[1] FU Q, CHOW Y, SUN S, et al. Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells Modulate T-cell Phenotypes in Allergic Rhinitis[J]. Allergy, 2012, 67(10): 1215-1222.
[2] YANO H, HIRAYAMA F, KAMADA M, et al. Colon-Specific Delivery of Prednisolone Appended-Cyclodextrin Conjugate: Alleviation of Systemic Side Effect after Oral Administration[J]. Journal of Controlled Release, 2002, 79(1-3): 103-112.
[3] YAN CHAN EDGAR J, WANG H. Introduction for Design of Nanoparticle Based Drug Delivery Systems[J]. Current Pharmaceutical Design, 2017, 23(14): 2108-2112.
[4] ZHAO M, LIU M. New Avenues for Nanoparticle-Related Therapies[J]. Nanoscale Research Letters, 2018, 13(1): 136.
[5] WILHELM S, TAVARES A J, DAI Q, et al. Analysis of Nanoparticle Delivery to Tumours[J]. Nature Reviews Materials, 2016, 1(5): 1-12.
[6] SHEN H, CAI S, WANG Z, et al. Magnetically Driven Microrobots: Recent Progress and Future Development[J]. Materials & Design, 2023: 111735.
[7] DONG X, KHEIRI S, LU Y, et al. Toward a Living Soft Microrobot Through Optogenetic Locomotion Control of Caenorhabditis Elegans[J]. Science Robotics, 2021, 6(55): eabe3950.
[8] DEL CAMPO FONSECA A, GLÜCK C, DROUX J, et al. Ultrasound Trapping and Navigation of Microrobots in The Mouse Brain Vasculature[J]. Nature Communications, 2023, 14(1): 5889.
[9] KIM H, KIM M J. Electric Field Control of Bacteria-Powered Microrobots Using A Static Obstacle Avoidance Algorithm[J]. IEEE Transactions on Robotics, 2015, 32(1): 125-137.
[10] LI M, WU J, LIN D, et al. A Diatom-Based Biohybrid Microrobot with a High Drug-Loading Capacity and pH-sensitive Drug Release for Target Therapy[J]. Acta Biomaterialia, 2022, 154: 443-453.
[11] CHEN Z, SONG X, MU X, et al. 2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction[J]. ACS Applied Materials & Interfaces, 2023, 15 (7): 8840-8853.
[12] JIANG J, YANG Z, FERREIRA A, et al. Control and Autonomy of Microrobots: Recent Progress and Perspective[J]. Advanced Intelligent Systems, 2022, 4(5): 2100279.
[13] CHAUTEMS C, NELSON B J. The Tethered Magnet: Force and 5-DOF Pose Control for Cardiac Ablation[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4837-4842.
[14] CHEN L, ZHOU L, WANG C, et al. Tumor-targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-enhanced Immunotherapy with Polarization Toward M1-type Macrophages on Triple Negative Breast Cancers[J]. Advanced Materials, 2019, 31(52): 1904997.
[15] KIM D I, LEE H, KWON S H, et al. Magnetic Nano-Particles Retrievable Biodegradable Hydrogel Microrobot[J]. Sensors and Actuators B: Chemical, 2019, 289: 65-77.
[16] XIE H, SUN M, FAN X, et al. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation[J]. Science Robotics, 2019, 4(28): eaav8006.
[17] YANG L, YU J, YANG S, et al. A Survey on Swarm Microrobotics[J]. IEEE Transactions on Robotics, 2021, 38(3): 1531-1551.
[18] YANG L, JIANG J, GAO X, et al. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-time Distribution Planning[J]. Nature Machine Intelligence, 2022, 4(5): 480-493.
[19] SUN H C M, LIAO P, WEI T, et al. Magnetically Powered Biodegradable Microswimmers[J]. Micromachines, 2020, 11(4): 404.
[20] FUSCO S, HUANG H W, PEYER K E, et al. Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6803-6811.
[21] WEI T, LIU J, LI D, et al. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy[J]. Small, 2020, 16(41): 1906908.
