中文版 | English
题名

具有力学适配性的功能水凝胶膜层材料的设计、制备及其生物电子界面研究

其他题名
DESIGN AND PREPARATION OF FUNCTIONAL HYDROGEL MATERIALS WITH MECHANICAL ADAPTABILITY AND STUDY ON BIOELECTRONIC INTERFACES
姓名
姓名拼音
Xue Yu
学号
12031234
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
刘吉
导师单位
南方科技大学
论文答辩日期
2024-04-25
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       水凝胶因其与生物体高度相似的特性,如高水含量、离子生理环境和低杨氏模量,成为一种理想的人机交互界面材料。在组织和电极间构筑具有特定功能的水凝胶膜层界面,不仅可以提高二者间的力学适配性,还有助于增强生物电子界面的电交互和物质交换等功能。然而,由于生物体内环境极其复杂,涉及细胞、组织和器官之间的协同相互作用,对水凝胶膜层的功能性和长期稳定性提出了更高的要求。尽管近年来国内外研究学者报道了各类方法提升水凝胶的性能,但当前合成水凝胶依旧存在小分子残留、组织界面的粘合稳定性和可调控性差,以及水凝胶膜层在电极表面的长期稳定性差和功能上无法满足体内特定应用场景需求等挑战,严重制约了水凝胶在生物体内的广泛应用。针对这些挑战,本论文提出了一系列新策略开发功能性水凝胶膜层界面,并对它们的粘附性能、电学性质、生物兼容性、以及在生物体内的实际应用效果进行了深入的研究,旨在通过水凝胶膜层技术推动生物电子领域的快速发展,具体研究内容与结果如下:

     (1)针对合成水凝胶存在的小分子残留及其在生物组织表面粘附稳定性差等挑战,提出了聚合物前驱体的策略,用于开发高生物兼容性的水凝胶粘合剂。在前驱体中分别引入具有生物粘附功能的 N-羟基丁二酰亚胺接枝的聚丙烯酸类高分子,和通过滞后效应起到耗散能量作用的长链聚合物,以及构成三维网络结构的聚合物交联剂;并利用水凝胶干交联方式,可实现水凝胶粘合剂与各种生物组织/工程材料的高韧性粘合,界面韧性高达~150 J m-2,远高于市售的生物粘合剂(< 20 J m-2)。良好的生物兼容性和快速韧性组织粘附特性使此类水凝胶粘合剂可用于构筑稳定的组织-器件粘合界面,有助于生理信号的长期高质量记录。

     (2)针对高韧性水凝胶粘合界面可调控性差的挑战,提出了可调控水凝胶粘合界面的设计原则。通过在水凝胶粘合剂体系中引入苯硼酸与二元醇类聚合物的络合作用来提升水凝胶的外在韧性(ΓD),可实现在湿润的生物组织和工程材料表面的快速高韧性粘合;进一步在生物兼容性刺激下(如喷涂葡萄糖溶液)破坏苯硼酸与二元醇类聚合物的络合作用来降低水凝胶的 ΓD,可实现韧-脆界面的快速转变,界面韧性由~400 J m-2下降至~40 J m-2。使用此类水凝胶粘合剂能够将生物电子牢靠的固定在生物组织表面,并在监测结束后,通过喷洒葡萄糖溶液即可触发生物电子与组织的快速无损分离,不会引发组织损伤等问题。

     (3)针对导电聚合物水凝胶膜层在生物电极表面长期稳定性差的挑战,提出了导电聚合物水凝胶抗疲劳粘接策略。通过在水凝胶膜层与生物电极界面间引入有序的纳米结构,可实现聚乙烯醇/聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PVA/PEDOT:PSS)水凝胶与电极的抗疲劳粘接,有效提升了导电聚合物水凝胶膜层在电极表面的长期稳定性,在长达百万次的电脉冲循环过程中依旧可以保持高的电荷注入能力。使用此类力学/电学适配的导电聚合物水凝胶膜层能够有效降低心脏起搏阈值电压(0.7 V),明显低于金属电极(2.0 V),并且抗疲劳粘接特性确保了其在体内长期稳定的电刺激功效。
     (4)针对水凝胶电极膜层功能上无法满足体内特定场景需求的挑战(如神经递质传感),通过在电极表面分别构筑由特异性识别作用的生物酶和高电子转移能力的氧化还原聚合物共同组成的酶凝胶传感层,和具有抗污性能的水凝胶保护层,开发出一种基于水凝胶膜层的多巴胺传感电极。此类传感电极具有优异的电化学传感性能、抗干扰特性及生理环境中的长期稳定性等,能够用于体内多巴胺分泌量变化的实时监测。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] HENG W, SOLOMON S, GAO W. Flexible electronics and devices as human–machine interfaces for medical robotics[J]. Advanced Materials, 2022, 34(16): 2107902.
[2] SUNWOO S-H, HAN S I, PARK C S, et al. Soft bioelectronics for the management of cardiovascular diseases[J]. Nature Reviews Bioengineering, 2024, 2(1): 8-24.
[3] LIU S, RAO Y, JANG H, et al. Strategies for body-conformable electronics[J]. Matter, 2022, 5(4): 1104-1136.
[4] TANG X, SHEN H, ZHAO S, et al. Flexible brain–computer interfaces[J]. Nature Electronics, 2023, 6(2): 109-118.
[5] XU C, SOLOMON S A, GAO W. Artificial intelligence-powered electronic skin[J]. Nature Machine Intelligence, 2023, 5(12): 1344-1355.
[6] ZHAO S, TANG X, TIAN W, et al. Tracking neural activity from the same cells during the entire adult life of mice[J]. Nature Neuroscience, 2023, 26(4): 696-710.
[7] RAY T R, CHOI J, BANDODKAR A J, et al. Bio-integrated wearable systems: A comprehensive review[J]. Chemical Reviews, 2019, 119(8): 5461-5533.
[8] RAY T, CHOI J, REEDER J, et al. Soft, skin-interfaced wearable systems for sports science and analytics[J]. Current Opinion in Biomedical Engineering, 2019, 9: 47-56.
[9] NIU Y, LIU H, HE R, et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions[J]. Materials Today, 2020, 41: 219-242.
[10] LIN M, HU H, ZHOU S, et al. Soft wearable devices for deep-tissue sensing[J]. Nature Reviews Materials, 2022, 7(11): 850-869.
[11] ZHANG Z, ZHU Z, ZHOU P, et al. Soft bioelectronics for therapeutics[J]. ACS Nano, 2023, 17(18): 17634-17667.
[12] LI P, LEE G-H, KIM S Y, et al. From diagnosis to treatment: recent advances in patient-friendly biosensors and implantable devices[J]. ACS Nano, 2021, 15(2): 1960-2004.
[13] KHAN A N, CHA Y-O, GIDDENS H, et al. Recent advances in organ specific wireless bioelectronic devices: perspective on biotelemetry and power transfer using antenna systems[J]. Engineering, 2022, 11: 27-41.
[14] LI H, LIU H, SUN M, et al. 3D Interfacing between soft electronic tools and complex biological tissues[J]. Advanced Materials, 2021, 33(3): 2004425.
