中文版 | English
题名

磁性微型机器人及群的大空间自主导航研究

其他题名
AUTONOMOUS NAVIGATION OF LARGE SPACE FOR MAGNETIC MICROROBOTS AND SWARM
姓名
姓名拼音
FANG Lijun
学号
12132251
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
郑裕基
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

磁性微型机器人被广泛应用于靶向治疗,但是磁性微型机器人在制备、自主导航、群体控制以及残余物回收等方面仍有不足。为了使微型机器人能够在狭窄通道中运动,需要实现尺寸和形状可控地制备磁性微型机器人。由于磁性微型机器人在多障碍物的环境下运动,需要结合人工智能技术实现磁性微型机器人在复杂的非结构化环境下自主导航,同时磁性微型机器人还需要具备长距离运动的能力以满足实际应用要求。鉴于单个磁性微型机器人存在个体小难以显微成像以及药物负载量低的缺陷,实现群体的自主导航可以进一步提高磁性微型机器人的靶向效率。本文针对以上问题研究了具有生物可降解性的磁性微型机器人尺寸形状 可控地制备,磁性微型机器人以及群在大空间下的自主导航。

本文使用离心微流道的方法制备可生物降解的磁性海藻酸钙微型机器人,并且利用 COMSOL 建立微型机器人制备的物理模型。通过仿真和实验相互验证,本文总结针头与液面距离,溶液浓度以及离心机转速三个因素对微型机器人尺寸和成形性的影响,实现尺寸以及形状可控地制备微型机器人。

针对微型机器人在显微环境中存在视野范围和成像分辨率之间的矛盾,本文提出了基于图像拼接覆盖多个视场的全局地图的获取,并基于全局图像进行全局规划以及局部路径提取,结合 PD 控制器以及位移平台的控制,使微型机器人能够实现大空间的自主导航,这极大地扩展了微型机器人的工作空间。

本文对微型机器人群的形成以及运动进行了研究,并且实现了群在非结构化环境下的大空间自主导航,群的模态切换提高了群对环境的适应性。群的大空间自主导航进一步提高微型机器人的靶向效率。

最后,结合上述技术实现了负载有药物的微型机器人的靶向药物递送,在到达靶向位置之后将微型机器人降解使药物释放,并将残余的磁性纳米颗粒利用群的自主导航策略进行回收,大大提升了对残余的磁性纳米颗粒的回收效率。

本文旨在拓展微型机器人的工作空间进而提高微型机器人的靶向性,并减少 微型机器人的残留。尺寸以及形状可控地制备了具有生物可降解性的微型机器人, 利用大空间自主导航策略提高了微型机器人以及群的靶向性,并且利用微型机器 人的可降解性和群的自主导航实现了对残余的磁性纳米颗粒的回收。

其他摘要

Magnetic microrobots have been widely used in targeted therapy, but there are still challenges in preparation, autonomous navigation, swarm control, and retrieving magnetic nanoparticles. To enable microrobots to move through narrow channels, it is necessary to achieve size and shape controllable preparation of magnetic microrobots. Since magnetic microrobots move in environments with multiple obstacles, they need to be combined with artificial intelligence technology to achieve autonomous navigation in complex unstructured environments. At the same time, magnetic microrobots also need to have the ability to move long distances to meet practical application requirements. In view of the shortcomings of a single magnetic microrobot, which is difficult to perform microscopic imaging and has a low drug load, realizing autonomous navigation of a group can further improve the targeting efficiency of magnetic microrobots. In view of the above problems, this research studies the preparation of biodegradable magnetic microrobots with controllable size and shape, magnetic microrobots, and the autonomous navigation of swarm in a large space.

This research used the centrifugal microfluidic method to prepare magnetic calcium alginate microrobots, and established a physical model of microrobot preparation with COMSOL. Through mutual verification of simulation and experiment, this research summarized the influence of three factors: the distance between the needle and the liquid surface, the solution concentration, and the centrifuge speed on the size and formability of the microrobot, and finally achieved the preparation of microrobots with controllable size and shape.

In view of the contradiction between the field of view and imaging resolution of microrobots in the microscopic environment, this research proposed the acquisition of a global map covering multiple fields of view based on image stitching and performs global planning and local path extraction based on the global image, combined with The movement of the PD controller and the displacement platform enabled the microrobots to realize autonomous navigation in a large space, which greatly expanded the workspace of the microrobot.

