[1] MYERS B A. A brief history of human-computer interaction technology[J]. interactions, 1998,5(2): 44-54.
[2] 何盛鸿. 基于 EEG 和 EOG 的异步人机接口及其应用[D]. 广州: 华南理工大学, 2017.
[3] ZHAO Y, ZHANG X, CHEN X, et al. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment[J]. International journal of molecular medicine, 2022,49(2): 1-9.
[4] BINKS S, VINCENT A, PALACE J. Myasthenia gravis: a clinical-immunological update[J].Journal of neurology, 2016, 263: 826-834.
[5] ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain–computer interface paradigms[J]. Journal of neural engineering, 2019, 16(1): 011001.
[6] BELKHIRIA C, BOUDIR A, HURTER C, et al. EOG-Based Human–Computer Interface:2000–2020 Review[J]. Sensors, 2022, 22(13): 4914.
[7] BERGEY G E, SQUIRES R D, SIPPLE W C. Electrocardiogram recording with pasteless electrodes[J]. IEEE transactions on biomedical engineering, 1971(3): 206-211.
[8] SARHAN S M, AL-FAIZ M Z, TAKHAKH A M. A review on EMG/EEG based control scheme of upper limb rehabilitation robots for stroke patients[J]. Heliyon, 2023.
[9] BELKHIRIA C, PEYSAKHOVICH V. Electro-encephalography and electro-oculography in aeronautics: A review over the last decade (2010–2020)[J]. Frontiers in Neuroergonomics,2020, 1: 606719.
[10] ACAR G, OZTURK O, GOLPARVAR A J, et al. Wearable and flexible textile electrodes for biopotential signal monitoring: A review[J]. Electronics, 2019, 8(5): 479.
[11] XIONG D, ZHANG D, ZHAO X, et al. Deep learning for EMG-based human-machine interaction: A review[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(3): 512-533.
[12] BANIQUED P D E, STANYER E C, AWAIS M, et al. Brain–computer interface robotics for hand rehabilitation after stroke: A systematic review[J]. Journal of neuroengineering and rehabilitation, 2021, 18(1): 1-25.
[13] JEUNET C, GLIZE B, MCGONIGAL A, et al. Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical background, applications and prospects[J]. Neurophysiologie Clinique, 2019, 49(2): 125-136.
[14] PADFIELD N, ZABALZA J, ZHAO H, et al. EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges[J]. Sensors, 2019, 19(6): 1423.
[15] GASSER T, ROUSSON V, GASSER U S. EEG power and coherence in children with educational problems[J]. Journal of Clinical Neurophysiology, 2003, 20(4): 273-282.
[16] NIJHOLT A. BCI for games: A ‘state of the art’survey[C]//International Conference onEntertainment Computing. Springer, 2008: 225-228.
[17] WEN D, FAN Y, HSU S H, et al. Combining brain–computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review[J]. Annals of physical and rehabilitation medicine, 2021, 64(1): 101404.
[18] MALEKI M, MANSHOURI N, KAYIKCIOGLU T. Brain-computer interface systems for smart homes-a review study[J]. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 2021, 14(2): 144-155.
[19] WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: a review of the first international meeting[J]. IEEE transactions on rehabilitation engineering, 2000, 8(2): 164-173.
[20] NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review[J]. sensors,2012, 12(2): 1211-1279.
[21] KAPGATE D, KALBANDE D. A review on visual brain computer interface[C]//Advancements of Medical Electronics: Proceedings of the First International Conference, ICAME 2015.Springer, 2015: 193-206.
[22] NIJBOER F, FURDEA A, GUNST I, et al. An auditory brain–computer interface (BCI)[J].Journal of neuroscience methods, 2008, 167(1): 43-50.
[23] YAO L, SHENG X, ZHANG D, et al. A BCI system based on somatosensory attentional orientation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(1):81-90.
[24] FABIANI M, GRATTON G, KARIS D, et al. Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential[J]. Advances in psychophysiology, 1987, 2(S1): 78.
[25] FAZEL-REZAI R, AMIRI S, RABBI A, et al. A Review of P300, SSVEP, and Hybrid P300/SSVEP Brain-Computer Interface Systems[Z]. 2013.
[26] 王攀, 沈继忠, 施锦河. 基于小波变换和时域能量熵的 P300 特征提取算法[J]. 仪器仪表学报, 2011, 32(6): 1284-1289.
[27] TAKANO K, KOMATSU T, HATA N, et al. Visual stimuli for the P300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices[J]. Clinical neurophysiology,2009, 120(8): 1562-1566.
[28] WANG Y, CHEN X, GAO X, et al. A benchmark dataset for SSVEP-based brain–computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(10): 1746-1752.
[29] HERRMANN C S. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena[J]. Experimental brain research, 2001, 137: 346-353.
[30] KUNDU S, ARI S. P300 based character recognition using convolutional neural network and support vector machine[J]. Biomedical Signal Processing and Control, 2020, 55: 101645.
[31] ZHANG Y, ZHOU G, JIN J, et al. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis[J]. International journal of neural systems, 2014, 24(04):1450013.