[15] SALATINO J W, LUDWIG K A, KOZAI T D Y, et al. Glial responses to implanted electrodes in the brain[J]. Nature Biomedical Engineering, 2017, 1(11): 862-877.
[16] DAI X, HONG G, GAO T, et al. Mesh nanoelectronics: seamless integration of electronics with tissues[J]. Accounts of Chemical Research, 2018, 51(2): 309-318.
[17] POLIKOV V S, TRESCO P A, REICHERT W M. Response of brain tissue to chronically implanted neural electrodes[J]. Journal of Neuroscience Methods, 2005, 148(1): 1-18.
[18] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses[J]. Nature Reviews Materials, 2016, 1(10): 16063.
[19] ZHANG A, LIEBER C M. Nano-bioelectronics[J]. Chemical Reviews, 2016, 116(1): 215-257.
[20] WANG Y, HAICK H, GUO S, et al. Skin bioelectronics towards long-term, continuous health monitoring[J]. Chemical Society Reviews, 2022, 51(9): 3759-3793.
[21] LEONARD M K, GWILLIAMS L, SELLERS K K, et al. Large-scale single-neuron speech sound encoding across the depth of human cortex[J]. Nature, 2024, 626, 593-602.
[22] ZHOU W, DAI X, LIEBER C M. Advances in nanowire bioelectronics[J]. Reports on Progress in Physics, 2017, 80(1): 016701.
[23] SOWTON E. Artificial cardiac pacemakers[J]. British medical journal, 1968, 2(5601): 366.
[24] NICHOLLS M. Pioneers of cardiology: Rune Elmqvist, MD[J]. Circulation, 2007, 115(22): 109-111.
[25] MUDRY A, MILLS M. The early history of the cochlear implant: a retrospective[J]. JAMA Otolaryngology - Head & Neck Surgery, 2013, 139(5): 446-453.
[26] UGHRATDAR I, SAMUEL M, ASHKAN K. Technological advances in deep brain stimulation[J]. Journal of Parkinson’s Disease, 2015, 5(3): 483-496.
[27] SHENG H, ZHANG X, LIANG J, et al. Recent advances of energy solutions for implantable bioelectronics[J]. Advanced Healthcare Materials, 2021, 10(17): 2100199.
[28] NAIR V, DALRYMPLE A N, YU Z, et al. Miniature battery-free bioelectronics[J]. Science, 2023, 382(6671): eabn4732.
[29] KANG S K, KOO J, LEE Y K, et al. Advanced materials and devices for bioresorbable electronics[J]. Accounts of Chemical Research, 2018, 51(5): 988-998.
[30] VIVENTI J, KIM D H, MOSS J D, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology[J]. Science Translational Medicine, 2010, 2(24): 24ra2.
[31] JEONG J W, SHIN G, PARK S I, et al. Soft Materials in Neuroengineering for Hard Problems in Neuroscience[J]. Neuron, 2015, 86: 175-186.
[32] RIVNAY J, WANG H, FENNO L E, et al. Next-generation probes, particles, and proteins for neural interfacing[J]. Science Advances, 2017, 3: e160164.
[33] YANG X, ZHOU T, ZWANG T J, et al. Bioinspired neuron-like electronics[J]. Nature Materials, 2019, 18(5): 510-517.
[34] WANG S, NIE Y, ZHU H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J]. Science Advances, 2022, 8(13): eabl5511.
[35] IMPARATO A M, KIM G E. Electrode complications in patients with permanent cardiac pacemakers: ten years’ experience[J]. Archives of Surgery, 1972, 105(5): 705-710.
[36] WILHELM M J, SCHMID C, HAMMEL D, et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation[J]. The Annals of Thoracic Surgery, 1997, 64(6): 1707-1712.
[37] CHOO M H, HOLMES D R, JR., GERSH B J, et al. Permanent pacemaker infections: characterization and management[J]. The American Journal of Cardiology, 1981, 48(3): 559-564.
[38] DEL NIDO P, GOLDMAN B S. Temporary epicardial pacing after open heart surgery: complications and prevention[J]. Journal of Cardiac Surgery, 1989, 4(1): 99-103.
[39] ELMISTEKAWY E. Safety of temporary pacemaker wires[J]. Asian Cardiovascular & Thoracic Annals, 2019, 27(5): 341-346.
[40] GUTRUF P, YIN R T, LEE K B, et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models[J]. Nature Communications, 2019, 10(1): 5742.
[41] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
[42] WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790.
[43] ZHANG T, LIU N, XU J, et al. Flexible electronics for cardiovascular healthcare monitoring[J]. Innovation, 2023, 4(5): 100485.
[44] JIANG Z, CHEN N, YI Z, et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors[J]. Nature Electronics, 2022, 5(11): 784-793.
[45] KWON K, KIM J U, DENG Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time[J]. Nature Electronics, 2021, 4: 302-312.
[46] KOH A, KANG D, XUE Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat[J]. Science Translational Medicine, 2016, 8(366): 366ra165.
[47] REEDER J T, XUE Y, FRANKLIN D, et al. Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback[J]. Nature Communications, 2019, 10(1): 5513.
[48] BANDODKAR A J, CHOI J, LEE S P, et al. Soft, Skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat[J]. Advanced Materials, 2019, 31(32): e1902109.
[49] BAKER L B, MODEL J B, BARNES K A, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications[J]. Science Advances, 2020, 6, eabe3929.
[50] CHOI J, GHAFFARI R, BAKER L, et al. Skin-interfaced systems for sweat collection and analytics[J]. Science Advances, 2018, 4: eaar3921.
[51] WANG W, JIANG Y, ZHONG D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646): 735-742.
[52] KIM K K, KIM M, PYUN K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition[J]. Nature Electronics, 2023, 6(1): 64-75.
[53] PARK S, HEO S W, LEE W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521.
[54] JINNO H, YOKOTA T, KOIZUMI M, et al. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes[J]. Nature Communications, 2021, 12(1): 2234.
[55] LEE W, KOBAYASHI S, NAGASE M, et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping[J]. Science Advances, 2018, 4(10): eaau2426.
[56] LI Y, LI N, DE OLIVEIRA N, et al. Implantable bioelectronics toward long-term stability and sustainability[J]. Matter, 2021, 4(4): 1125-1141.
[57] JIANG Y, JI S, SUN J, et al. A universal interface for plug-and-play assembly of stretchable devices[J]. Nature, 2023, 614(7948): 456-462.
[58] SIM K, ERSHAD F, ZHANG Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity[J]. Nature Electronics, 2020, 3(12): 775-784.
[59] LU Y, YANG G, WANG S, et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics[J]. Nature Electronics, 2024, 7(1): 51-65.
[60] CHOI Y S, YIN R T, PFENNIGER A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries[J]. Nature Biotechnology, 2021, 39(10): 1228-1238.
[61] CHOI Y S, JEONG H, YIN R T, et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy[J]. Science, 2022, 376(6596): 1006-1012.