[22] GO G, NGUYEN V D, JIN Z, et al. A Thermo-Electromagnetically Actuated Microrobot for The Targeted Transport of Therapeutic Agents[J]. International Journal of Control, Automation and Systems, 2018, 16: 1341-1354.
[23] CEYLAN H, YASA I C, YASA O, et al. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release[J]. ACS Nano, 2019, 13(3): 3353-3362.
[24] WANG X, QIN X H, HU C, et al. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers[J]. Advanced Functional Materials, 2018, 28(45): 1804107.
[25] DONG M, WANG X, CHEN X Z, et al. 3D-Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-Like Cells[J]. Advanced Functional Materials, 2020, 30(17): 1910323.
[26] HU N, WANG L, ZHAI W, et al. Magnetically Actuated Rolling of Star-Shaped Hydrogel Microswimmer[J]. Macromolecular Chemistry and Physics, 2018, 219(5): 1700540.
[27] MAIR L O, CHOWDHURY S, PAREDES-JUAREZ G A, et al. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery[J]. Micromachines, 2019, 10(4): 230.
[28] BOZUYUK U, YASA O, YASA I C, et al. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers[J]. ACS Nano, 2018, 12(9): 9617-9625.
[29] GO G, YOO A, SONG H W, et al. Multifunctional Biodegradable Microrobot with Programmable Morphology for Biomedical Applications[J]. ACS Nano, 2020, 15(1): 1059-1076.
[30] HAN J, ZHEN J, DU NGUYEN V, et al. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy[J]. Scientific Reports, 2016, 6(1): 28717.
[31] ZHANG X, JIN M, DING L, et al. Selective in Situ Dynamic Motion Stay and Recover under Single NIR Light in Soft Actuator by triggered Shape-Memory and Phase Transition of Hydrogel[J]. Chemical Engineering Journal, 2023, 468: 143734.
[32] PACHECO M, MAYORGA-MARTINEZ C C, VIKTOROVA J, et al. Microrobotic Carrier with Enzymatically Encoded Drug Release in The Presence of Pancreatic Cancer Cells Via Programmed Self-Destruction[J]. Applied Materials Today, 2022, 27: 101494.
[33] LIU J, YU S, XU B, et al. Magnetically Propelled Soft Microrobot Navigating Through Constricted Microchannels[J]. Applied Materials Today, 2021, 25: 101237.
[34] JEON S, KIM S, HA S, et al. Magnetically Actuated Microrobots as A Platform for Stem Cell Transplantation[J]. Science Robotics, 2019, 4(30): eaav4317.
[35] HOU H, HUANG X, WEI G, et al. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29579-29592.
[36] LI T, CHANG X, WU Z, et al. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments[J]. ACS Nano, 2017, 11(9): 9268-9275.
[37] LIU J, XU T, YANG S X, et al. Navigation and Visual Feedback Control for Magnetically Driven Helical Miniature Swimmers[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (1): 477-487.
[38] WANG Q, YANG L, ZHANG L. Micromanipulation using Reconfigurable Self-Assembled Magnetic Droplets with Needle Guidance[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(2): 759-771.
[39] ZHENG L, JIA Y, DONG D, et al. 3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme[J]. IEEE Transactions on Robotics, 2021, 38(3): 1583-1598.
[40] FAN X, SUN M, LIN Z, et al. Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots[J]. IEEE Transactions on Nanotechnology, 2018, 17(4): 666-669.
[41] YANG L, ZHANG L. Large-Workspace and High-Resolution Magnetic Microrobot Navigation using Global-Local Path Planning and Eye-in-Hand Visual Servoing[C]//2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020: 876-881.
[42] BELKIN M, SNEZHKO A, ARANSON I, et al. Driven Magnetic Particles on A fluid Surface: Pattern Assisted Surface Flows[J]. Physical Review Letters, 2007, 99(15): 158301.
[43] SNEZHKO A, ARANSON I S. Magnetic Manipulation of Self-Assembled Colloidal Asters[J]. Nature Materials, 2011, 10(9): 698-703.
[44] YU J, YANG L, ZHANG L. Pattern Generation and Motion Control of A Vortex-Like Paramagnetic Nanoparticle Swarm[J]. The International Journal of Robotics Research, 2018, 37(8): 912-930.
