[1] HENG W, SOLOMON S, GAO W. Flexible electronics and devices as human–machine interfaces for medical robotics[J]. Advanced Materials, 2022, 34(16): 2107902.
[2] SUNWOO S-H, HAN S I, PARK C S, et al. Soft bioelectronics for the management of cardiovascular diseases[J]. Nature Reviews Bioengineering, 2024, 2(1): 8-24.
[3] LIU S, RAO Y, JANG H, et al. Strategies for body-conformable electronics[J]. Matter, 2022, 5(4): 1104-1136.
[4] TANG X, SHEN H, ZHAO S, et al. Flexible brain–computer interfaces[J]. Nature Electronics, 2023, 6(2): 109-118.
[5] XU C, SOLOMON S A, GAO W. Artificial intelligence-powered electronic skin[J]. Nature Machine Intelligence, 2023, 5(12): 1344-1355.
[6] ZHAO S, TANG X, TIAN W, et al. Tracking neural activity from the same cells during the entire adult life of mice[J]. Nature Neuroscience, 2023, 26(4): 696-710.
[7] RAY T R, CHOI J, BANDODKAR A J, et al. Bio-integrated wearable systems: A comprehensive review[J]. Chemical Reviews, 2019, 119(8): 5461-5533.
[8] RAY T, CHOI J, REEDER J, et al. Soft, skin-interfaced wearable systems for sports science and analytics[J]. Current Opinion in Biomedical Engineering, 2019, 9: 47-56.
[9] NIU Y, LIU H, HE R, et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions[J]. Materials Today, 2020, 41: 219-242.
[10] LIN M, HU H, ZHOU S, et al. Soft wearable devices for deep-tissue sensing[J]. Nature Reviews Materials, 2022, 7(11): 850-869.
[11] ZHANG Z, ZHU Z, ZHOU P, et al. Soft bioelectronics for therapeutics[J]. ACS Nano, 2023, 17(18): 17634-17667.
[12] LI P, LEE G-H, KIM S Y, et al. From diagnosis to treatment: recent advances in patient-friendly biosensors and implantable devices[J]. ACS Nano, 2021, 15(2): 1960-2004.
[13] KHAN A N, CHA Y-O, GIDDENS H, et al. Recent advances in organ specific wireless bioelectronic devices: perspective on biotelemetry and power transfer using antenna systems[J]. Engineering, 2022, 11: 27-41.
[14] LI H, LIU H, SUN M, et al. 3D Interfacing between soft electronic tools and complex biological tissues[J]. Advanced Materials, 2021, 33(3): 2004425.
[15] SALATINO J W, LUDWIG K A, KOZAI T D Y, et al. Glial responses to implanted electrodes in the brain[J]. Nature Biomedical Engineering, 2017, 1(11): 862-877.
[16] DAI X, HONG G, GAO T, et al. Mesh nanoelectronics: seamless integration of electronics with tissues[J]. Accounts of Chemical Research, 2018, 51(2): 309-318.
[17] POLIKOV V S, TRESCO P A, REICHERT W M. Response of brain tissue to chronically implanted neural electrodes[J]. Journal of Neuroscience Methods, 2005, 148(1): 1-18.
[18] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses[J]. Nature Reviews Materials, 2016, 1(10): 16063.
[19] ZHANG A, LIEBER C M. Nano-bioelectronics[J]. Chemical Reviews, 2016, 116(1): 215-257.
[20] WANG Y, HAICK H, GUO S, et al. Skin bioelectronics towards long-term, continuous health monitoring[J]. Chemical Society Reviews, 2022, 51(9): 3759-3793.
[21] LEONARD M K, GWILLIAMS L, SELLERS K K, et al. Large-scale single-neuron speech sound encoding across the depth of human cortex[J]. Nature, 2024, 626, 593-602.
[22] ZHOU W, DAI X, LIEBER C M. Advances in nanowire bioelectronics[J]. Reports on Progress in Physics, 2017, 80(1): 016701.
[23] SOWTON E. Artificial cardiac pacemakers[J]. British medical journal, 1968, 2(5601): 366.
[24] NICHOLLS M. Pioneers of cardiology: Rune Elmqvist, MD[J]. Circulation, 2007, 115(22): 109-111.
[25] MUDRY A, MILLS M. The early history of the cochlear implant: a retrospective[J]. JAMA Otolaryngology - Head & Neck Surgery, 2013, 139(5): 446-453.
[26] UGHRATDAR I, SAMUEL M, ASHKAN K. Technological advances in deep brain stimulation[J]. Journal of Parkinson’s Disease, 2015, 5(3): 483-496.
[27] SHENG H, ZHANG X, LIANG J, et al. Recent advances of energy solutions for implantable bioelectronics[J]. Advanced Healthcare Materials, 2021, 10(17): 2100199.
[28] NAIR V, DALRYMPLE A N, YU Z, et al. Miniature battery-free bioelectronics[J]. Science, 2023, 382(6671): eabn4732.
[29] KANG S K, KOO J, LEE Y K, et al. Advanced materials and devices for bioresorbable electronics[J]. Accounts of Chemical Research, 2018, 51(5): 988-998.
[30] VIVENTI J, KIM D H, MOSS J D, et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology[J]. Science Translational Medicine, 2010, 2(24): 24ra2.
[31] JEONG J W, SHIN G, PARK S I, et al. Soft Materials in Neuroengineering for Hard Problems in Neuroscience[J]. Neuron, 2015, 86: 175-186.
[32] RIVNAY J, WANG H, FENNO L E, et al. Next-generation probes, particles, and proteins for neural interfacing[J]. Science Advances, 2017, 3: e160164.
[33] YANG X, ZHOU T, ZWANG T J, et al. Bioinspired neuron-like electronics[J]. Nature Materials, 2019, 18(5): 510-517.
[34] WANG S, NIE Y, ZHU H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J]. Science Advances, 2022, 8(13): eabl5511.
[35] IMPARATO A M, KIM G E. Electrode complications in patients with permanent cardiac pacemakers: ten years’ experience[J]. Archives of Surgery, 1972, 105(5): 705-710.
[36] WILHELM M J, SCHMID C, HAMMEL D, et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation[J]. The Annals of Thoracic Surgery, 1997, 64(6): 1707-1712.
[37] CHOO M H, HOLMES D R, JR., GERSH B J, et al. Permanent pacemaker infections: characterization and management[J]. The American Journal of Cardiology, 1981, 48(3): 559-564.