[62] BOEHLER C, CARLI S, FADIGA L, et al. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics[J]. Nature Protocols, 2020, 15(11): 3557-3578.
[63] CHAN D, CHIEN J-C, AXPE E, et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors[J]. Advanced Materials, 2022, 34(24): 2109764.
[64] FENG J, FANG Y, WANG C, et al. All-polymer fiber organic electrochemical transistor for chronic chemical detection in the brain[J]. Advanced Functional Materials, 2023, 33(30): 2214945.
[65] DONG Z, HE Q, SHEN D, et al. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications[J]. Microsystems & Nanoengineering, 2023, 9(1): 31.
[66] ROUSCHE P J, PELLINEN D S, PIVIN D P, et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability[J]. IEEE Transactions on Bio-medical Engineering, 2001, 48(3): 361-371.
[67] YEAGER J D, PHILLIPS D J, RECTOR D M, et al. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats[J]. Journal of Neuroscience Methods, 2008, 173(2): 279-285.
[68] MIRANDA I, SOUZA A, SOUSA P, et al. Properties and applications of PDMS for biomedical engineering: a review[J]. Journal of Functional Biomaterials, 2021, 13(1): 2.
[69] MOON H, JANG J-W, PARK S, et al. Soft, conformal PDMS-based ECoG electrode array for long-term in vivo applications[J]. Sensors and Actuators B: Chemical, 2024, 401: 135099.
[70] LEE S, M. SILVA S, CABALLERO AGUILAR L M, et al. Biodegradable bioelectronics for biomedical applications[J]. Journal of Materials Chemistry B, 2022, 10(42): 8575-8595.
[71] ZHANG Y, LEE G, LI S, et al. Advances in bioresorbable materials and electronics[J]. Chemical Reviews, 2023, 123(19): 11722-11773.
[72] HWANG S W, LEE C H, CHENG H, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors[J]. Nano Letters, 2015, 15(5): 2801-2808.
[73] MAHINROOSTA M, JOMEH FARSANGI Z, ALLAHVERDI A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Materials Today Chemistry, 2018, 8: 42-55.
[74] CORREA S, GROSSKOPF A K, LOPEZ HERNANDEZ H, et al. Translational applications of hydrogels[J]. Chemical Reviews, 2021, 121: 11385-11457.
[75] CONG Y, FU J. Hydrogel-tissue interface interactions for implantable flexible bioelectronics[J]. Langmuir, 2022, 38(38): 11503-11513.
[76] SUN J Y, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
[77] ZHANG K, FENG Q, FANG Z, et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics[J]. Chemical Reviews, 2021, 121(18): 11149-11193.
[78] FIDANOVSKI K, MAWAD D. Conjugated polymers in bioelectronics: addressing the interface challenge[J]. Advanced Healthcare Materials, 2019, 8(10): e1900053.
[79] SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7(4): 424-442.
[80] BOEHLER C, OBERUEBER F, SCHLABACH S, et al. Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 189-197.
[81] HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[82] JUNG D, JU H, CHO S, et al. Multilayer stretchable electronics with designs enabling a compact lateral form[J]. npj Flexible Electronics, 2024, 8(1): 13.
[83] ZHAO Y, WANG B, TAN J, et al. Soft strain-insensitive bioelectronics featuring brittle materials[J]. Science, 2022, 378(6625): 1222-1227.
[84] FEKETE Z, Recent advances in silicon-based neural microelectrodes and microsystems: a review[J]. Sensors and Actuators B: Chemical, 2015, 215: 300-315.
[85] JIANG Y, TIAN B. Inorganic semiconductor biointerfaces[J]. Nature Reviews Materials, 2018, 3(12): 473-490.
[86] KINDLMANN G, NORMANN R A, BADI A, et al. Imaging of utah electrode array, implanted in cochlear nerve[J]. 2003.
[87] KIPKE D R, VETTER R J, WILLIAMS J C, et al. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 151-155.
[88] PROMINSKI A, SHI J, LI P, et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues[J]. Nature Materials, 2022, 21(6): 647-655.
[89] CHEN R S, HUANG W H, TONG H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes[J]. Analytical Chemistry, 2003, 75(22): 6341-6345.
[90] MCCALLUM G A, SUI X, QIU C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes[J]. Scientific Reports, 2017, 7(1): 11723.
[91] LIU X, HUANG L, QIAN K. Nanomaterial-based electrochemical sensors: mechanism, preparation, and application in biomedicine[J]. Advanced NanoBiomed Research, 2021, 1: 2000104.
[92] HASSAN S, NADEEM A Y, QAISER H, et al. A review of carbon-based materials and their coating techniques for biomedical implants applications[J]. Carbon Letters, 2023, 33(4): 1171-1188.
[93] FANG Y, PROMINSKI A, ROTENBERG M Y, et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces[J]. Nature Nanotechnology, 2021, 16(2): 1-8.
[94] KALANTAR-ZADEH K, TANG J, DAENEKE T, et al. Emergence of liquid metals in nanotechnology[J]. ACS Nano, 2019, 13(7): 7388-7395.
[95] TANG S Y, MITCHELL D R G, ZHAO Q, et al. Phase separation in liquid metal nanoparticles[J]. Matter, 2019, 1(1): 192-204.
[96] PAN, CHENGFENG, KUMAR, et al. Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing[J]. Advanced Materials, 2018, 30(12): 1706937.
[97] WANG S, NIE Y, ZHU H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J]. Science Advances, 2022, 8(13): eabl5511.
[98] XUE Y, CHEN S, YU J, et al. Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications[J]. Journal of Materials Chemistry C, 2020, 8(30): 10136-10159.
[99] INAL S, RIVNAY J, Suiu A, et al. Conjugated polymers in bioelectronics[J]. Accounts of Chemical Research, 2018, 51, 6, 1368-1376.
[100] NEZAKATI T, SEIFALIAN A, TAN A, et al. Conductive polymers: opportunities and challenges in biomedical applications[J]. Chemical Reviews, 2018, 118: 6766-6843.
[101] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications[J]. Advanced Science, 2019, 6(19): 1900813.
[102] FIDANOVSKI K, MAWAD D J A H M. Conjugated polymers in bioelectronics: addressing the interface challenge[J]. Advanced Healthcare Materials, 2019, 8: 1900053.
[103] LIANG Y, OFFENHUSSER A, INGEBRANDT S, et al. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals[J]. Advanced Healthcare Materials, 2021, 10: 2100061.
[104] LIU Y, LI J, SONG S, et al. Morphing electronics enable neuromodulation in growing tissue[J]. Nature Biotechnology, 2020, 38(9): 1031-1036.
[105] ZHU T, NI Y, BIESOLD G M, et al. Recent advances in conductive hydrogels: classifications, properties, and applications[J]. Chemical Society Reviews, 2023, 52(2): 473-509.
[106] GONG J P, KOMATSU N, NITTA T, et al. Electrical conductance of polyelectrolyte gels[J]. Journal of Physical Chemistry B, 1997, 101: 740-745.
[107] LEACH J, ACHYUTA A K, MURTHY S. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology[J]. Frontiers in Neuroengineering, 2010, 2:1-18.