This research studied the formation and movement of swarm, and realized the large space autonomous navigation of the swarm in an unstructured environment. The mode II Abstract switching of the swarm improved the swarm’s adaptability to the environment. The large space autonomous navigation of the swarm further improved the drug-carrying efficiency of microrobots.

Finally, combined with the above technology, targeted drug delivery of drug-loaded microrobots was achieved. After reaching the target location, the microrobots were degraded to release the drug, and the remaining magnetic nanoparticles were recovered using the autonomous navigation strategy of the swarm. The strategy of using swarms for recycling greatly improves the recovery efficiency of residual magnetic nanoparticles. This research aims to expand the working space of microrobots, thereby improving the targeting of microrobots and reducing the residue of microrobots. Biodegradable microrobots were prepared with controllable size and shape. The large-space autonomous navigation strategy was used to improve the targeting of microrobots and swarms. The degradability of microrobots and the autonomous navigation of swarms were used to retrieve magnetic nanoparticles.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] FU Q, CHOW Y, SUN S, et al. Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells Modulate T-cell Phenotypes in Allergic Rhinitis[J]. Allergy, 2012, 67(10): 1215-1222.
[2] YANO H, HIRAYAMA F, KAMADA M, et al. Colon-Specific Delivery of Prednisolone Appended-Cyclodextrin Conjugate: Alleviation of Systemic Side Effect after Oral Administration[J]. Journal of Controlled Release, 2002, 79(1-3): 103-112.
[3] YAN CHAN EDGAR J, WANG H. Introduction for Design of Nanoparticle Based Drug Delivery Systems[J]. Current Pharmaceutical Design, 2017, 23(14): 2108-2112.
[4] ZHAO M, LIU M. New Avenues for Nanoparticle-Related Therapies[J]. Nanoscale Research Letters, 2018, 13(1): 136.
[5] WILHELM S, TAVARES A J, DAI Q, et al. Analysis of Nanoparticle Delivery to Tumours[J]. Nature Reviews Materials, 2016, 1(5): 1-12.
[6] SHEN H, CAI S, WANG Z, et al. Magnetically Driven Microrobots: Recent Progress and Future Development[J]. Materials & Design, 2023: 111735.
[7] DONG X, KHEIRI S, LU Y, et al. Toward a Living Soft Microrobot Through Optogenetic Locomotion Control of Caenorhabditis Elegans[J]. Science Robotics, 2021, 6(55): eabe3950.
[8] DEL CAMPO FONSECA A, GLÜCK C, DROUX J, et al. Ultrasound Trapping and Navigation of Microrobots in The Mouse Brain Vasculature[J]. Nature Communications, 2023, 14(1): 5889.
[9] KIM H, KIM M J. Electric Field Control of Bacteria-Powered Microrobots Using A Static Obstacle Avoidance Algorithm[J]. IEEE Transactions on Robotics, 2015, 32(1): 125-137.
[10] LI M, WU J, LIN D, et al. A Diatom-Based Biohybrid Microrobot with a High Drug-Loading Capacity and pH-sensitive Drug Release for Target Therapy[J]. Acta Biomaterialia, 2022, 154: 443-453.
[11] CHEN Z, SONG X, MU X, et al. 2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction[J]. ACS Applied Materials & Interfaces, 2023, 15 (7): 8840-8853.
[12] JIANG J, YANG Z, FERREIRA A, et al. Control and Autonomy of Microrobots: Recent Progress and Perspective[J]. Advanced Intelligent Systems, 2022, 4(5): 2100279.
[13] CHAUTEMS C, NELSON B J. The Tethered Magnet: Force and 5-DOF Pose Control for Cardiac Ablation[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4837-4842.
[14] CHEN L, ZHOU L, WANG C, et al. Tumor-targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-enhanced Immunotherapy with Polarization Toward M1-type Macrophages on Triple Negative Breast Cancers[J]. Advanced Materials, 2019, 31(52): 1904997.
[15] KIM D I, LEE H, KWON S H, et al. Magnetic Nano-Particles Retrievable Biodegradable Hydrogel Microrobot[J]. Sensors and Actuators B: Chemical, 2019, 289: 65-77.
[16] XIE H, SUN M, FAN X, et al. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation[J]. Science Robotics, 2019, 4(28): eaav8006.
[17] YANG L, YU J, YANG S, et al. A Survey on Swarm Microrobotics[J]. IEEE Transactions on Robotics, 2021, 38(3): 1531-1551.