[32] NAKANISHI M, WANG Y, WANG Y T, et al. A high-speed brain speller using steady-state visual evoked potentials[J]. International journal of neural systems, 2014, 24(06): 1450019.
[33] RASHID M, SULAIMAN N, PP ABDUL MAJEED A, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review[J]. Frontiers in neurorobotics, 2020, 14: 515104.
[34] MORASH V, BAI O, FURLANI S, et al. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries[J]. Clinical neurophysiology,2008, 119(11): 2570-2578.
[35] MCFARLAND D J, WOLPAW J R. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance[J]. IEEE transactions on neural systems and rehabilitation engineering, 2005, 13(3): 372-379.
[36] 周思捷, 白红民. 事件相关去同步化和同步化方法在脑电信号分析中的研究进展[J]. 中国微侵袭神经外科杂志, 2018, 23(3): 141-143.
[37] GAO H, LUO L, PI M, et al. EEG-based volitional control of prosthetic legs for walking in different terrains[J]. IEEE Transactions on Automation Science and Engineering, 2019, 18(2):530-540.
[38] LAFLEUR K, CASSADY K, DOUD A, et al. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface[J]. Journal of neural engineering, 2013, 10(4): 046003.
[39] 岑尧辉. 在线异步 MI-BCI 系统实验范式设计[D]. 哈尔滨工业大学, 2019.
[40] GANDEVIA S C, WILSON L R, INGLIS J T, et al. Mental rehearsal of motor tasks recruits alpha-motoneurones but fails to recruit human fusimotor neurones selectively.[J]. The Journal of physiology, 1997, 505(Pt 1): 259.
[41] GUILLOT A, LEBON F, ROUFFET D, et al. Muscular responses during motor imagery as a function of muscle contraction types[J]. International Journal of Psychophysiology, 2007, 66(1): 18-27.
[42] PERSONNIER P, BALLAY Y, PAPAXANTHIS C. Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements[J]. Behavioural brain research, 2010, 206(2): 184-191.
[43] LEBON F, ROUFFET D, COLLET C, et al. Modulation of EMG power spectrum frequency during motor imagery[J]. Neuroscience letters, 2008, 435(3): 181-185.
[44] GENTILI R, PAPAXANTHIS C, POZZO T. Improvement and generalization of arm motor performance through motor imagery practice[J]. Neuroscience, 2006, 137(3): 761-772.
[45] WIERZGAŁA P, ZAPAŁA D, WOJCIK G M, et al. Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis[J]. Frontiers in neuroinformatics, 2018, 12:78.
[46] HADJIAROS M, NEOKLEOUS K, SHIMI A, et al. Virtual Reality Cognitive Gaming based on Brain Computer Interfacing: A narrative review[J]. IEEE Access, 2023.
[47] 潘家辉. 基于 P300 和 SSVEP 的高性能脑机接口及其应用研究[D]. 华南理工大学, 2014.
[48] BRUNNER C, LEEB R, MÜLLER-PUTZ G, et al. BCI Competition 2008–Graz data set A[J].Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 2008, 16: 1-6.
[49] LEEB R, BRUNNER C, MÜLLER-PUTZ G, et al. BCI Competition 2008–Graz data set B[J]. Graz University of Technology, Austria, 2008, 16: 1-6.
[50] SCHALK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system[J]. IEEE Transactions on biomedical engineering, 2004,51(6): 1034-1043.
[51] ANG K K, CHIN Z Y, WANG C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b[J]. Frontiers in neuroscience, 2012, 6: 39.
[52] JIN Z, ZHOU G, GAO D, et al. EEG classification using sparse Bayesian extreme learning machine for brain–computer interface[J]. Neural Computing and Applications, 2020, 32: 6601-6609.
[53] HA K W, JEONG J W. Motor imagery EEG classification using capsule networks[J]. Sensors,2019, 19(13): 2854.
[54] ZHANG Y, NAM C S, ZHOU G, et al. Temporally constrained sparse group spatial patterns for motor imagery BCI[J]. IEEE transactions on cybernetics, 2018, 49(9): 3322-3332.
[55] CHO H, AHN M, AHN S, et al. Supporting data for “EEG datasets for motor imagery brain computer interface.”[J]. GigaScience Database, 2017.
[56] BI L, GUAN C, et al. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration[J]. Biomedical Signal Processing and Control, 2019, 51: 113-127.
[57] BOTROS F S, PHINYOMARK A, SCHEME E J. Electromyography-based gesture recognition: Is it time to change focus from the forearm to the wrist?[J]. IEEE Transactions on Industrial Informatics, 2020, 18(1): 174-184.
[58] MOMEN K, KRISHNAN S, CHAU T. Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4):535-542.
[59] 许家超. 基于运动想象脑电信号的游戏控制研究[D]. 哈尔滨工业大学, 2020.
[60] PEIRCE J W. PsychoPy—psychophysics software in Python[J]. Journal of neuroscience methods, 2007, 162(1-2): 8-13.
[61] TANG C, XU L, CHEN P, et al. A Novel Multiple Motor Imagery Experimental Paradigm Design and Neural Decoding[C]//2020 Chinese Automation Congress (CAC). IEEE, 2020:4024-4028.