[38] DEL NIDO P, GOLDMAN B S. Temporary epicardial pacing after open heart surgery: complications and prevention[J]. Journal of Cardiac Surgery, 1989, 4(1): 99-103.
[39] ELMISTEKAWY E. Safety of temporary pacemaker wires[J]. Asian Cardiovascular & Thoracic Annals, 2019, 27(5): 341-346.
[40] GUTRUF P, YIN R T, LEE K B, et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models[J]. Nature Communications, 2019, 10(1): 5742.
[41] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
[42] WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790.
[43] ZHANG T, LIU N, XU J, et al. Flexible electronics for cardiovascular healthcare monitoring[J]. Innovation, 2023, 4(5): 100485.
[44] JIANG Z, CHEN N, YI Z, et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors[J]. Nature Electronics, 2022, 5(11): 784-793.
[45] KWON K, KIM J U, DENG Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time[J]. Nature Electronics, 2021, 4: 302-312.
[46] KOH A, KANG D, XUE Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat[J]. Science Translational Medicine, 2016, 8(366): 366ra165.
[47] REEDER J T, XUE Y, FRANKLIN D, et al. Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback[J]. Nature Communications, 2019, 10(1): 5513.
[48] BANDODKAR A J, CHOI J, LEE S P, et al. Soft, Skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat[J]. Advanced Materials, 2019, 31(32): e1902109.
[49] BAKER L B, MODEL J B, BARNES K A, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications[J]. Science Advances, 2020, 6, eabe3929.
[50] CHOI J, GHAFFARI R, BAKER L, et al. Skin-interfaced systems for sweat collection and analytics[J]. Science Advances, 2018, 4: eaar3921.
[51] WANG W, JIANG Y, ZHONG D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646): 735-742.
[52] KIM K K, KIM M, PYUN K, et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition[J]. Nature Electronics, 2023, 6(1): 64-75.
[53] PARK S, HEO S W, LEE W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521.
[54] JINNO H, YOKOTA T, KOIZUMI M, et al. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes[J]. Nature Communications, 2021, 12(1): 2234.
[55] LEE W, KOBAYASHI S, NAGASE M, et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping[J]. Science Advances, 2018, 4(10): eaau2426.
[56] LI Y, LI N, DE OLIVEIRA N, et al. Implantable bioelectronics toward long-term stability and sustainability[J]. Matter, 2021, 4(4): 1125-1141.
[57] JIANG Y, JI S, SUN J, et al. A universal interface for plug-and-play assembly of stretchable devices[J]. Nature, 2023, 614(7948): 456-462.
[58] SIM K, ERSHAD F, ZHANG Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity[J]. Nature Electronics, 2020, 3(12): 775-784.
[59] LU Y, YANG G, WANG S, et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics[J]. Nature Electronics, 2024, 7(1): 51-65.
[60] CHOI Y S, YIN R T, PFENNIGER A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries[J]. Nature Biotechnology, 2021, 39(10): 1228-1238.
[61] CHOI Y S, JEONG H, YIN R T, et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy[J]. Science, 2022, 376(6596): 1006-1012.
[62] BOEHLER C, CARLI S, FADIGA L, et al. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics[J]. Nature Protocols, 2020, 15(11): 3557-3578.
[63] CHAN D, CHIEN J-C, AXPE E, et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors[J]. Advanced Materials, 2022, 34(24): 2109764.
[64] FENG J, FANG Y, WANG C, et al. All-polymer fiber organic electrochemical transistor for chronic chemical detection in the brain[J]. Advanced Functional Materials, 2023, 33(30): 2214945.
[65] DONG Z, HE Q, SHEN D, et al. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications[J]. Microsystems & Nanoengineering, 2023, 9(1): 31.
[66] ROUSCHE P J, PELLINEN D S, PIVIN D P, et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability[J]. IEEE Transactions on Bio-medical Engineering, 2001, 48(3): 361-371.
[67] YEAGER J D, PHILLIPS D J, RECTOR D M, et al. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats[J]. Journal of Neuroscience Methods, 2008, 173(2): 279-285.
[68] MIRANDA I, SOUZA A, SOUSA P, et al. Properties and applications of PDMS for biomedical engineering: a review[J]. Journal of Functional Biomaterials, 2021, 13(1): 2.
[69] MOON H, JANG J-W, PARK S, et al. Soft, conformal PDMS-based ECoG electrode array for long-term in vivo applications[J]. Sensors and Actuators B: Chemical, 2024, 401: 135099.
[70] LEE S, M. SILVA S, CABALLERO AGUILAR L M, et al. Biodegradable bioelectronics for biomedical applications[J]. Journal of Materials Chemistry B, 2022, 10(42): 8575-8595.
[71] ZHANG Y, LEE G, LI S, et al. Advances in bioresorbable materials and electronics[J]. Chemical Reviews, 2023, 123(19): 11722-11773.
[72] HWANG S W, LEE C H, CHENG H, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors[J]. Nano Letters, 2015, 15(5): 2801-2808.
[73] MAHINROOSTA M, JOMEH FARSANGI Z, ALLAHVERDI A, et al. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications[J]. Materials Today Chemistry, 2018, 8: 42-55.
[74] CORREA S, GROSSKOPF A K, LOPEZ HERNANDEZ H, et al. Translational applications of hydrogels[J]. Chemical Reviews, 2021, 121: 11385-11457.
[75] CONG Y, FU J. Hydrogel-tissue interface interactions for implantable flexible bioelectronics[J]. Langmuir, 2022, 38(38): 11503-11513.
[76] SUN J Y, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
[77] ZHANG K, FENG Q, FANG Z, et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics[J]. Chemical Reviews, 2021, 121(18): 11149-11193.
[78] FIDANOVSKI K, MAWAD D. Conjugated polymers in bioelectronics: addressing the interface challenge[J]. Advanced Healthcare Materials, 2019, 8(10): e1900053.
[79] SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7(4): 424-442.
[80] BOEHLER C, OBERUEBER F, SCHLABACH S, et al. Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 189-197.
[81] HUANG S, LIU Y, ZHAO Y, et al. Flexible electronics: stretchable electrodes and their future[J]. Advanced Functional Materials, 2019, 29(6): 1805924.
[82] JUNG D, JU H, CHO S, et al. Multilayer stretchable electronics with designs enabling a compact lateral form[J]. npj Flexible Electronics, 2024, 8(1): 13.