[108] ZHAO S, TSENG P, GRASMAN J, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces[J]. Advanced Materials, 2018, 30(25): e1800598.
[109] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2433-2439.
[110] WANG L, JIANG J, HUA W, et al. Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles[J]. Advanced Functional Materials, 2016, 26(24): 4293-4305.
[111] AHN Y, LEE H, LEE D, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-18407.
[112] SHIN S R, JUNG S M, ZALABANY M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators[J]. ACS Nano, 2013, 7(3): 2369-2380.
[113] HAN L, LU X, WANG M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13, 1601916.
[114] DVIR T, TIMKO B P, BRIGHAM M D, et al. Nanowired three-dimensional cardiac patches[J]. Nature Nanotechnology, 2011, 6(11): 720-725.
[115] ANNABI N, SHIN S R, TAMAYOL A, et al. Highly elastic and conductive human-based protein hybrid hydrogels[J]. Advanced Materials, 2016, 28(1): 40-49.
[116] LI J, CAO J, LU B, et al. 3D-printed PEDOT:PSS for soft robotics[J]. Nature Reviews Materials, 2023, 8(9): 604-622.
[117] LI G, HUANG K, DENG J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261.
[118] LU B, YUK H, LIN S, et al. Pure PEDOT:PSS hydrogels[J]. Nature Communications, 2019, 10(1): 1043.
[119] YAO B, WANG H, ZHOU Q, et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures[J]. Advanced Materials, 2017, 29(28): 1700974.
[120] XU Y, YANG X, THOMAS A K, et al. Noncovalently assembled electroconductive hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14418-14425.
[121] LIU Y, LIU J, CHEN S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation[J]. Nature Biomedical Engineering, 2019, 3(1): 58-68.
[122] ELNATHAN R, BARBATO M G, GUO X, et al. Biointerface design for vertical nanoprobes[J]. Nature Reviews Materials, 2022, 7(12): 953-973.
[123] SHI S, CHEN J, WANG X, et al. Biointerface engineering with nucleic acid materials for biosensing applications[J]. Advanced Functional Materials, 2022, 32(37): 2201069.
[124] LEE C-Y, HU S-M, CHRISTY J, et al. Biointerface coatings with structural and biochemical properties modifications of biomaterials[J]. Advanced Material Interfaces, 2023, 10(10): 2202286.
[125] CRAIK A, HE Y, CONTRERAS-VIDAL J L. Deep learning for electroencephalogram (EEG) classification tasks: a review[J]. Journal of Neural Engineering, 2019, 16(3): 031001.
[126] JESSE M M, FREDDY K K, CHRISTIAN T N. Pharmacology of local anaesthetics and commonly used recipes in clinical practice[M]. Current Topics in Anesthesiology, 2017: Ch. 1.
[127] OTTO K J, SCHMIDT C E. Neuron-targeted electrical modulation[J]. Science, 2020, 367(6484): 1303-1304.
[128] WELTIN A, KIENINGER J. Electrochemical methods for neural interface electrodes[J]. Journal of Neural Engineering, 2021, 18(5): 052001.
[129] MERRILL D R, BIKSON M, JEFFERYS J G R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols[J]. Journal of Neuroscience Methods, 2005, 141(2): 171-198.
[130] BEAN B P. The action potential in mammalian central neurons[J]. Nature Reviews Neuroscience, 2007, 8(6): 451-465.
[131] BERGGREN M, MALLIARAS G G. How conducting polymer electrodes operate[J]. Science, 2019, 364(6437): 233-234.
[132] ZHU M, WANG H, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021, 10(17): 2100646.
[133] FABER D S, PEREDA A E. Two forms of electrical transmission between neurons[J]. Frontiers in Molecular Neuroscience, 2018, 11: 427.
[134] ROSS L N, BASSETT D S. Causation in neuroscience: keeping mechanism meaningful [J]. Nature Reviews Neuroscience, 2024, 25(2): 81-90.
[135] HE K, WANG C, HE Y, et al. Artificial neuron devices[J]. Chemical Reviews, 2023, 123(23): 13796-13865.
[136] MOON J-M, THAPLIYAL N, HUSSAIN K K, et al. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review[J]. Biosensors and Bioelectronics, 2018, 102: 540-552.
[137] LI S, ZHANG H, ZHU M, et al. Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives[J]. Chemical Reviews, 2023, 123(12): 7953-8039.
[138] MONTEIRO L M, VASQUES-NóVOA F, FERREIRA L, et al. Restoring heart function and electrical integrity: closing the circuit[J]. npj Regenerative Medicine, 2017, 2(1): 9.
[139] JOUKAR S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic[J]. Laboratory Animal Research, 2021, 37(1): 25.
[140] FILIGRANA-DE-LA-CRUZ M A. Chapter 16 - Trends and applications of ECG analysis and classification[M]. Biosignal Processing and Classification Using Computational Learning and Intelligence, 2022: 327-349.
[141] MASENGA S K, KIRABO A. Hypertensive heart disease: risk factors, complications and mechanisms[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1205475.
[142] HAYTER E A, WEHRENS S M T, VAN DONGEN H P A, et al. Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia[J]. Nature Communications, 2021, 12(1): 2472.
[143] LANG D, GLUKHOV A V. Cellular and molecular mechanisms of functional hierarchy of pacemaker clusters in the sinoatrial node: new insights into sick sinus syndrome[J]. Journal of Cardiovascular Development and Disease, 2021, 8(4): 43.
[144] MULPURU S K, MADHAVAN M, MCLEOD C J, et al. Cardiac pacemakers: Function, troubleshooting, and management: Part 1 of a 2-Part Series[J]. Journal of the American College of Cardiology, 2017, 69(2): 189-210.
[145] TANDON N, CANNIZZARO C, FIGALLO E, et al. Characterization of electrical stimulation electrodes for cardiac tissue engineering [J]. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, 2006: 845-848.
[146] TANDON N, CANNIZZARO C, CHAO P-H G, et al. Electrical stimulation systems for cardiac tissue engineering[J]. Nature Protocols, 2009, 4(2): 155-173.
[147] XI W, SAW T B, DELACOUR D, et al. Material approaches to active tissue mechanics[J]. Nature Reviews Materials, 2019, 4(1): 23-44.
[148] ERSHAD F, PATEL S, YU C. Wearable bioelectronics fabricated in situ on skins[J]. npj Flexible Electronics, 2023, 7(1): 32.
[149] WU H, YANG G, ZHU K, et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces[J]. Advanced Science, 2021, 8(2): 2001938.
[150] SONG E, LI J, WON S M, et al. Materials for flexible bioelectronic systems as chronic neural interfaces[J]. Nature Materials, 2020, 19(6): 590-603.
[151] PARK J, LEE Y, KIM T Y, et al. Functional bioelectronic materials for long-term biocompatibility and functionality[J]. ACS Applied Electronic Materials, 2022, 4(4): 1449-1468.
[152] SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7(4): 424-442.
