中文版 | English
题名

Climate Mitigation Potential via Reforestation

其他题名
植树造林的气候变化缓解潜力评估
姓名
姓名拼音
LIANG Shijing
学号
12132206
学位类型
硕士
学位专业
071012 生态学
学科门类/专业学位类别
07 理学
导师
曾振中
导师单位
环境科学与工程学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Global reforestation, a vital natural-based solution, is expected to provide carbon storage benefits and surface cooling effects targeting climate change. This study integrated a spatially explicit potential tree cover map derived from satellite observations and the advanced Earth System Model CESM2 to evaluate the role of large-scale reforestation in climate change mitigation. Considering the vegetation-climate interactions, this research investigates the patterns, mechanisms, and feedback of reforestation given reforestation effectively alters the carbon cycle, surface energy budget, and water cycle. We estimated that the long-term carbon removal potential of reforestation, considering the impacts of disturbances and albedo, stands at 0.9 PgC year-1. In addition, in exploring the mechanisms underlying reforestation’s temperature effects, we found that changes in vapor pressure deficit, aerodynamic resistance, and albedo have the most profound impacts on spatial temperature change outcomes. We emphasize that the cooling or warming resulting from reforestation is inherently an outcome of complex vegetation-atmosphere feedback occurring under modified microclimate conditions. Last, the study uncovers the interannual variations of reforestation-triggered water cycle changes (i.e. precipitation, soil moisture, and evapotranspiration). By examining the biophysical feedback in reforested lands, we reveal that vegetation in these areas exerts a stronger control over local soil water content via evapotranspiration. In summary, this study underscores the complexity of reforestation as a climate change mitigation strategy with long term carbon sequestration goals. It is emphasized that reforestation is not a universally applicable solution and necessitates strategic, science-based planning, accounting for the interconnectedness of the biosphere, atmosphere, and hydrosphere. Reforestation should complement, not substitute, the pressing requirement for CO2 emissions reduction as part of a comprehensive climate action plan.

关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] IPCC, Climate Change 2022: Mitigation of climate change. Contribution of working group Ⅲ to the six assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge Univ. Press, 2022.
[2] FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15:5301–5369.
[3] BONAN G. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320:1444-1449.
[4] IGBP Terrestrial Carbon Working Group et al. The terrestrial carbon cycle: Implications for the Kyoto Protocol[J]. Science, 1998, 280:1393-1394.
[5] LEWIS S L, WHEELER C E, MITCHARD E T A, et al. Restoring natural forests is the best way to remove atmospheric carbon[J]. Nature, 2019, 568:25-28.
[6] ZHU Z, PIAO S, MYNENI R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6:791-795.
[7] NEMANI R R, KEELING C D, HASHIMOTO H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300:1560-1563.
[8] WU J, WANG D, LI L Z X, et al. Hydrological feedback from projected Earth greening in the 21st century[J]. Sustainable Horizons, 2022, 1:100007.
[9] ANDEREGG W R L, et al. A climate risk analysis of Earth’s forests in the 21st century[J]. Science, 2022, 377:1099-1103.
[10] ZENG Z, PIAO S, LI L Z X, et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades[J]. Nature Climate Change, 2017, 7:432-436.
[11] BETTS R A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo[J]. Nature, 2000, 408:187-190.
[12] CHEN C, DAN L, LI, Y, et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance[J]. Science Advances, 2020, 6:eabb1981.
[13] WINDISCH, M G, DAVIN E L, SENEVIRATNE E I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts[J]. Nature Climate Change, 2021, 11:867–871.
[14] MEDLYN B E, DUURSMA R A, EAMUS D, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2010, 17:2134-2144.
[15] ZENG Z, PIAO S, LI L Z X, et al. Impact of Earth greening on the terrestrial water cycle[J]. Journal of Climate, 2018, 31:2633-2650.
[16] GOOD S, NOONE D, BOWEN G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[J]. Science, 2015, 349:175-177.
[17] WANG D, ZENG, Z. Urgent need to improve modelled sensitivity of evaporation to vegetation change[J]. Nature Water, 2024, 2:211-214.
[18] LI Y, PIAO S, LI L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4:eaar4182.
[19] HOEK VAN DIJKE A, HEROLD M, MALLICK K, et al. Shifts in regional water availability due to global tree restoration[J]. Nature Geoscience, 2022, 15:363-368.
[20] VELDKAMP E, SCHMIDT M, POWERS J S, et al. Deforestation and reforestation impacts on soils in the tropics[J]. Nature Reviews Earth & Environment, 2022, 1:590–605.
[21] EYRING V, BONY S, MEEHL G, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9:1937-1958.
[22] DANABASOGLU G, LAMARQUE J-F, BACMEISTER J, et al. The Community Earth System Model Version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12:e2019MS001916.
[23] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth System, 2019, 11:4245-4287.
[24] SHI M, FISHER J B, BRZOSTEK E R, et al. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model[J]. Global Change Biology, 2015, 22:1299-1314.
[25] LI F, LAWRENCE D M. Role of fire in the global land water budget during the twentieth century due to changing ecosystems[J]. Journal of Climate, 2017, 30:1893-1908.