[83] ZHAO Y, WANG B, TAN J, et al. Soft strain-insensitive bioelectronics featuring brittle materials[J]. Science, 2022, 378(6625): 1222-1227.
[84] FEKETE Z, Recent advances in silicon-based neural microelectrodes and microsystems: a review[J]. Sensors and Actuators B: Chemical, 2015, 215: 300-315.
[85] JIANG Y, TIAN B. Inorganic semiconductor biointerfaces[J]. Nature Reviews Materials, 2018, 3(12): 473-490.
[86] KINDLMANN G, NORMANN R A, BADI A, et al. Imaging of utah electrode array, implanted in cochlear nerve[J]. 2003.
[87] KIPKE D R, VETTER R J, WILLIAMS J C, et al. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 151-155.
[88] PROMINSKI A, SHI J, LI P, et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues[J]. Nature Materials, 2022, 21(6): 647-655.
[89] CHEN R S, HUANG W H, TONG H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes[J]. Analytical Chemistry, 2003, 75(22): 6341-6345.
[90] MCCALLUM G A, SUI X, QIU C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes[J]. Scientific Reports, 2017, 7(1): 11723.
[91] LIU X, HUANG L, QIAN K. Nanomaterial-based electrochemical sensors: mechanism, preparation, and application in biomedicine[J]. Advanced NanoBiomed Research, 2021, 1: 2000104.
[92] HASSAN S, NADEEM A Y, QAISER H, et al. A review of carbon-based materials and their coating techniques for biomedical implants applications[J]. Carbon Letters, 2023, 33(4): 1171-1188.
[93] FANG Y, PROMINSKI A, ROTENBERG M Y, et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces[J]. Nature Nanotechnology, 2021, 16(2): 1-8.
[94] KALANTAR-ZADEH K, TANG J, DAENEKE T, et al. Emergence of liquid metals in nanotechnology[J]. ACS Nano, 2019, 13(7): 7388-7395.
[95] TANG S Y, MITCHELL D R G, ZHAO Q, et al. Phase separation in liquid metal nanoparticles[J]. Matter, 2019, 1(1): 192-204.
[96] PAN, CHENGFENG, KUMAR, et al. Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing[J]. Advanced Materials, 2018, 30(12): 1706937.
[97] WANG S, NIE Y, ZHU H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs[J]. Science Advances, 2022, 8(13): eabl5511.
[98] XUE Y, CHEN S, YU J, et al. Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications[J]. Journal of Materials Chemistry C, 2020, 8(30): 10136-10159.
[99] INAL S, RIVNAY J, Suiu A, et al. Conjugated polymers in bioelectronics[J]. Accounts of Chemical Research, 2018, 51, 6, 1368-1376.
[100] NEZAKATI T, SEIFALIAN A, TAN A, et al. Conductive polymers: opportunities and challenges in biomedical applications[J]. Chemical Reviews, 2018, 118: 6766-6843.
[101] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications[J]. Advanced Science, 2019, 6(19): 1900813.
[102] FIDANOVSKI K, MAWAD D J A H M. Conjugated polymers in bioelectronics: addressing the interface challenge[J]. Advanced Healthcare Materials, 2019, 8: 1900053.
[103] LIANG Y, OFFENHUSSER A, INGEBRANDT S, et al. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals[J]. Advanced Healthcare Materials, 2021, 10: 2100061.
[104] LIU Y, LI J, SONG S, et al. Morphing electronics enable neuromodulation in growing tissue[J]. Nature Biotechnology, 2020, 38(9): 1031-1036.
[105] ZHU T, NI Y, BIESOLD G M, et al. Recent advances in conductive hydrogels: classifications, properties, and applications[J]. Chemical Society Reviews, 2023, 52(2): 473-509.
[106] GONG J P, KOMATSU N, NITTA T, et al. Electrical conductance of polyelectrolyte gels[J]. Journal of Physical Chemistry B, 1997, 101: 740-745.
[107] LEACH J, ACHYUTA A K, MURTHY S. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology[J]. Frontiers in Neuroengineering, 2010, 2:1-18.
[108] ZHAO S, TSENG P, GRASMAN J, et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces[J]. Advanced Materials, 2018, 30(25): e1800598.
[109] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2433-2439.
[110] WANG L, JIANG J, HUA W, et al. Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles[J]. Advanced Functional Materials, 2016, 26(24): 4293-4305.
[111] AHN Y, LEE H, LEE D, et al. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-18407.
[112] SHIN S R, JUNG S M, ZALABANY M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators[J]. ACS Nano, 2013, 7(3): 2369-2380.
[113] HAN L, LU X, WANG M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13, 1601916.
[114] DVIR T, TIMKO B P, BRIGHAM M D, et al. Nanowired three-dimensional cardiac patches[J]. Nature Nanotechnology, 2011, 6(11): 720-725.
[115] ANNABI N, SHIN S R, TAMAYOL A, et al. Highly elastic and conductive human-based protein hybrid hydrogels[J]. Advanced Materials, 2016, 28(1): 40-49.
[116] LI J, CAO J, LU B, et al. 3D-printed PEDOT:PSS for soft robotics[J]. Nature Reviews Materials, 2023, 8(9): 604-622.
[117] LI G, HUANG K, DENG J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261.
[118] LU B, YUK H, LIN S, et al. Pure PEDOT:PSS hydrogels[J]. Nature Communications, 2019, 10(1): 1043.
[119] YAO B, WANG H, ZHOU Q, et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures[J]. Advanced Materials, 2017, 29(28): 1700974.
[120] XU Y, YANG X, THOMAS A K, et al. Noncovalently assembled electroconductive hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14418-14425.
[121] LIU Y, LIU J, CHEN S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation[J]. Nature Biomedical Engineering, 2019, 3(1): 58-68.
[122] ELNATHAN R, BARBATO M G, GUO X, et al. Biointerface design for vertical nanoprobes[J]. Nature Reviews Materials, 2022, 7(12): 953-973.
[123] SHI S, CHEN J, WANG X, et al. Biointerface engineering with nucleic acid materials for biosensing applications[J]. Advanced Functional Materials, 2022, 32(37): 2201069.
[124] LEE C-Y, HU S-M, CHRISTY J, et al. Biointerface coatings with structural and biochemical properties modifications of biomaterials[J]. Advanced Material Interfaces, 2023, 10(10): 2202286.