[18] YANG L, JIANG J, GAO X, et al. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-time Distribution Planning[J]. Nature Machine Intelligence, 2022, 4(5): 480-493.
[19] SUN H C M, LIAO P, WEI T, et al. Magnetically Powered Biodegradable Microswimmers[J]. Micromachines, 2020, 11(4): 404.
[20] FUSCO S, HUANG H W, PEYER K E, et al. Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6803-6811.
[21] WEI T, LIU J, LI D, et al. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy[J]. Small, 2020, 16(41): 1906908.
[22] GO G, NGUYEN V D, JIN Z, et al. A Thermo-Electromagnetically Actuated Microrobot for The Targeted Transport of Therapeutic Agents[J]. International Journal of Control, Automation and Systems, 2018, 16: 1341-1354.
[23] CEYLAN H, YASA I C, YASA O, et al. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release[J]. ACS Nano, 2019, 13(3): 3353-3362.
[24] WANG X, QIN X H, HU C, et al. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers[J]. Advanced Functional Materials, 2018, 28(45): 1804107.
[25] DONG M, WANG X, CHEN X Z, et al. 3D-Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-Like Cells[J]. Advanced Functional Materials, 2020, 30(17): 1910323.
[26] HU N, WANG L, ZHAI W, et al. Magnetically Actuated Rolling of Star-Shaped Hydrogel Microswimmer[J]. Macromolecular Chemistry and Physics, 2018, 219(5): 1700540.
[27] MAIR L O, CHOWDHURY S, PAREDES-JUAREZ G A, et al. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery[J]. Micromachines, 2019, 10(4): 230.
[28] BOZUYUK U, YASA O, YASA I C, et al. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers[J]. ACS Nano, 2018, 12(9): 9617-9625.
[29] GO G, YOO A, SONG H W, et al. Multifunctional Biodegradable Microrobot with Programmable Morphology for Biomedical Applications[J]. ACS Nano, 2020, 15(1): 1059-1076.
[30] HAN J, ZHEN J, DU NGUYEN V, et al. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy[J]. Scientific Reports, 2016, 6(1): 28717. 
[31] ZHANG X, JIN M, DING L, et al. Selective in Situ Dynamic Motion Stay and Recover under Single NIR Light in Soft Actuator by triggered Shape-Memory and Phase Transition of Hydrogel[J]. Chemical Engineering Journal, 2023, 468: 143734.
[32] PACHECO M, MAYORGA-MARTINEZ C C, VIKTOROVA J, et al. Microrobotic Carrier with Enzymatically Encoded Drug Release in The Presence of Pancreatic Cancer Cells Via Programmed Self-Destruction[J]. Applied Materials Today, 2022, 27: 101494.
[33] LIU J, YU S, XU B, et al. Magnetically Propelled Soft Microrobot Navigating Through Constricted Microchannels[J]. Applied Materials Today, 2021, 25: 101237.
[34] JEON S, KIM S, HA S, et al. Magnetically Actuated Microrobots as A Platform for Stem Cell Transplantation[J]. Science Robotics, 2019, 4(30): eaav4317.
[35] HOU H, HUANG X, WEI G, et al. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29579-29592.
[36] LI T, CHANG X, WU Z, et al. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments[J]. ACS Nano, 2017, 11(9): 9268-9275.
[37] LIU J, XU T, YANG S X, et al. Navigation and Visual Feedback Control for Magnetically Driven Helical Miniature Swimmers[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (1): 477-487.
[38] WANG Q, YANG L, ZHANG L. Micromanipulation using Reconfigurable Self-Assembled Magnetic Droplets with Needle Guidance[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(2): 759-771.
[39] ZHENG L, JIA Y, DONG D, et al. 3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme[J]. IEEE Transactions on Robotics, 2021, 38(3): 1583-1598.
[40] FAN X, SUN M, LIN Z, et al. Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots[J]. IEEE Transactions on Nanotechnology, 2018, 17(4): 666-669.
[41] YANG L, ZHANG L. Large-Workspace and High-Resolution Magnetic Microrobot Navigation using Global-Local Path Planning and Eye-in-Hand Visual Servoing[C]//2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020: 876-881.
[42] BELKIN M, SNEZHKO A, ARANSON I, et al. Driven Magnetic Particles on A fluid Surface: Pattern Assisted Surface Flows[J]. Physical Review Letters, 2007, 99(15): 158301.
[43] SNEZHKO A, ARANSON I S. Magnetic Manipulation of Self-Assembled Colloidal Asters[J]. Nature Materials, 2011, 10(9): 698-703.