[153] FEINER R, DVIR T. Tissue–electronics interfaces: from implantable devices to engineered tissues[J]. Nature Reviews Materials, 2017, 3(1): 17076.
[154] KOZAI T D, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chemical Neuroscience, 2015, 6(1): 48-67.
[155] LEE H, BELLAMKONDA R V, SUN W, et al. Biomechanical analysis of silicon microelectrode-induced strain in the brain[J]. Journal of Neural Engineering, 2005, 2(4): 81-89.
[156] YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667.
[157] SRIDHARAN A, RAJAN S D, MUTHUSWAMY J. Long-term changes in the material properties of brain tissue at the implant-tissue interface[J]. Journal of Neural Engineering, 2013, 10(6): 066001.
[158] AREGUETA-ROBLES U A, WOOLLEY A J, POOLE-WARREN L A, et al. Organic electrode coatings for next-generation neural interfaces[J]. Frontiers in Neuroengineering, 2014, 7(15): 1-18.
[159] GUIMARãES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5(5): 351-370.
[160] LE FLOCH P, ZHAO S, LIU R, et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers[J]. Nature Nanotechnology, 2023.
[161] WOEPPEL K, HUGHES C, HERRERA A J, et al. Explant analysis of utah electrode arrays implanted in human cortex for brain-computer-interfaces[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 759711.
[162] PATEL P R, WELLE E J, LETNER J G, et al. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices[J]. Journal of Neural Engineering, 2023, 20(1) :10.1088.
[163] SHEPHERD R K, VILLALOBOS J, BURNS O, et al. The development of neural stimulators: a review of preclinical safety and efficacy studies[J]. Journal of Neural Engineering, 2018, 15(4): 041004.
[164] WANG Y, YANG X, ZHANG X, et al. Implantable intracortical microelectrodes: reviewing the present with a focus on the future[J]. Microsystems & Nanoengineering, 2023, 9: 7.
[165] ŚWIERŻYŃSKA E, ORĘZIAK A, GŁóWCZYŃSKA R, et al. Rate-responsive cardiac pacing: technological solutions and their applications[J]. Sensors, 2023, 23(3): 1427.
[166] KWON K, KIM J U, WON S M, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature[J]. Nature Biomedical Engineering, 2023, 7(10): 1215-1228.
[167] LI Y, MENG Q, CHEN S, et al. Advances, challenges, and prospects for surgical suture materials[J]. Acta Biomaterialia, 2023, 168: 78-112.
[168] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[169] GUPTA S, NAVARAJ W T, LORENZELLI L, et al. Ultra-thin chips for high-performance flexible electronics[J]. npj Flexible Electronics, 2018, 2(1): 8.
[170] KIM D-H, VIVENTI J, AMSDEN J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 2010, 9(6): 511-517.
[171] ZHANG Y, ZHENG N, CAO Y, et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording[J]. Science Advances, 2019, 5(4): eaaw1066.
[172] LI S, CONG Y, FU J. Tissue adhesive hydrogel bioelectronics[J]. Journal of Materials Chemistry B, 2021, 9(22): 4423-4443.
[173] ZHU W, CHUAH Y J, WANG D-A. Bioadhesives for internal medical applications: a review[J]. Acta Biomaterialia, 2018, 74: 1-16.
[174] DENG T, GAO D, SONG X, et al. A natural biological adhesive from snail mucus for wound repair[J]. Nature Communications, 2023, 14(1): 396.
[175] WU S J, ZHAO X. Bioadhesive technology platforms[J]. Chemical Reviews, 2023, 123(24): 14084-14118.
[176] PARK J, KIM H W, LIM S, et al. Conformal fixation strategies and bioadhesives for soft bioelectronics[J]. Advanced Functional Materials, 2024: 2313728.
[177] YANG J, BAI R, CHEN B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[178] LIU J, QU S, SUO Z, et al. Functional hydrogel coatings[J]. National science review, 2021, 8(2): nwaa254.
[179] ZHU H, ZHENG J, OH X Y, et al. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications[J]. ACS Nano, 2023, 17(9): 7953-7978.
[180] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
[181] YANG C, SUO Z. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
[182] YUK H, WU J, ZHAO X. Hydrogel interfaces for merging humans and machines[J]. Nature Reviews Materials, 2022, 7(12): 935-952.
[183] ZHANG Y, TAN Y, LAO J, et al. Hydrogels for flexible electronics[J]. ACS Nano, 2023, 17(11): 9681-9693.
[184] YAO X, LIU J, YANG C, et al. Hydrogel paint[J]. Advanced Materials, 2019, 31(39): 1903062.
[185] TRINGIDES C M, VACHICOURAS N, DE LáZARO I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues[J]. Nature Nanotechnology, 2021, 16(9): 1019-1029.
[186] ZHOU T, YUK H, HU F, et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces[J]. Nature Materials, 2023, 22(7): 895-902.
[187] KIRSCHNER C M, ANSETH K S. Hydrogels in healthcare: from static to dynamic material microenvironments[J]. Acta Materialia, 2013, 61(3): 931-944.
[188] ASWATHY S H, NARENDRAKUMAR U, MANJUBALA I. Commercial hydrogels for biomedical applications[J]. Heliyon, 2020, 6(4): e03719.
[189] MANDAL A, CLEGG J R, ANSELMO A C, et al. Hydrogels in the clinic[J]. Bioengineering & Translational Medicine, 2020, 5(2): e10158.
[190] BLACHE U, FORD E M, HA B, et al. Engineered hydrogels for mechanobiology[J]. Nature Reviews Methods Primers, 2022, 2(1): 98.
[191] SONG J, ZHANG Y, CHAN S Y, et al. Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management[J]. npj Flexible Electronics, 2021, 5(1): 26.
[192] ZHOU P, ZHANG Z, MO F, et al. A review of functional hydrogels for flexible chemical sensors[J]. Advanced Sensor Research, 2023: 2300021.
[193] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 426.
[194] PEI X, WANG J, CONG Y, et al. Recent progress in polymer hydrogel bioadhesives[J]. 2021, 59(13): 1312-1337.
[195] ANNABI N, ZHANG Y-N, ASSMANN A, et al. Engineering a highly elastic human protein–based sealant for surgical applications[J]. Science Translational Medicine, 2017, 9(410): eaai7466.
[196] SHIRZAEI SANI E, KHEIRKHAH A, RANA D, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels[J]. Science Advances, 5(3): eaav1281.
[197] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575(7781): 169-174.
[198] DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics[J]. Nature Materials, 2021, 20(2): 229-236.
[199] CHONG J, SUNG C, NAM K S, et al. Highly conductive tissue-like hydrogel interface through template-directed assembly[J]. Nature Communications, 2023, 14(1): 2206.
[200] SPENCER K C, SY J C, RAMADI K B, et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants[J]. Scientific Reports, 2017, 7(1): 1952.
[201] KIM Y, PARADA G A, LIU S, et al. Ferromagnetic soft continuum robots[J]. 2019, 4(33): eaax7329.
[202] CARNICER-LOMBARTE A, CHEN S T, MALLIARAS G G, et al. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 622524.