[45] YU J, WANG B, DU X, et al. Ultra-Extensible Ribbon-Like Magnetic Microswarm[J]. Nature Communications, 2018, 9(1): 3260.
[46] YU J, YANG L, DU X, et al. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms[J]. IEEE Transactions on Robotics, 2021, 38(3): 1552-1570.
[47] DONG X, SITTI M. Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms[J]. The International Journal of Robotics Research, 2020, 39(5): 617-638.
[48] ALI J, CHEANG U K, LIU Y, et al. Fabrication and Magnetic Control of Alginate-Based Rolling Microrobots[J]. AIP Advances, 2016, 6(12).
[49] UNVERDI S O, TRYGGVASON G. A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows[J]. Journal of Computational Physics, 1992, 100(1): 25-37.
[50] YU J D, SAKAI S, SETHIAN J A. A Coupled Level Set Projection Method Applied to Ink Jet Simulation[J]. Interfaces and Free Boundaries, 2003, 5(4): 459-482.
[51] LI C, XU C, GUI C, et al. Level Set Evolution without Re-Initialization: A New Variational Formulation[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05): Vol. 1. IEEE, 2005: 430-436.
[52] OLSSON E, KREISS G. A Conservative Level Set Method for Two Phase Flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[53] MAHONEY A W, NELSON N D, PEYER K E, et al. Behavior of Rotating Magnetic Microrobots above The Step-out Frequency with Application to Control of Multi-Microrobot Systems [J]. Applied Physics Letters, 2014, 104(14).
[54] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60: 91-110.
[55] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[56] CHOI D H, JANG I H, KIM M H, et al. Color Image Enhancement using Single-Scale Retinex Based on An Improved Image Formation Model[C]//2008 16th European Signal Processing Conference. IEEE, 2008: 1-5.
[57] DUBROFSKY E. Homography Estimation[J]. Diplomová práce. Vancouver: Univerzita Britské Kolumbie, 2009, 5.
[58] FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[59] HART P E, NILSSON N J, RAPHAEL B. A Formal Basis for The Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[60] PRAUTZSCH H, BOEHM W, PALUSZNY M. Bézier and B-Spline Techniques: Vol. 6[M]. Springer, 2002.
[61] MUKUNDAN R, RAMAKRISHNAN K. Moment Functions in Image Analysis: Theory and Applications[M]. World Scientific, 1998.
[62] SAFFMAN P G. Vortex Dynamics[M]. Cambridge University Press, 1995.
[63] YU J, XU T, LU Z, et al. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery[J]. IEEE Transactions on Robotics, 2017, 33(5): 1213-1225.
[64] LECUONA A, RUIZ-RIVAS U, NOGUEIRA J. Simulation of Particle Trajectories in A Vortex Induced Flow: Application to Seed-Dependent Flow Measurement Techniques[J]. Measurement Science and Technology, 2002, 13(7): 1020.
[65] PARK J S, YANG J C, YUK S H, et al. Effect of Molecular Weight of PLGA on Release Behavior of Doxorubicin for Double-Layered PLGA Microspheres[J]. Polymer (Korea), 2007, 31(3): 189-193.
[66] FARHANE Z, BONNIER F, HOWE O, et al. Doxorubicin Kinetics and Effects on Lung Cancer Cell Lines using in Vitro Raman Micro-Spectroscopy: Binding Signatures, Drug Resistance and DNA Repair[J]. Journal of Biophotonics, 2018, 11(1): e201700060.
[67] HERSHMAN D L, MCBRIDE R B, EISENBERGER A, et al. Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients with Diffuse B-Cell Non-Hodgkin’s Lymphoma [J]. Journal of Clinical Oncology, 2008, 26(19): 3159-3165.
[68] NOH S, JEON S, KIM E, et al. A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability[J]. Small, 2022, 18(25): 2107888.
[69] COHEN J, ZALESKI K L, NOURISSAT G, et al. Survival of Porcine Mesenchymal Stem Cells over The Alginate Recovered Cellular Method[J]. Journal of Biomedical Materials Research Part A, 2011, 96(1): 93-99.
修改评论