.
[67] FU S, LI X, WAN L, et.al. Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92%[J/OL]. Nano-Micro Letters, 2020, 12(1)
[2024-03-01]. DOI:10.1007/S40820-020-00509-Y.
[68] JIANG K, WANG J, WU F, et.al. Dopant-Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells[J/OL]. Advanced Materials, 2020, 32(16)
[2024-03-01]. DOI:10.1002/ADMA.201908011.
[69] ZHANG D, XU P, WU T, et.al. Cyclopenta[hi]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells[J/OL]. Journal of Materials Chemistry A, 2019, 7(10): 5221-5226
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2019/ta/c8ta12139g. DOI:10.1039/C8TA12139G.
[70] YIN X, SONG Z, LI Z, et.al. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J/OL]. Energy & Environmental Science, 2020, 13(11): 4057-4086
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/ee/d0ee02337j. DOI:10.1039/D0EE02337J.
[71] YUAN J, LING X, YANG D, et.al. Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells[J/OL]. Joule, 2018, 2(11): 2450-2463
[2024-03-01]. DOI:10.1016/J.JOULE.2018.08.011.
[72] WANG K, JIN Z, LIANG L, et.al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J/OL]. Nature Communications, 2018, 9(1)
[2024-03-01]. DOI:10.1038/S41467-018-06915-6.
[73] YIN X, SONG Z, LI Z, et.al. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells[J/OL]. Energy & Environmental Science, 2020, 13(11): 4057-4086
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/ee/d0ee02337j. DOI:10.1039/D0EE02337J.
[74] MA J, LI Y, LI J, et.al. Constructing highly efficient all-inorganic perovskite solar cells with efficiency exceeding 17% by using dopant-free polymeric electron-donor materials[J/OL]. Nano Energy, 2020, 75: 104933
[2024-03-01]. DOI:10.1016/J.NANOEN.2020.104933.
[75] WANG P, WANG H, JEONG M, et.al. Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84%[J/OL]. Journal of Materials Chemistry C, 2020, 8(25): 8507-8514
[2024-03-01]. https://pubs.rsc.org/en/content/articlehtml/2020/tc/d0tc01892a. DOI:10.1039/D0TC01892A.
[76] JIANG Y, FEURER T, CARRON R, et.al. High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2Tandem Solar Cells[J/OL]. ACS Nano, 2020, 14(6): 7502-7512. DOI:10.1021/acsnano.0c03265.
[77] CHEN W, ZHANG J, XU G, et.al. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency[J/OL]. Advanced Materials, 2018, 30(21). DOI:10.1002/adma.201800855.
[78] FENG X, FU S, MIAO R, et.al. Heating-insulating and semitransparent inorganic perovskite solar cells[J/OL]. Solar Energy Materials and Solar Cells, 2022, 240. DOI:10.1016/j.solmat.2022.111683.
[79] YANG S C, LIN T Y, OCHOA M, et.al. Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process[J/OL]. Nature Energy, 2023, 8(1): 40-51. DOI:10.1038/s41560-022-01157-9.
[80] WANG Y, WENISCH R, SCHLATMANN R, et.al. Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite-CIGSe Tandem Solar Cells[M/OL]//Advanced Energy Materials. Wiley-VCH Verlag, 2018. DOI:10.1002/aenm.201801692.
[81] TODOROV T, GERSHON T, GUNAWAN O, et.al. Monolithic Perovskite-CIGS Tandem Solar Cells via in Situ Band Gap Engineering[J/OL]. Advanced Energy Materials, 2015, 5(23). DOI:10.1002/aenm.201500799.
[82] HAN Q, HSIEH Y T, MENG L, et.al. High-performance perovskite/ Cu(In,Ga)Se 2 monolithic tandem solar cells Downloaded from[R/OL]. (2018). http://science.sciencemag.org/.
[83] SHRIVASTAV N, KASHYAP S, MADAN J, et.al. Perovskite-CIGS Monolithic Tandem Solar Cells with 29.7% Efficiency: A Numerical Study[J/OL]. Energy and Fuels, 2023, 37(4): 3083-3090. DOI:10.1021/acs.energyfuels.2c03973.
[84] JOŠT M, BERTRAM T, KOUSHIK D, et.al. 21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se 2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces[J/OL]. ACS Energy Letters, 2019, 4(2): 583-590. DOI:10.1021/acsenergylett.9b00135.