[203] GRAINGER D W. All charged up about implanted biomaterials[J]. Nature Biotechnology, 2013, 31(6): 507-509.
[204] CAPUANI S, MALGIR G, CHUA C Y X, et al. Advanced strategies to thwart foreign body response to implantable devices[J]. Bioengineering & Translational Medicine, 2022, 7(3): e10300.
[205] BANK R A. Limiting biomaterial fibrosis[J]. Nature Materials, 2019, 18(8): 781.
[206] ZHANG L, CAO Z, BAI T, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction[J]. Nature Biotechnology, 2013, 31(6): 553-556.
[207] LI S, DAI J, ZHU M, et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats[J]. ACS Nano, 2023, 17(18): 18525-18538.
[208] ABIDIAN M R, MARTIN D C. Multifunctional nanobiomaterials for neural interfaces[J]. Advanced Functional Materials, 2009, 19(4): 573-585.
[209] HYAKUMURA T, AREGUETA-ROBLES U, DUAN W, et al. Improving deep brain stimulation electrode performance in vivo through use of conductive hydrogel coatings [J]. Frontiers in Neuroscience, 2021, 15: 761525.
[210] LI Y, LI D, WANG J, et al. A temperature-sensing hydrogel coating on the medical catheter[J]. Advanced Functional Materials, 2023: 2310260.
[211] SHAFIQUE H, DE VRIES J, STRAUSS J, et al. Advances in the translation of electrochemical hydrogel-based sensors[J]. Advanced Healthcare Materials, 2023, 12(1): 2201501.
[212] BOOTH M A, GOWERS S A N, HERSEY M, et al. Fiber-based electrochemical biosensors for monitoring pH and transient neurometabolic lactate[J]. Analytical Chemistry, 2021, 93(17): 6646-6655.
[213] LEE H, LEE B P, MESSERSMITH P B. A reversible wet/dry adhesive inspired by mussels and geckos[J]. Nature, 2007, 448(7151): 338-341.
[214] YANG Q, HU Z, ROGERS J A. Functional hydrogel interface materials for advanced bioelectronic devices[J]. Accounts of Materials Research, 2021, 2(11): 1010-1023.
[215] INOUE A, YUK H, LU B, et al. Strong adhesion of wet conducting polymers on diverse substrates[J]. 2020, 6(12): eaay5394.
[216] DONAHUE M J, SANCHEZ-SANCHEZ A, INAL S, et al. Tailoring PEDOT properties for applications in bioelectronics[J]. Materials Science and Engineering: R: Reports, 2020, 140: 100546.
[217] ZHOU P, ZHANG Z, MO F, et al. A review of functional hydrogels for flexible chemical sensors[J]. Advanced Sensor Research, 2024, 3(3): 2300021.
[218] ARONOVICH D A. Progress in cyanoacrylate adhesives. Studies of adhesive modification[J]. Polymer Science, Series D, 2020, 13(3): 297-305.
[219] LONG S, XIE C, LU X. Natural polymer-based adhesive hydrogel for biomedical applications[J]. Biosurface and Biotribology, 2022, 8(2): 69-94.
[220] DEY A, BHATTACHARYA P, NEOGI S. Bioadhesives in biomedical applications: a critical review[M]. Progress in Adhesion and Adhesives, 2021: 131-153.
[221] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[222] STARLING J, SILVA C M D, DANTAS M S S, et al. N-acryloxysuccinimide: synthesis, characterization, and incorporation in dental adhesives[J]. International Journal of Adhesion and Adhesives, 2011, 31: 767-774.
[223] PENG Y-F, TSAI A, HUANG M-H. Synthesis and thermal investigation of phosphate-functionalized acrylic materials[J]. Polymer Journal, 2018, 50(10): 967-974.
[224] BROWNING M B, CERECERES S N, LUONG P T, et al. Determination of the in vivo degradation mechanism of PEGDA hydrogels[J]. Journal of Biomedical Materials Research Part A, 2014, 102(12): 4244-4251.
[225] RODRIGUEZ-RIVERA G J, GREEN M, SHAH V, et al. A user’s guide to degradation testing of polyethylene glycol-based hydrogels: from in vitro to in vivo studies[J]. Journal of Biomedical Materials Research Part A, 2023: 1-13.
[226] SEO H, HAN S I, SONG K-I, et al. Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bidirectional signaling[J]. Advanced Materials, 2021, 33(20): 2007346.
[227] WANG S, CUI Q, ABIRI P, et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy[J]. Science Advances, 2023, 9(42): eadj0540.
[228] ZHANG W, ZHANG L, GAO H, et al. Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo[J]. Nano-Micro Letters, 2018, 10(2): 32.
[229] KIM W S, HONG S, GAMERO M, et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways[J]. Nature Communications, 2021, 12(1): 157.
[230] ASIF S M, IFTIKHAR A, HANSEN J W, et al. A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array[J]. IEEE Access, 2019, 7: 1139-1148.
[231] SHENG H, ZHOU J, LI B, et al. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body[J]. Science Advances, 2021, 7(2): eabe3097.
[232] WU M, YAO K, HUANG N, et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity[J]. Advance Science, 2023, 10(14): 2300504.
[233] YANG S M, SHIM J H, CHO H-U, et al. Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system[J]. Advanced Materials, 2022, 34(14): 2108203.
[234] WANG L, LU C, YANG S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine[J]. Science Advances, 2020, 6(50): eabc6686.
[235] LI C, GUO C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation[J]. Nature Reviews Materials, 2020, 5(1): 61-81.
[236] SHIN J W, CHAN CHOE J, LEE J H, et al. Biologically safe, degradable self-destruction system for on-demand, programmable transient electronics[J]. ACS Nano, 2021, 15(12): 19310-19320.
[237] MIN J, JUNG Y, AHN J, et al. Recent advances in biodegradable green electronic materials and sensor applications[J]. Advanced Materials, 2023, 35(52): e2211273.
[238] FEIG V R, TRAN H, BAO Z. Biodegradable polymeric materials in degradable electronic devices[J]. ACS Central Science, 2018, 4(3): 337-348.
[239] DI MAURO E, RHO D, SANTATO C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics[J]. Nature Communications, 2021, 12(1): 3167.
[240] ZHAO Y, WU Y, WANG L, et al. Bio-inspired reversible underwater adhesive[J]. Nature Communications, 2017, 8(1): 2218.
[241] GAO Y, WU K, SUO Z. Photodetachable adhesion[J]. Advanced Materials, 2019, 31(6): e1806948.
[242] JIANG M, LIU X, CHEN Z, et al. Near-infrared-detached adhesion enabled by upconverting nanoparticles[J]. iScience, 2020, 23(2): 100832.
[243] LIU J, TAN C S Y, SCHERMAN O A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition[J]. Angewandte Chemie International Edition, 2018, 57(29): 8854-8858.
[244] XIE T, DING J, HAN X, et al. Wound dressing change facilitated by spraying zinc ions[J]. Materials Horizons, 2020, 7(2): 605-614.
[245] YUK H, ZHANG T, LIN S, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196.