[26] BASTIN J-F, FINEGOLD Y, GARCIA C, et al. The global tree restoration potential[J]. Science, 2019, 365:76-79.
[27] BASTIN J-F, FINEGOLD Y, GARCIA C, et al. Response to comment on "The global tree restoration potential"[J]. Science, 2019, 366:aaz0493.
[28] KOTTEK M, GRIESER J, BECK C, et al. World Map of the Köppen-Geiger climate classification updated[J]. Meteorologische Zeitschrift, 2006, 15:259-263.
[29] SKIDMORE A K, WANG T, BIE K E, et al. Comment on “The global tree restoration potential”[J]. Science, 2019:366:aaz0111.
[30] GRAINGER A, IVERSON L R, MARLAND G H, et al. Comment on “The global tree restoration potential”[J]. Science, 2019:366:aay8334.
[31] VELDMAN J W, ALEMAN J C, ALVARADO S T, et al. Comment on “The global tree restoration potential”[J]. Science, 2019:366:aay7976.
[32] HURTT G C, CHINI L, SAHAJPAL R, et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6[J]. Geoscientific Model Development, 2020, 13:5425-5464.
[33] LAWRENCE D M, HURTT G C, ARNETH A, et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experiment design[J]. Geoscientific Model Development, 2016, 9:2973-2998.
[34] DELZEIT R, PONGRATZ J, SCHNEIDER J M, et al. Forest restoration: Expanding agriculture[J]. Science, 2019, 366: 316-317.
[35] VELDMAN J W, OVERBECK G E, NEGREIROS D, et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services[J]. BioScience, 2015, 65:1011–101.
[36] VAN VLIET N, MERTZ O, HEINIMANN A, et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment[J]. Global Environmental Change, 2012, 22:419-429.
[37] CLM 5.0 Technical Note[Z]. Available at https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html.
[38] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11:4245-4287.
[39] FISHER J B, SITCH S, MALHI Y, et al. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation[J]. Global Biogeochemical Cycles, 2010, 24.
[40] FISHER R A, KOVEN C D, ANDEREGG W R L, et al. Vegetation demographics in Earth System Models: A review of progress and priorities[J]. Global Change Biology, 2018, 24:35-54.
[41] KENNEDY D, SWENSON S, OLESON K W, et al. Implementing plant hydraulics in the community land model, version 5[J]. J Journal of Advances in Modeling Earth Systems, 2019, 11:485–513.
[42] SITCH S, FRIEDLINGSTEIN P, GRUBER N, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide[J]. Biogeosciences, 2015, 12:653-679.
[43] KATO E, KINOSHITA T, ITO A, et al. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model[J]. Journal of Land Use Science, 2013, 8:104–122.
[44] ERB K, KASTNER T, PLUTZAR C, et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass[J]. Nature, 2018, 553:73-76.
[45] ROEBROEK C T J, DUVEILLER G, SENEVIRATNE S I. Releasing global forests from human management: How much more carbon could be stored?[J] Science, 2023, 380:749-753.
[46] WALKER W S, GORELIK S R, COOK-PATTON S C, et al. The global potential for increased storage of carbon on land[J]. The Proceedings of the National Academy of Sciences, 2022, 119:e2111312119.
[47] MO L, ZOHNER C M, REICH P B, et al. Integrated global assessment of the natural forest carbon potential[J]. Nature, 2023, 624:92-101.
[48] GRISCOM B W, ADAMS J, ELLIS P W, et al. Nature climate solutions[J]. The Proceedings of the National Academy of Sciences, 2017, 114:11645-11650.
[49] COOK-PATTON S C, LEAVITT S M, GIBBS D, et al. Mapping carbon accumulation potential from global natural forest regrowth[J]. Nature, 2020, 585:545-550.
[50] ARORA V K, MONTENEGRO A. Small temperature benefits provided by realistic afforestation efforts[J]. Nature Geoscience, 2011, 4:514-518.
[51] SONNTAG S, PONGRATZ J, REICK C H, et al. Reforestation in a high-CO2 world—Higher mitigation potential than expected, lower adaptation potential than hoped for[J]. Geophysical Research Letters, 2016, 43:6546-6553.
[52] KOCH A, BRIERLEY C, LEWIS S L. Effects of Earth system feedbacks following large-scale tropical forest restoration[J]. Biogeosciences, 2021, 18:2627-2647.
[53] BRIGHT R M. Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: a critical review[J]. Environmental Science and Technology, 2015, 49:3291-3303.
[54] BIRD D N, KUNDA M, MAYER A, et al. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects[J]. Biogeosciences Discussion, 2008, 5:1511–1543.
[55] PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333:988-993.
[56] WOLF S, PAUL-LIMOGES E. Drought and heat reduce forest carbon uptake[J]. Nat Communications, 2023, 14:6217.
[57] ROHATYN S, YAKIR D, ROTENBERG E, et al. Limited climate change mitigation potential through forestation of the vast dryland regions[J]. Science, 2022, 377:1436-1439.
[58] WEBER J, KING J A, ABRAHAM N L, et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits[J]. Science, 2024, 383:860-64.