[125] CRAIK A, HE Y, CONTRERAS-VIDAL J L. Deep learning for electroencephalogram (EEG) classification tasks: a review[J]. Journal of Neural Engineering, 2019, 16(3): 031001.
[126] JESSE M M, FREDDY K K, CHRISTIAN T N. Pharmacology of local anaesthetics and commonly used recipes in clinical practice[M]. Current Topics in Anesthesiology, 2017: Ch. 1.
[127] OTTO K J, SCHMIDT C E. Neuron-targeted electrical modulation[J]. Science, 2020, 367(6484): 1303-1304.
[128] WELTIN A, KIENINGER J. Electrochemical methods for neural interface electrodes[J]. Journal of Neural Engineering, 2021, 18(5): 052001.
[129] MERRILL D R, BIKSON M, JEFFERYS J G R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols[J]. Journal of Neuroscience Methods, 2005, 141(2): 171-198.
[130] BEAN B P. The action potential in mammalian central neurons[J]. Nature Reviews Neuroscience, 2007, 8(6): 451-465.
[131] BERGGREN M, MALLIARAS G G. How conducting polymer electrodes operate[J]. Science, 2019, 364(6437): 233-234.
[132] ZHU M, WANG H, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021, 10(17): 2100646.
[133] FABER D S, PEREDA A E. Two forms of electrical transmission between neurons[J]. Frontiers in Molecular Neuroscience, 2018, 11: 427.
[134] ROSS L N, BASSETT D S. Causation in neuroscience: keeping mechanism meaningful [J]. Nature Reviews Neuroscience, 2024, 25(2): 81-90.
[135] HE K, WANG C, HE Y, et al. Artificial neuron devices[J]. Chemical Reviews, 2023, 123(23): 13796-13865.
[136] MOON J-M, THAPLIYAL N, HUSSAIN K K, et al. Conducting polymer-based electrochemical biosensors for neurotransmitters: a review[J]. Biosensors and Bioelectronics, 2018, 102: 540-552.
[137] LI S, ZHANG H, ZHU M, et al. Electrochemical biosensors for whole blood analysis: recent progress, challenges, and future perspectives[J]. Chemical Reviews, 2023, 123(12): 7953-8039.
[138] MONTEIRO L M, VASQUES-NóVOA F, FERREIRA L, et al. Restoring heart function and electrical integrity: closing the circuit[J]. npj Regenerative Medicine, 2017, 2(1): 9.
[139] JOUKAR S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic[J]. Laboratory Animal Research, 2021, 37(1): 25.
[140] FILIGRANA-DE-LA-CRUZ M A. Chapter 16 - Trends and applications of ECG analysis and classification[M]. Biosignal Processing and Classification Using Computational Learning and Intelligence, 2022: 327-349.
[141] MASENGA S K, KIRABO A. Hypertensive heart disease: risk factors, complications and mechanisms[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1205475.
[142] HAYTER E A, WEHRENS S M T, VAN DONGEN H P A, et al. Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia[J]. Nature Communications, 2021, 12(1): 2472.
[143] LANG D, GLUKHOV A V. Cellular and molecular mechanisms of functional hierarchy of pacemaker clusters in the sinoatrial node: new insights into sick sinus syndrome[J]. Journal of Cardiovascular Development and Disease, 2021, 8(4): 43.
[144] MULPURU S K, MADHAVAN M, MCLEOD C J, et al. Cardiac pacemakers: Function, troubleshooting, and management: Part 1 of a 2-Part Series[J]. Journal of the American College of Cardiology, 2017, 69(2): 189-210.
[145] TANDON N, CANNIZZARO C, FIGALLO E, et al. Characterization of electrical stimulation electrodes for cardiac tissue engineering [J]. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, 2006: 845-848.
[146] TANDON N, CANNIZZARO C, CHAO P-H G, et al. Electrical stimulation systems for cardiac tissue engineering[J]. Nature Protocols, 2009, 4(2): 155-173.
[147] XI W, SAW T B, DELACOUR D, et al. Material approaches to active tissue mechanics[J]. Nature Reviews Materials, 2019, 4(1): 23-44.
[148] ERSHAD F, PATEL S, YU C. Wearable bioelectronics fabricated in situ on skins[J]. npj Flexible Electronics, 2023, 7(1): 32.
[149] WU H, YANG G, ZHU K, et al. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces[J]. Advanced Science, 2021, 8(2): 2001938.
[150] SONG E, LI J, WON S M, et al. Materials for flexible bioelectronic systems as chronic neural interfaces[J]. Nature Materials, 2020, 19(6): 590-603.
[151] PARK J, LEE Y, KIM T Y, et al. Functional bioelectronic materials for long-term biocompatibility and functionality[J]. ACS Applied Electronic Materials, 2022, 4(4): 1449-1468.
[152] SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7(4): 424-442.
[153] FEINER R, DVIR T. Tissue–electronics interfaces: from implantable devices to engineered tissues[J]. Nature Reviews Materials, 2017, 3(1): 17076.
[154] KOZAI T D, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chemical Neuroscience, 2015, 6(1): 48-67.
[155] LEE H, BELLAMKONDA R V, SUN W, et al. Biomechanical analysis of silicon microelectrode-induced strain in the brain[J]. Journal of Neural Engineering, 2005, 2(4): 81-89.
[156] YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667.
[157] SRIDHARAN A, RAJAN S D, MUTHUSWAMY J. Long-term changes in the material properties of brain tissue at the implant-tissue interface[J]. Journal of Neural Engineering, 2013, 10(6): 066001.
[158] AREGUETA-ROBLES U A, WOOLLEY A J, POOLE-WARREN L A, et al. Organic electrode coatings for next-generation neural interfaces[J]. Frontiers in Neuroengineering, 2014, 7(15): 1-18.
[159] GUIMARãES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5(5): 351-370.
[160] LE FLOCH P, ZHAO S, LIU R, et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers[J]. Nature Nanotechnology, 2023.
[161] WOEPPEL K, HUGHES C, HERRERA A J, et al. Explant analysis of utah electrode arrays implanted in human cortex for brain-computer-interfaces[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 759711.
[162] PATEL P R, WELLE E J, LETNER J G, et al. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices[J]. Journal of Neural Engineering, 2023, 20(1) :10.1088.