[85] LIU K, CHEN B, YU Z J, et.al. Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A[R]//This journal is. 2021.
[86] FU F, FEURER T, WEISS T P, et.al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration[J/OL]. Nature Energy, 2017, 2(1). DOI:10.1038/nenergy.2016.190.
[87] SHEN H, DUONG T, PENG J, et.al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity[J/OL]. Energy and Environmental Science, 2018, 11(2): 394-406. DOI:10.1039/c7ee02627g.
[88] FU F, PISONI S, WEISS T P, et.al. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells[J/OL]. Advanced Science, 2018, 5(3). DOI:10.1002/advs.201700675.
[89] FU F, FEURER T, JÄGER T, et.al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications[J/OL]. Nature Communications, 2015, 6. DOI:10.1038/ncomms9932.
[90] PRESS RELEASE 1 RECORD BREAKING 23% EFFICIENCY PROVED FOR FLEXIBLE PEROVSKITE/CIGS-TANDEM[R/OL]. www.imec-int.com.
[91] PAETZOLD U W, JAYSANKAR M, GEHLHAAR R, et.al. Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%[J/OL]. Journal of Materials Chemistry A, 2017, 5(20): 9897-9906. DOI:10.1039/c7ta01651d.
[92] ZHANG C, CHEN M, FU F, et.al. CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics[J/OL]. Energy and Environmental Science, 2022, 15(4): 1536-1544. DOI:10.1039/d1ee04008a.
[93] SHEN H, DUONG T, PENG J, et.al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity[J/OL]. Energy and Environmental Science, 2018, 11(2): 394-406. DOI:10.1039/c7ee02627g.
[94] LIU X, ZHANG J, TANG L, et.al. Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching[J/OL]. Energy and Environmental Science, 2023, 16(11): 5029-5042. DOI:10.1039/d3ee00869j.
[95] JANG Y H, LEE J M, SEO J W, et.al. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer[J/OL]. Journal of Materials Chemistry A, 2017, 5(36): 19439-19446. DOI:10.1039/c7ta06163c.
[96] NAKAMURA M, LIN C C, NISHIYAMA C, et.al. Semi-transparent Perovskite Solar Cells for Four-Terminal Perovskite/CIGS Tandem Solar Cells[J/OL]. ACS Applied Energy Materials, 2022, 5(7): 8103-8111. DOI:10.1021/acsaem.2c00620.
[97] KIM D H, MUZZILLO C P, TONG J, et.al. Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS[J/OL]. Joule, 2019, 3(7): 1734-1745. DOI:10.1016/j.joule.2019.04.012.
[98] FEENEY T, HOSSAIN I M, GHARIBZADEH S, et.al. Four-Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells: Unveiling the Path to >27% in Power Conversion Efficiency[J/OL]. Solar RRL, 2022, 6(12). DOI:10.1002/solr.202200662.
[99] AL-ASHOURI A, MAGOMEDOV A, ROSS M, et.al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J/OL]. Energy and Environmental Science, 2019, 12(11): 3356-3369. DOI:10.1039/c9ee02268f.
[100]BETT A J, WINKLER K M, BIVOUR M, et.al. Semi-Transparent Perovskite Solar Cells with ITO Directly Sputtered on Spiro-OMeTAD for Tandem Applications[J/OL]. ACS Applied Materials and Interfaces, 2019, 11(49): 45796-45804. DOI:10.1021/acsami.9b17241.
[101]ZHAO K ;, XIE J ;, ZHAO Y ;, et.al. Investigation on Transparent, Conductive ZnO:Al Films Deposited by Atomic Layer Deposition Process[J/OL]. Nanomaterials 2022, Vol. 12, Page 172, 2022, 12(1): 172
[2024-03-04]. https://www.mdpi.com/2079-4991/12/1/172/htm. DOI:10.3390/NANO12010172.
[102]JIANG Y, FEURER T, CARRON R, et.al. High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2Tandem Solar Cells[J/OL]. ACS Nano, 2020, 14(6): 7502-7512. DOI:10.1021/acsnano.0c03265.
[103]AYDIN E, ALTINKAYA C, SMIRNOV Y, et.al. Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies[M/OL]//Matter. Cell Press, 2021: 3549-3584. DOI:10.1016/j.matt.2021.09.021.
修改评论