[59] STRASSBURG B B N, BROOKS T, FELTAN-BARBIERI R, et al. Moment of truth for the Cerrado hotspot[J]. Nature Ecology & Evolution, 2017, 1:0099.
[60] WILLIAMS C A, GU H, JIAO T. Climate impacts of U.S. forest loss span net warming to net cooling[J]. Science Advances, 2021, 7:eaax8859.
[61] LEE X, GOULDEN M L, HOLLINGER D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479:384-387.
[62] LI Y, ZHAO M, MOTESHARREI S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communications, 2015, 6:6603.
[63] ALKAMA R, CESCATTI A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351:600-604.
[64] PERUGINI L, CAPORASO L, MARCONI S, et al. Biophysical effects on temperature and precipitation due to land cover change[J]. Environmental Research Letters, 2017, 12:053002.
[65] ZHANG Q, BARNES M, BENSON M, et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications[J]. Global Change Biology, 2020, 26:3384-3401.
[66] ZHANG C, SU Y, LIU L, et al. Seasonal and long-term dynamics in forest microclimate effects: global pattern and mechanism[J]. npj Climate and Atmospheric Science, 2023, 6:116.
[67] CHEN C, LI D, LI Y, et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance[J]. Science Advances, 2020, 6:eabb1981.
[68] FENG H, ZOU B. A greening world enhances the surface-air temperature difference[J]. Science of The Total Environment, 2019, 658:385-394.
[69] ZHANG Q, BARNES M, BENSON M, et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications[J]. Global Change Biology, 2020, 26:3384-3401.
[70] BARNES M L, ZHANG Q, ROBESON S M, et al. A century of reforestation reduced anthropogenic warming in the eastern United States[J]. Earth’s Future, 2024, 12:e2023ER003663.
[71] BRIGHT R M, DAVIN E, O’HALLORAN T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nature Climate Change, 2017, 7:296-301.
[72] CERASOLI S, YIN J, PORPORATO A. Cloud cooling effects of afforestation and reforestation at midlatitudes[J]. The Proceedings of the National Academy of Sciences, 2021, 118:e2026241118.
[73] PORTMANN R, BEYERLE U, DAVIN E, et al. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation[J]. Nature Communications, 2022, 13:5569.
[74] KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499:324-327.
[75] IRMAK S, MUTIIBWA D. On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables[J]. Water Resources Research, 2010, 46:W08526.
[76] DUVEILER G, HOOKER J, CESCATTI A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communications, 2018, 9:679.
[77] FISCHLER M A, BOLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Graphics and Image Processing, 1981, 24:381-395.
[78] GROSSIORD C, BUCKLEY T N, CERNUSAK L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226:1550-1566.
[79] BREIL M, RECHID D, DAVIN E L. The opposing effects of reforestation and afforestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer[J]. Journal of Climate, 2020, 33:9159-9179.
[80] ENDRENY T A. Strategically growing the urban forest will improve our world[J]. Nature Communications, 2018, 9:1160.
[81] WANG C, WANG Z, YANG K. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States[J]. Earth’s Future, 2018, 6:1066-1081.
[82] YOSEF G, WALKO R, AVISAR R, et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential[J]. Scientific Reports, 2018, 8:996.
[83] SMITH T, BOERS N. Global vegetation resilience linked to water availability and variability[J]. Nature Communications, 2023, 14:498.
[84] XU C, LIU H, CIAIS P, et al. Enhanced drought exposure increasingly threatens more forests than observed[J]. Earth’s Future, 2024, 12:e2023EF003705.
[85] FENG X, FU B, PIAO S. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6:1019-1022.
[86] MEIER R, SCHWAAB J, SENEVIRATNE S I, et al. Empirical estimate of forestation-induced precipitation changes in Europe[J]. Nature Geoscience, 2021, 14:473-478.
[87] SWANN A L S, FUNG I Y, CHIANG J C H. Mid-latitude afforestation shifts general circulation and tropical precipitation[J]. The Proceedings of the National Academy of Sciences, 2011, 109:712-716.
[88] LAGUË M M, SWANN A L S. Progressive midlatitude afforestation: impacts on clouds, global energy transport, and precipitation[J]. Journal of Climate, 2016, 29:5561-5573.
[89] ZHANG Y, CIAIS P, BOUCHER O, et al. Increased global land carbon sink due to aerosol-induced cooling[J]. Earth’s Future, 2021, 9:e2021EF002035.
[90] BONAN G B, DONEY S C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models[J]. Science, 2018, 359:aam8328.
[91] ZHANG M, WEI X. Deforestation, forestation, and water supply[J]. Science, 2021, 371:990-991.
[92] ZHANG M, LIU N, HARPER R, et al. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime[J]. Journal of Hydrology, 2017, 546:44-59.

所在学位评定分委会
生物学
国内图书分类号
Q14
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766106
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Liang SJ. Climate Mitigation Potential via Reforestation[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132206-梁时婧-环境科学与工程(4127KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁时婧]的文章
百度学术
百度学术中相似的文章
[梁时婧]的文章
必应学术
必应学术中相似的文章
[梁时婧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。