[44] YU J, YANG L, ZHANG L. Pattern Generation and Motion Control of A Vortex-Like Paramagnetic Nanoparticle Swarm[J]. The International Journal of Robotics Research, 2018, 37(8): 912-930.
[45] YU J, WANG B, DU X, et al. Ultra-Extensible Ribbon-Like Magnetic Microswarm[J]. Nature Communications, 2018, 9(1): 3260.
[46] YU J, YANG L, DU X, et al. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms[J]. IEEE Transactions on Robotics, 2021, 38(3): 1552-1570.
[47] DONG X, SITTI M. Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms[J]. The International Journal of Robotics Research, 2020, 39(5): 617-638.
[48] ALI J, CHEANG U K, LIU Y, et al. Fabrication and Magnetic Control of Alginate-Based Rolling Microrobots[J]. AIP Advances, 2016, 6(12).
[49] UNVERDI S O, TRYGGVASON G. A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows[J]. Journal of Computational Physics, 1992, 100(1): 25-37.
[50] YU J D, SAKAI S, SETHIAN J A. A Coupled Level Set Projection Method Applied to Ink Jet Simulation[J]. Interfaces and Free Boundaries, 2003, 5(4): 459-482.
[51] LI C, XU C, GUI C, et al. Level Set Evolution without Re-Initialization: A New Variational Formulation[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05): Vol. 1. IEEE, 2005: 430-436.
[52] OLSSON E, KREISS G. A Conservative Level Set Method for Two Phase Flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[53] MAHONEY A W, NELSON N D, PEYER K E, et al. Behavior of Rotating Magnetic Microrobots above The Step-out Frequency with Application to Control of Multi-Microrobot Systems [J]. Applied Physics Letters, 2014, 104(14).
[54] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60: 91-110.
[55] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[56] CHOI D H, JANG I H, KIM M H, et al. Color Image Enhancement using Single-Scale Retinex Based on An Improved Image Formation Model[C]//2008 16th European Signal Processing Conference. IEEE, 2008: 1-5.
[57] DUBROFSKY E. Homography Estimation[J]. Diplomová práce. Vancouver: Univerzita Britské Kolumbie, 2009, 5.
[58] FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[59] HART P E, NILSSON N J, RAPHAEL B. A Formal Basis for The Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[60] PRAUTZSCH H, BOEHM W, PALUSZNY M. Bézier and B-Spline Techniques: Vol. 6[M]. Springer, 2002.
[61] MUKUNDAN R, RAMAKRISHNAN K. Moment Functions in Image Analysis: Theory and Applications[M]. World Scientific, 1998.
[62] SAFFMAN P G. Vortex Dynamics[M]. Cambridge University Press, 1995.
[63] YU J, XU T, LU Z, et al. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery[J]. IEEE Transactions on Robotics, 2017, 33(5): 1213-1225.
[64] LECUONA A, RUIZ-RIVAS U, NOGUEIRA J. Simulation of Particle Trajectories in A Vortex Induced Flow: Application to Seed-Dependent Flow Measurement Techniques[J]. Measurement Science and Technology, 2002, 13(7): 1020.
[65] PARK J S, YANG J C, YUK S H, et al. Effect of Molecular Weight of PLGA on Release Behavior of Doxorubicin for Double-Layered PLGA Microspheres[J]. Polymer (Korea), 2007, 31(3): 189-193.
[66] FARHANE Z, BONNIER F, HOWE O, et al. Doxorubicin Kinetics and Effects on Lung Cancer Cell Lines using in Vitro Raman Micro-Spectroscopy: Binding Signatures, Drug Resistance and DNA Repair[J]. Journal of Biophotonics, 2018, 11(1): e201700060.
[67] HERSHMAN D L, MCBRIDE R B, EISENBERGER A, et al. Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients with Diffuse B-Cell Non-Hodgkin’s Lymphoma [J]. Journal of Clinical Oncology, 2008, 26(19): 3159-3165.
[68] NOH S, JEON S, KIM E, et al. A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability[J]. Small, 2022, 18(25): 2107888.
[69] COHEN J, ZALESKI K L, NOURISSAT G, et al. Survival of Porcine Mesenchymal Stem Cells over The Alginate Recovered Cellular Method[J]. Journal of Biomedical Materials Research Part A, 2011, 96(1): 93-99.

所在学位评定分委会
力学
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766098
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
方力军. 磁性微型机器人及群的大空间自主导航研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132251-方力军-机械与能源工程(8006KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[方力军]的文章
百度学术
百度学术中相似的文章
[方力军]的文章
必应学术
必应学术中相似的文章
[方力军]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。