[163] SHEPHERD R K, VILLALOBOS J, BURNS O, et al. The development of neural stimulators: a review of preclinical safety and efficacy studies[J]. Journal of Neural Engineering, 2018, 15(4): 041004.
[164] WANG Y, YANG X, ZHANG X, et al. Implantable intracortical microelectrodes: reviewing the present with a focus on the future[J]. Microsystems & Nanoengineering, 2023, 9: 7.
[165] ŚWIERŻYŃSKA E, ORĘZIAK A, GŁóWCZYŃSKA R, et al. Rate-responsive cardiac pacing: technological solutions and their applications[J]. Sensors, 2023, 23(3): 1427.
[166] KWON K, KIM J U, WON S M, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature[J]. Nature Biomedical Engineering, 2023, 7(10): 1215-1228.
[167] LI Y, MENG Q, CHEN S, et al. Advances, challenges, and prospects for surgical suture materials[J]. Acta Biomaterialia, 2023, 168: 78-112.
[168] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[169] GUPTA S, NAVARAJ W T, LORENZELLI L, et al. Ultra-thin chips for high-performance flexible electronics[J]. npj Flexible Electronics, 2018, 2(1): 8.
[170] KIM D-H, VIVENTI J, AMSDEN J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 2010, 9(6): 511-517.
[171] ZHANG Y, ZHENG N, CAO Y, et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording[J]. Science Advances, 2019, 5(4): eaaw1066.
[172] LI S, CONG Y, FU J. Tissue adhesive hydrogel bioelectronics[J]. Journal of Materials Chemistry B, 2021, 9(22): 4423-4443.
[173] ZHU W, CHUAH Y J, WANG D-A. Bioadhesives for internal medical applications: a review[J]. Acta Biomaterialia, 2018, 74: 1-16.
[174] DENG T, GAO D, SONG X, et al. A natural biological adhesive from snail mucus for wound repair[J]. Nature Communications, 2023, 14(1): 396.
[175] WU S J, ZHAO X. Bioadhesive technology platforms[J]. Chemical Reviews, 2023, 123(24): 14084-14118.
[176] PARK J, KIM H W, LIM S, et al. Conformal fixation strategies and bioadhesives for soft bioelectronics[J]. Advanced Functional Materials, 2024: 2313728.
[177] YANG J, BAI R, CHEN B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics[J]. Advanced Functional Materials, 2020, 30(2): 1901693.
[178] LIU J, QU S, SUO Z, et al. Functional hydrogel coatings[J]. National science review, 2021, 8(2): nwaa254.
[179] ZHU H, ZHENG J, OH X Y, et al. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications[J]. ACS Nano, 2023, 17(9): 7953-7978.
[180] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627.
[181] YANG C, SUO Z. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
[182] YUK H, WU J, ZHAO X. Hydrogel interfaces for merging humans and machines[J]. Nature Reviews Materials, 2022, 7(12): 935-952.
[183] ZHANG Y, TAN Y, LAO J, et al. Hydrogels for flexible electronics[J]. ACS Nano, 2023, 17(11): 9681-9693.
[184] YAO X, LIU J, YANG C, et al. Hydrogel paint[J]. Advanced Materials, 2019, 31(39): 1903062.
[185] TRINGIDES C M, VACHICOURAS N, DE LáZARO I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues[J]. Nature Nanotechnology, 2021, 16(9): 1019-1029.
[186] ZHOU T, YUK H, HU F, et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces[J]. Nature Materials, 2023, 22(7): 895-902.
[187] KIRSCHNER C M, ANSETH K S. Hydrogels in healthcare: from static to dynamic material microenvironments[J]. Acta Materialia, 2013, 61(3): 931-944.
[188] ASWATHY S H, NARENDRAKUMAR U, MANJUBALA I. Commercial hydrogels for biomedical applications[J]. Heliyon, 2020, 6(4): e03719.
[189] MANDAL A, CLEGG J R, ANSELMO A C, et al. Hydrogels in the clinic[J]. Bioengineering & Translational Medicine, 2020, 5(2): e10158.
[190] BLACHE U, FORD E M, HA B, et al. Engineered hydrogels for mechanobiology[J]. Nature Reviews Methods Primers, 2022, 2(1): 98.
[191] SONG J, ZHANG Y, CHAN S Y, et al. Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management[J]. npj Flexible Electronics, 2021, 5(1): 26.
[192] ZHOU P, ZHANG Z, MO F, et al. A review of functional hydrogels for flexible chemical sensors[J]. Advanced Sensor Research, 2023: 2300021.
[193] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 426.
[194] PEI X, WANG J, CONG Y, et al. Recent progress in polymer hydrogel bioadhesives[J]. 2021, 59(13): 1312-1337.
[195] ANNABI N, ZHANG Y-N, ASSMANN A, et al. Engineering a highly elastic human protein–based sealant for surgical applications[J]. Science Translational Medicine, 2017, 9(410): eaai7466.
[196] SHIRZAEI SANI E, KHEIRKHAH A, RANA D, et al. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels[J]. Science Advances, 5(3): eaav1281.
[197] YUK H, VARELA C E, NABZDYK C S, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575(7781): 169-174.
[198] DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics[J]. Nature Materials, 2021, 20(2): 229-236.
[199] CHONG J, SUNG C, NAM K S, et al. Highly conductive tissue-like hydrogel interface through template-directed assembly[J]. Nature Communications, 2023, 14(1): 2206.
[200] SPENCER K C, SY J C, RAMADI K B, et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants[J]. Scientific Reports, 2017, 7(1): 1952.
[201] KIM Y, PARADA G A, LIU S, et al. Ferromagnetic soft continuum robots[J]. 2019, 4(33): eaax7329.
[202] CARNICER-LOMBARTE A, CHEN S T, MALLIARAS G G, et al. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 622524.
[203] GRAINGER D W. All charged up about implanted biomaterials[J]. Nature Biotechnology, 2013, 31(6): 507-509.
[204] CAPUANI S, MALGIR G, CHUA C Y X, et al. Advanced strategies to thwart foreign body response to implantable devices[J]. Bioengineering & Translational Medicine, 2022, 7(3): e10300.
[205] BANK R A. Limiting biomaterial fibrosis[J]. Nature Materials, 2019, 18(8): 781.
[206] ZHANG L, CAO Z, BAI T, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction[J]. Nature Biotechnology, 2013, 31(6): 553-556.