[62] 李翔. 基于运动想象的在线脑-机接口系统的研究与实现[D]. 清华大学, 2012.
[63] 张树丰. 负载和运动速度对肌疲劳 sEMG 特征分类的影响分析[D]. 天津大学, 2020.
[64] 毛琳. 肌电, 脑电信号在上肢康复中的研究与应用[D]. 中国电子科技集团公司电子科学研究院, 2022.
[65] DE LUCA C J, GILMORE L D, KUZNETSOV M, et al. Filtering the surface EMG signal:Movement artifact and baseline noise contamination[J]. Journal of biomechanics, 2010, 43(8):1573-1579.
[66] HARTMANN M, SCHINDLER K, GEBBINK T A, et al. PureEEG: automatic EEG artifact removal for epilepsy monitoring[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2014,44(5): 479-490.
[67] JIANG X, BIAN G B, TIAN Z. Removal of artifacts from EEG signals: a review[J]. Sensors,2019, 19(5): 987.
[68] 骆睿鹏, 冯铭科, 黄鑫, 等. 脑电信号预处理方法研究综述.[J]. Electronic Science & Technology, 2023, 36(4).
[69] URIGÜEN J A, GARCIA-ZAPIRAIN B. EEG artifact removal—state-of-the-art and guidelines[J]. Journal of neural engineering, 2015, 12(3): 031001.
[70] JUNG T P, MAKEIG S, HUMPHRIES C, et al. Removing electroencephalographic artifacts by blind source separation[J]. Psychophysiology, 2000, 37(2): 163-178.
[71] WINTER W R, NUNEZ P L, DING J, et al. Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence[J]. Statistics in medicine, 2007, 26(21): 3946-3957.
[72] PION-TONACHINI L, KREUTZ-DELGADO K, MAKEIG S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website[J]. NeuroImage,2019, 198: 181-197.
[73] PHINYOMARK A, QUAINE F, CHARBONNIER S, et al. EMG feature evaluation for improving myoelectric pattern recognition robustness[J]. Expert Systems with applications, 2013,40(12): 4832-4840.
[74] ASGHAR A, JAWAID KHAN S, AZIM F, et al. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022,236(5): 628-645.
[75] JARAMILLO A G, BENALCAZAR M E. Real-time hand gesture recognition with EMG using machine learning[C]//2017 IEEE second ecuador technical chapters meeting (ETCM). IEEE,2017: 1-5.
[76] CHANG J, PHINYOMARK A, BATEMAN S, et al. Wearable emg-based gesture recognition systems during activities of daily living: An exploratory study[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,2020: 3448-3451.
[77] PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Feature reduction and selection for EMG signal classification[J]. Expert systems with applications, 2012, 39(8): 7420-7431.
[78] KIM K S, CHOI H H, MOON C S, et al. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions[J]. Current applied physics, 2011, 11(3): 740-745.
[79] JOLLIFFE I T, CADIMA J. Principal component analysis: a review and recent developments[J]. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150202.
[80] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20: 273-297.
[81] DEKA P C, et al. Support vector machine applications in the field of hydrology: a review[J].Applied soft computing, 2014, 19: 372-386.
[82] MARIS E, OOSTENVELD R. Nonparametric statistical testing of EEG-and MEG-data[J].Journal of neuroscience methods, 2007, 164(1): 177-190.
[83] SASSENHAGEN J, DRASCHKOW D. Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location[J]. Psychophysiology, 2019, 56(6):e13335.
[84] KOLES Z J, LAZAR M S, ZHOU S Z. Spatial patterns underlying population differences in the background EEG[J]. Brain topography, 1990, 2: 275-284.
[85] WANG F, LIU H, ZHAO L, et al. Improved brain–computer interface signal recognition algorithm based on few-channel motor imagery[J]. Frontiers in Human Neuroscience, 2022, 16:880304.
[86] ROSS A, JAIN A. Information fusion in biometrics[J]. Pattern recognition letters, 2003, 24(13): 2115-2125.
[87] ROSS A, JAIN A K. Multimodal biometrics: An overview[C]//2004 12th European signal processing conference. IEEE, 2004: 1221-1224.
[88] HAGHIGHAT M, ABDEL-MOTTALEB M, ALHALABI W. Discriminant correlation analysis for feature level fusion with application to multimodal biometrics[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 1866-1870.
[89] HAGHIGHAT M, ABDEL-MOTTALEB M, ALHALABI W. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 1984-1996.
[90] AL-QURAISHI M S, ELAMVAZUTHI I, TANG T B, et al. Multimodal fusion approach based on EEG and EMG signals for lower limb movement recognition[J]. IEEE Sensors Journal,2021, 21(24): 27640-27650.
[91] 廖培伶, 周凤坤, 吴李硕, 等. 计算机辅助认知康复系统对卒中后认知障碍患者认知功能的影响[J]. 微创医学, 2022, 17(05): 645-648.
[92] YUAN H, LI Y, YANG J, et al. State of the Art of Non-Invasive Electrode Materials for Brain–Computer Interface[J]. Micromachines, 2021, 12(12): 1521.
修改评论