[246] LI W, LIU X, DENG Z, et al. Tough bonding, on-demand debonding, and facile rebonding between hydrogels and diverse metal surfaces[J]. Advanced Materials, 2019, 31(48): 1904732.
[247] CHEN X, YUK H, WU J, et al. Instant tough bioadhesive with triggerable benign detachment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15497-15503.
[248] HUANG S, KONG X, XIONG Y, et al. An overview of dynamic covalent bonds in polymer material and their applications[J]. European Polymer Journal, 2020, 141: 110094.
[249] CASH J J, KUBO T, BAPAT A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7): 2098-2106.
[250] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 2017, 29(15): 1606380.
[251] FIGUEIREDO T, COSENZA V, OGAWA Y, et al. Boronic acid and diol-containing polymers: how to choose the correct couple to form “strong” hydrogels at physiological pH[J]. Soft Matter, 2020, 16(15): 3628-3641.
[252] WANG J, WANG Z, YU J, et al. Glucose-responsive insulin and delivery systems: innovation and translation[J]. Advanced Materials, 2020, 32(13): e1902004.
[253] LI J, CELIZ A D, YANG J, et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349): 378-381.
[254] FREEDMAN B R, UZUN O, LUNA N M M, et al. Degradable and removable tough adhesive hydrogels[J]. Advanced Materials, 2021, 33(17): e2008553.
[255] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[256] RAMOS S R, PIELES G, HUI W, et al. Comprehensive echocardiographic assessment of biventricular function in the rabbit, animal model in cardiovascular research: feasibility and normal values[J]. The international Journal of Cardiovascular Imaging, 2018, 34(3): 367-375.
[257] FRANK J A, ANTONINI M J, ANIKEEVA P. Next-generation interfaces for studying neural function[J]. Nature Nanotechnology, 2019, 37(9): 1013-1023.
[258] RICH S I, WOOD R J, MAJIDI C. Untethered soft robotics[J]. Nature Electronics, 2018, 1(2): 102-112.
[259] MARIO CHEONG G L, LIM K S, JAKUBOWICZ A, et al. Conductive hydrogels with tailored bioactivity for implantable electrode coatings[J]. Acta Biomaterialia, 2014, 10(3): 1216-1226.
[260] DECHIRAJU H, JIA M, LUO L, et al. Ion-conducting hydrogels and their applications in bioelectronics[J]. Advanced Sustainable Systems, 2022, 6(2): 2100173.
[261] THONIYOT P, TAN M J, KARIM A A, et al. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials[J]. Advanced Science, 2015, 2: 1400010.
[262] PENG Q, CHEN J, WANG T, et al. Recent advances in designing conductive hydrogels for flexible electronics[J]. InfoMat, 2020, 2(5): 843-865.
[263] DONAHUE M J, SANCHEZ-SANCHEZ A, INAL S, et al. Tailoring PEDOT properties for applications in bioelectronics[J]. Materials Science and Engineering: R: Reports, 2020, 140: 100546.
[264] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature Communications, 2018, 9(1): 2740.
[265] FU F, WANG J, ZENG H, et al. Functional conductive hydrogels for bioelectronics[J], ACS Materials Letters, 2020, 2(10): 1287-1301.
[266] INOUE A, YUK H, LU B, et al. Strong adhesion of wet conducting polymers on diverse substrates[J]. Science Advances, 2020, 6(12): eaay5394.
[267] OUYANG L, WEI B, KUO C C, et al. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2)[J]. Science Advances, 2017, 3(3): e1600448.
[268] DU X, YANG L, LIU N. Recent Progress on Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes[J]. Small Science, 2023, 3, 2300008.
[269] ZHANG J, WANG L, XUE Y, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation[J]. Advanced Materials, 2023, 35(3): 2209324.
[270] CARRANZA-CRUZ J C, RIVERA E, SANTANA G, et al. Synthesis of polyaniline (PANI) through chemical oxidation for its preparation in thin films[J]. MRS Advances, 2021, 6(43): 965-968.
[271] SRAVANTHI M, MANJUNATHA K G. Synthesis and characterization of conducting polypyrrole with various dopants[J]. Materials Today: Proceedings, 2021, 46: 5964-5868.
[272] LIU J, LIN S, LIU X, et al. Fatigue-resistant adhesion of hydrogels[J]. Nature Communications, 2020, 11(1): 1071.
[273] LIN S, LIU X, LIU J, et al. Anti-fatigue-fracture hydrogels[J]. Science Advances, 2019, 5(1): eaau8528.
[274] SKRZYPIEC-SPRING M, GROTTHUS B, SZELAG A, et al. Isolated heart perfusion according to Langendorff still viable in the new millennium[J]. Journal of Pharmacological and Toxicological Methods, 2007, 55(2): 113-126.
[275] AN Z, WU J, LI S H, et al. Injectable conductive hydrogel can reduce pacing threshold and enhance efficacy of cardiac pacemaker[J]. Theranostics, 2021, 11(8): 3948-3960.
[276] CHEN X, ZHANG J, CHEN G, et al. Hydrogel bioadhesives with extreme acid-tolerance for gastric perforation repairing[J]. Advanced Functional Materials, 2022, 32, 2202285.
[277] LIND G, LINSMEIER C E, SCHOUENBORG J. The density difference between tissue and neural probes is a key factor for glial scarring[J]. Scientific Reports, 2013, 3: 2942.
[278] GUO Z, WANG F, WANG L, et al. A flexible neural implant with ultrathin substrate for low-invasive brain-computer interface applications[J]. Microsystems & Nanoengineering, 2022, 8: 133.
[279] CHENG M Y, PARK W T, YU A, et al. A flexible polyimide cable for implantable neural probe arrays[J]. Microsystem Technologies, 2013, 19(8): 1111-1118.
[280] MCCALLUM G A, SUI X, QIU C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes[J]. Scientific Reports, 2017, 7(1): 11723.
[281] ZHANG H, PATEL P R, XIE Z, et al. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite[J]. ACS Nano, 2013, 7(9): 7619-7629.
[282] KOZAI T D, LANGHALS N B, PATEL P R, et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces[J]. Nature Materials, 2012, 11(12): 1065-1073.
[283] PREVOST T P, BALAKRISHNAN A, SURESH S, et al. Biomechanics of brain tissue[J]. Acta Biomaterialia, 2011, 7(1): 83-95.
[284] HAN M, CHEN L, ARAS K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery[J]. Nature Biomedical Engineering, 2020, 4(10): 997-1009.
[285] RAITERI L, RAITERI M, BONANNO G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons[J]. Progress in Neurobiology, 2002, 68(4): 287-309.
[286] DA Y, LUO S, TIAN Y. Real-time monitoring of neurotransmitters in the brain of living animals[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 138-157.
[287] MADHURANTAKAM S, KARNAM J B, BRABAZON D, et al. “Nano”: an emerging avenue in electrochemical detection of neurotransmitters[J]. ACS Chemical Neuroscience, 2020, 11(24): 4024-4047.