[207] LI S, DAI J, ZHU M, et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats[J]. ACS Nano, 2023, 17(18): 18525-18538.
[208] ABIDIAN M R, MARTIN D C. Multifunctional nanobiomaterials for neural interfaces[J]. Advanced Functional Materials, 2009, 19(4): 573-585.
[209] HYAKUMURA T, AREGUETA-ROBLES U, DUAN W, et al. Improving deep brain stimulation electrode performance in vivo through use of conductive hydrogel coatings [J]. Frontiers in Neuroscience, 2021, 15: 761525.
[210] LI Y, LI D, WANG J, et al. A temperature-sensing hydrogel coating on the medical catheter[J]. Advanced Functional Materials, 2023: 2310260.
[211] SHAFIQUE H, DE VRIES J, STRAUSS J, et al. Advances in the translation of electrochemical hydrogel-based sensors[J]. Advanced Healthcare Materials, 2023, 12(1): 2201501.
[212] BOOTH M A, GOWERS S A N, HERSEY M, et al. Fiber-based electrochemical biosensors for monitoring pH and transient neurometabolic lactate[J]. Analytical Chemistry, 2021, 93(17): 6646-6655.
[213] LEE H, LEE B P, MESSERSMITH P B. A reversible wet/dry adhesive inspired by mussels and geckos[J]. Nature, 2007, 448(7151): 338-341.
[214] YANG Q, HU Z, ROGERS J A. Functional hydrogel interface materials for advanced bioelectronic devices[J]. Accounts of Materials Research, 2021, 2(11): 1010-1023.
[215] INOUE A, YUK H, LU B, et al. Strong adhesion of wet conducting polymers on diverse substrates[J]. 2020, 6(12): eaay5394.
[216] DONAHUE M J, SANCHEZ-SANCHEZ A, INAL S, et al. Tailoring PEDOT properties for applications in bioelectronics[J]. Materials Science and Engineering: R: Reports, 2020, 140: 100546.
[217] ZHOU P, ZHANG Z, MO F, et al. A review of functional hydrogels for flexible chemical sensors[J]. Advanced Sensor Research, 2024, 3(3): 2300021.
[218] ARONOVICH D A. Progress in cyanoacrylate adhesives. Studies of adhesive modification[J]. Polymer Science, Series D, 2020, 13(3): 297-305.
[219] LONG S, XIE C, LU X. Natural polymer-based adhesive hydrogel for biomedical applications[J]. Biosurface and Biotribology, 2022, 8(2): 69-94.
[220] DEY A, BHATTACHARYA P, NEOGI S. Bioadhesives in biomedical applications: a critical review[M]. Progress in Adhesion and Adhesives, 2021: 131-153.
[221] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[222] STARLING J, SILVA C M D, DANTAS M S S, et al. N-acryloxysuccinimide: synthesis, characterization, and incorporation in dental adhesives[J]. International Journal of Adhesion and Adhesives, 2011, 31: 767-774.
[223] PENG Y-F, TSAI A, HUANG M-H. Synthesis and thermal investigation of phosphate-functionalized acrylic materials[J]. Polymer Journal, 2018, 50(10): 967-974.
[224] BROWNING M B, CERECERES S N, LUONG P T, et al. Determination of the in vivo degradation mechanism of PEGDA hydrogels[J]. Journal of Biomedical Materials Research Part A, 2014, 102(12): 4244-4251.
[225] RODRIGUEZ-RIVERA G J, GREEN M, SHAH V, et al. A user’s guide to degradation testing of polyethylene glycol-based hydrogels: from in vitro to in vivo studies[J]. Journal of Biomedical Materials Research Part A, 2023: 1-13.
[226] SEO H, HAN S I, SONG K-I, et al. Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bidirectional signaling[J]. Advanced Materials, 2021, 33(20): 2007346.
[227] WANG S, CUI Q, ABIRI P, et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy[J]. Science Advances, 2023, 9(42): eadj0540.
[228] ZHANG W, ZHANG L, GAO H, et al. Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo[J]. Nano-Micro Letters, 2018, 10(2): 32.
[229] KIM W S, HONG S, GAMERO M, et al. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways[J]. Nature Communications, 2021, 12(1): 157.
[230] ASIF S M, IFTIKHAR A, HANSEN J W, et al. A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array[J]. IEEE Access, 2019, 7: 1139-1148.
[231] SHENG H, ZHOU J, LI B, et al. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body[J]. Science Advances, 2021, 7(2): eabe3097.
[232] WU M, YAO K, HUANG N, et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity[J]. Advance Science, 2023, 10(14): 2300504.
[233] YANG S M, SHIM J H, CHO H-U, et al. Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system[J]. Advanced Materials, 2022, 34(14): 2108203.
[234] WANG L, LU C, YANG S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine[J]. Science Advances, 2020, 6(50): eabc6686.
[235] LI C, GUO C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation[J]. Nature Reviews Materials, 2020, 5(1): 61-81.
[236] SHIN J W, CHAN CHOE J, LEE J H, et al. Biologically safe, degradable self-destruction system for on-demand, programmable transient electronics[J]. ACS Nano, 2021, 15(12): 19310-19320.
[237] MIN J, JUNG Y, AHN J, et al. Recent advances in biodegradable green electronic materials and sensor applications[J]. Advanced Materials, 2023, 35(52): e2211273.
[238] FEIG V R, TRAN H, BAO Z. Biodegradable polymeric materials in degradable electronic devices[J]. ACS Central Science, 2018, 4(3): 337-348.
[239] DI MAURO E, RHO D, SANTATO C. Biodegradation of bio-sourced and synthetic organic electronic materials towards green organic electronics[J]. Nature Communications, 2021, 12(1): 3167.
[240] ZHAO Y, WU Y, WANG L, et al. Bio-inspired reversible underwater adhesive[J]. Nature Communications, 2017, 8(1): 2218.
[241] GAO Y, WU K, SUO Z. Photodetachable adhesion[J]. Advanced Materials, 2019, 31(6): e1806948.
[242] JIANG M, LIU X, CHEN Z, et al. Near-infrared-detached adhesion enabled by upconverting nanoparticles[J]. iScience, 2020, 23(2): 100832.
[243] LIU J, TAN C S Y, SCHERMAN O A. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition[J]. Angewandte Chemie International Edition, 2018, 57(29): 8854-8858.
[244] XIE T, DING J, HAN X, et al. Wound dressing change facilitated by spraying zinc ions[J]. Materials Horizons, 2020, 7(2): 605-614.
[245] YUK H, ZHANG T, LIN S, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196.
[246] LI W, LIU X, DENG Z, et al. Tough bonding, on-demand debonding, and facile rebonding between hydrogels and diverse metal surfaces[J]. Advanced Materials, 2019, 31(48): 1904732.
[247] CHEN X, YUK H, WU J, et al. Instant tough bioadhesive with triggerable benign detachment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15497-15503.
[248] HUANG S, KONG X, XIONG Y, et al. An overview of dynamic covalent bonds in polymer material and their applications[J]. European Polymer Journal, 2020, 141: 110094.
[249] CASH J J, KUBO T, BAPAT A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7): 2098-2106.
[250] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 2017, 29(15): 1606380.
[251] FIGUEIREDO T, COSENZA V, OGAWA Y, et al. Boronic acid and diol-containing polymers: how to choose the correct couple to form “strong” hydrogels at physiological pH[J]. Soft Matter, 2020, 16(15): 3628-3641.
[252] WANG J, WANG Z, YU J, et al. Glucose-responsive insulin and delivery systems: innovation and translation[J]. Advanced Materials, 2020, 32(13): e1902004.
[253] LI J, CELIZ A D, YANG J, et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349): 378-381.
[254] FREEDMAN B R, UZUN O, LUNA N M M, et al. Degradable and removable tough adhesive hydrogels[J]. Advanced Materials, 2021, 33(17): e2008553.
[255] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 2017, 12(9): 907-913.
[256] RAMOS S R, PIELES G, HUI W, et al. Comprehensive echocardiographic assessment of biventricular function in the rabbit, animal model in cardiovascular research: feasibility and normal values[J]. The international Journal of Cardiovascular Imaging, 2018, 34(3): 367-375.
[257] FRANK J A, ANTONINI M J, ANIKEEVA P. Next-generation interfaces for studying neural function[J]. Nature Nanotechnology, 2019, 37(9): 1013-1023.
[258] RICH S I, WOOD R J, MAJIDI C. Untethered soft robotics[J]. Nature Electronics, 2018, 1(2): 102-112.
[259] MARIO CHEONG G L, LIM K S, JAKUBOWICZ A, et al. Conductive hydrogels with tailored bioactivity for implantable electrode coatings[J]. Acta Biomaterialia, 2014, 10(3): 1216-1226.
[260] DECHIRAJU H, JIA M, LUO L, et al. Ion-conducting hydrogels and their applications in bioelectronics[J]. Advanced Sustainable Systems, 2022, 6(2): 2100173.
[261] THONIYOT P, TAN M J, KARIM A A, et al. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials[J]. Advanced Science, 2015, 2: 1400010.
[262] PENG Q, CHEN J, WANG T, et al. Recent advances in designing conductive hydrogels for flexible electronics[J]. InfoMat, 2020, 2(5): 843-865.
[263] DONAHUE M J, SANCHEZ-SANCHEZ A, INAL S, et al. Tailoring PEDOT properties for applications in bioelectronics[J]. Materials Science and Engineering: R: Reports, 2020, 140: 100546.
[264] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature Communications, 2018, 9(1): 2740.
[265] FU F, WANG J, ZENG H, et al. Functional conductive hydrogels for bioelectronics[J], ACS Materials Letters, 2020, 2(10): 1287-1301.
[266] INOUE A, YUK H, LU B, et al. Strong adhesion of wet conducting polymers on diverse substrates[J]. Science Advances, 2020, 6(12): eaay5394.
[267] OUYANG L, WEI B, KUO C C, et al. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2)[J]. Science Advances, 2017, 3(3): e1600448.
[268] DU X, YANG L, LIU N. Recent Progress on Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes[J]. Small Science, 2023, 3, 2300008.
[269] ZHANG J, WANG L, XUE Y, et al. Engineering electrodes with robust conducting hydrogel coating for neural recording and modulation[J]. Advanced Materials, 2023, 35(3): 2209324.
[270] CARRANZA-CRUZ J C, RIVERA E, SANTANA G, et al. Synthesis of polyaniline (PANI) through chemical oxidation for its preparation in thin films[J]. MRS Advances, 2021, 6(43): 965-968.
[271] SRAVANTHI M, MANJUNATHA K G. Synthesis and characterization of conducting polypyrrole with various dopants[J]. Materials Today: Proceedings, 2021, 46: 5964-5868.
[272] LIU J, LIN S, LIU X, et al. Fatigue-resistant adhesion of hydrogels[J]. Nature Communications, 2020, 11(1): 1071.
[273] LIN S, LIU X, LIU J, et al. Anti-fatigue-fracture hydrogels[J]. Science Advances, 2019, 5(1): eaau8528.
[274] SKRZYPIEC-SPRING M, GROTTHUS B, SZELAG A, et al. Isolated heart perfusion according to Langendorff still viable in the new millennium[J]. Journal of Pharmacological and Toxicological Methods, 2007, 55(2): 113-126.
[275] AN Z, WU J, LI S H, et al. Injectable conductive hydrogel can reduce pacing threshold and enhance efficacy of cardiac pacemaker[J]. Theranostics, 2021, 11(8): 3948-3960.
[276] CHEN X, ZHANG J, CHEN G, et al. Hydrogel bioadhesives with extreme acid-tolerance for gastric perforation repairing[J]. Advanced Functional Materials, 2022, 32, 2202285.
[277] LIND G, LINSMEIER C E, SCHOUENBORG J. The density difference between tissue and neural probes is a key factor for glial scarring[J]. Scientific Reports, 2013, 3: 2942.
[278] GUO Z, WANG F, WANG L, et al. A flexible neural implant with ultrathin substrate for low-invasive brain-computer interface applications[J]. Microsystems & Nanoengineering, 2022, 8: 133.
[279] CHENG M Y, PARK W T, YU A, et al. A flexible polyimide cable for implantable neural probe arrays[J]. Microsystem Technologies, 2013, 19(8): 1111-1118.
[280] MCCALLUM G A, SUI X, QIU C, et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes[J]. Scientific Reports, 2017, 7(1): 11723.
[281] ZHANG H, PATEL P R, XIE Z, et al. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite[J]. ACS Nano, 2013, 7(9): 7619-7629.
[282] KOZAI T D, LANGHALS N B, PATEL P R, et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces[J]. Nature Materials, 2012, 11(12): 1065-1073.