[288] MARECOS C, NG J, KURIAN M A. What is new for monoamine neurotransmitter disorders?[J]. Journal of Inherited Metabolic Disease, 2014, 37(4): 619-626.
[289] KURIAN M A, GISSEN P, SMITH M, et al. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes[J]. The Lancet Neurology, 2011, 10(8): 721-733.
[290] DAGHER A, ROBBINS T W. Personality, addiction, dopamine: insights from Parkinson’s disease[J]. Neuron, 2009, 61(4): 502-510.
[291] VOLKOW N D, FOWLER J S, WANG G J, et al. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications[J]. Molecular Psychiatry, 2004, 9(6): 557-569.
[292] GUTTMAN M, BOILEAU I, WARSH J, et al. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease[J]. European Journal of Neurology, 2007, 14(5): 523-528.
[293] ROBSON M J, QUINLAN M A, BLAKELY R D. Immune system activation and depression: roles of serotonin in the central nervous system and periphery[J]. ACS Chemical Neuroscience, 2017, 8(5): 932-942.
[294] KHVOTCHEV M, KAVALALI E T. Pharmacology of neurotransmitter release: measuring exocytosis[J]. Handbook of Experimental Pharmacology, 2008, (184): 23-43.
[295] MARTINEZ D, NARENDRAN R. Imaging neurotransmitter release by drugs of abuse[J]. Current Topics in Behavioral Neurosciences, 2010, 3: 219-245.
[296] NIROGI R, MUDIGONDA K, KANDIKERE V, et al. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry[J]. Biomedical Chromatography: BMC, 2010, 24(1): 39-48.
[297] KIM E H, CHIN G, RONG G, et al. Optical probes for neurobiological sensing and imaging[J]. Accounts of Chemical Research, 2018, 51(5): 1023-1032.
[298] WU Z, LIN D, LI Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators[J]. Nature Reviews Neuroscience, 2022, 23(5): 257-274.
[299] ZHU C, YANG G, LI H, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Analytical Chemistry, 2015, 87(1): 230-249.
[300] SANGHAVI B J, WOLFBEIS O S, HIRSCH T, et al. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters[J]. Mikrochimica Acta, 2015, 182(1): 1-41.
[301] BUCHER E S, WIGHTMAN R M. Electrochemical analysis of neurotransmitters[J]. Annual Review of Analytical Chemistry, 2015, 8: 239-261.
[302] WU J, LIU H, CHEN W, et al. Device integration of electrochemical biosensors[J]. Nature Reviews Bioengineering, 2023, 1(5): 346-360.
[303] LAKARD S, PAVEL I A, LAKARD B. Electrochemical biosensing of dopamine neurotransmitter: a review[J]. Biosensors, 2021, 11(6):179.
[304] TAVAKOLIAN-ARDAKANI Z, HOSU O, CRISTEA C, et al. Latest trends in electrochemical sensors for neurotransmitters: a review[J]. Sensors, 2019, 19(9): 2037.
[305] ROBERTS J G, SOMBERS L A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond[J]. Analytical Chemistry, 2018, 90(1): 490-504.
[306] NJAGI J, CHERNOV M M, LEITER J C, et al. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor[J]. Analytical Chemistry, 2010, 82(3): 989-996.
[307] SPENCER K C, SY J C, RAMADI K B, et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants[J]. Scientific Reports, 2017, 7(1): 1952.
[308] SCHWERDT H N, KIM M J, AMEMORI S, et al. Subcellular probes for neurochemical recording from multiple brain sites[J]. Lab on a Chip, 2017, 17(6): 1104-1115.
[309] LI J, LIU Y, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606(7912): 94-101.
[310] LAU C, BORGMANN S, MACIEJEWSKA M, et al. Improved specificity of reagentless amperometric PQQ-sGDH glucose biosensors by using indirectly heated electrodes[J]. Biosensors & Bioelectronics, 2007, 22(12): 3014-3020.
[311] MANO N, MAO F, HELLER A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant[J]. Journal of the American Chemical Society, 2003, 125(21): 6588-6594.
[312] TEANPHONKRANG S, JANKE S, CHAIYEN P, et al. Tuned amperometric detection of reduced β-nicotinamide adenine dinucleotide by allosteric modulation of the reductase component of the p-hydroxyphenylacetate hydroxylase immobilized within a redox polymer[J]. Analytical Chemistry, 2018, 90(9): 5703-5711.
[313] ALSAOUB S, RUFF A, CONZUELO F, et al. An intrinsic self-charging biosupercapacitor comprised of a high-potential bioanode and a low-potential biocathode[J]. ChemPlusChem, 2017, 82(4): 576-583.
[314] CUNNINGHAM C L, GREMEL C M, GROBLEWSKI P A. Drug-induced conditioned place preference and aversion in mice[J]. Nature Protocols, 2006, 1(4): 1662-1670.
[315] ZHANG Z, SCHULTEIS G. Withdrawal from acute morphine dependence is accompanied by increased anxiety-like behavior in the elevated plus maze[J]. Pharmacology, Biochemistry, and Behavior, 2008, 89(3): 392-403.
[316] DONE C, SILVERSTONE P, SHARP T. Effect of naloxone-precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo[J]. European Journal of Pharmacology, 1992, 215(2-3): 333-336.
[317] FENG T, JI W, TANG Q, et al. Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain[J]. Analytical Chemistry, 2019, 91(16): 10786-10791.
[318] SOKOLOV A N, PAVLOVA M A, KLOSTERHALFEN S, et al. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior[J]. Neuroscience and biobehavioral reviews, 2013, 37: 2445-2453.
[319] ZHU S, ZHAO C, WU Y, et al. Identification of a vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking[J]. Nature Protocols, 2015, 18(8): 1084-1093.
[320] HASEGAWA E, MIYASAKA A, SAKURAI K, et al. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice[J]. Science, 2022, 375(6584): 994-1000.
[321] KLEIN M O, BATTAGELLO D S, CARDOSO A R, et al. Dopamine: functions, signaling, and association with neurological diseases[J]. Cellular and Molecular Neurobiology, 2019, 39(1): 31-59.
[322] SIMMLER L D, LI Y, HADJAS L C, et al. Dual action of ketamine confines addiction liability[J]. Nature, 2022, 608(7922): 368-373.
[323] STUART T, JEANG W J, SLIVICKI R A, et al. Wireless, battery-free implants for electrochemical catecholamine sensing and optogenetic stimulation[J]. ACS Nano, 2023, 17(1): 561-574.
[324] LISTOS J, ŁUPINA M, TALAREK S, et al. The mechanisms involved in morphine addiction: an overview[J]. International Journal of Molecular sciences, 2019, 20(17): 4302.
[325] LI Y, LI C Y, XI W, et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence[J]. Neuron, 2019, 101(4): 748-761.

所在学位评定分委会
力学
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766108
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
薛羽. 具有力学适配性的功能水凝胶膜层材料的设计、制备及其生物电子界面研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031234-薛羽-机械与能源工程系(29314KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[薛羽]的文章
百度学术
百度学术中相似的文章
[薛羽]的文章
必应学术
必应学术中相似的文章
[薛羽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。