[283] PREVOST T P, BALAKRISHNAN A, SURESH S, et al. Biomechanics of brain tissue[J]. Acta Biomaterialia, 2011, 7(1): 83-95.
[284] HAN M, CHEN L, ARAS K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery[J]. Nature Biomedical Engineering, 2020, 4(10): 997-1009.
[285] RAITERI L, RAITERI M, BONANNO G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons[J]. Progress in Neurobiology, 2002, 68(4): 287-309.
[286] DA Y, LUO S, TIAN Y. Real-time monitoring of neurotransmitters in the brain of living animals[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 138-157.
[287] MADHURANTAKAM S, KARNAM J B, BRABAZON D, et al. “Nano”: an emerging avenue in electrochemical detection of neurotransmitters[J]. ACS Chemical Neuroscience, 2020, 11(24): 4024-4047.
[288] MARECOS C, NG J, KURIAN M A. What is new for monoamine neurotransmitter disorders?[J]. Journal of Inherited Metabolic Disease, 2014, 37(4): 619-626.
[289] KURIAN M A, GISSEN P, SMITH M, et al. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes[J]. The Lancet Neurology, 2011, 10(8): 721-733.
[290] DAGHER A, ROBBINS T W. Personality, addiction, dopamine: insights from Parkinson’s disease[J]. Neuron, 2009, 61(4): 502-510.
[291] VOLKOW N D, FOWLER J S, WANG G J, et al. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications[J]. Molecular Psychiatry, 2004, 9(6): 557-569.
[292] GUTTMAN M, BOILEAU I, WARSH J, et al. Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease[J]. European Journal of Neurology, 2007, 14(5): 523-528.
[293] ROBSON M J, QUINLAN M A, BLAKELY R D. Immune system activation and depression: roles of serotonin in the central nervous system and periphery[J]. ACS Chemical Neuroscience, 2017, 8(5): 932-942.
[294] KHVOTCHEV M, KAVALALI E T. Pharmacology of neurotransmitter release: measuring exocytosis[J]. Handbook of Experimental Pharmacology, 2008, (184): 23-43.
[295] MARTINEZ D, NARENDRAN R. Imaging neurotransmitter release by drugs of abuse[J]. Current Topics in Behavioral Neurosciences, 2010, 3: 219-245.
[296] NIROGI R, MUDIGONDA K, KANDIKERE V, et al. Quantification of acetylcholine, an essential neurotransmitter, in brain microdialysis samples by liquid chromatography mass spectrometry[J]. Biomedical Chromatography: BMC, 2010, 24(1): 39-48.
[297] KIM E H, CHIN G, RONG G, et al. Optical probes for neurobiological sensing and imaging[J]. Accounts of Chemical Research, 2018, 51(5): 1023-1032.
[298] WU Z, LIN D, LI Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators[J]. Nature Reviews Neuroscience, 2022, 23(5): 257-274.
[299] ZHU C, YANG G, LI H, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Analytical Chemistry, 2015, 87(1): 230-249.
[300] SANGHAVI B J, WOLFBEIS O S, HIRSCH T, et al. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters[J]. Mikrochimica Acta, 2015, 182(1): 1-41.
[301] BUCHER E S, WIGHTMAN R M. Electrochemical analysis of neurotransmitters[J]. Annual Review of Analytical Chemistry, 2015, 8: 239-261.
[302] WU J, LIU H, CHEN W, et al. Device integration of electrochemical biosensors[J]. Nature Reviews Bioengineering, 2023, 1(5): 346-360.
[303] LAKARD S, PAVEL I A, LAKARD B. Electrochemical biosensing of dopamine neurotransmitter: a review[J]. Biosensors, 2021, 11(6):179.
[304] TAVAKOLIAN-ARDAKANI Z, HOSU O, CRISTEA C, et al. Latest trends in electrochemical sensors for neurotransmitters: a review[J]. Sensors, 2019, 19(9): 2037.
[305] ROBERTS J G, SOMBERS L A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond[J]. Analytical Chemistry, 2018, 90(1): 490-504.
[306] NJAGI J, CHERNOV M M, LEITER J C, et al. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor[J]. Analytical Chemistry, 2010, 82(3): 989-996.
[307] SPENCER K C, SY J C, RAMADI K B, et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants[J]. Scientific Reports, 2017, 7(1): 1952.
[308] SCHWERDT H N, KIM M J, AMEMORI S, et al. Subcellular probes for neurochemical recording from multiple brain sites[J]. Lab on a Chip, 2017, 17(6): 1104-1115.
[309] LI J, LIU Y, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606(7912): 94-101.
[310] LAU C, BORGMANN S, MACIEJEWSKA M, et al. Improved specificity of reagentless amperometric PQQ-sGDH glucose biosensors by using indirectly heated electrodes[J]. Biosensors & Bioelectronics, 2007, 22(12): 3014-3020.
[311] MANO N, MAO F, HELLER A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant[J]. Journal of the American Chemical Society, 2003, 125(21): 6588-6594.
[312] TEANPHONKRANG S, JANKE S, CHAIYEN P, et al. Tuned amperometric detection of reduced β-nicotinamide adenine dinucleotide by allosteric modulation of the reductase component of the p-hydroxyphenylacetate hydroxylase immobilized within a redox polymer[J]. Analytical Chemistry, 2018, 90(9): 5703-5711.
[313] ALSAOUB S, RUFF A, CONZUELO F, et al. An intrinsic self-charging biosupercapacitor comprised of a high-potential bioanode and a low-potential biocathode[J]. ChemPlusChem, 2017, 82(4): 576-583.
[314] CUNNINGHAM C L, GREMEL C M, GROBLEWSKI P A. Drug-induced conditioned place preference and aversion in mice[J]. Nature Protocols, 2006, 1(4): 1662-1670.
[315] ZHANG Z, SCHULTEIS G. Withdrawal from acute morphine dependence is accompanied by increased anxiety-like behavior in the elevated plus maze[J]. Pharmacology, Biochemistry, and Behavior, 2008, 89(3): 392-403.
[316] DONE C, SILVERSTONE P, SHARP T. Effect of naloxone-precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo[J]. European Journal of Pharmacology, 1992, 215(2-3): 333-336.
[317] FENG T, JI W, TANG Q, et al. Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain[J]. Analytical Chemistry, 2019, 91(16): 10786-10791.
[318] SOKOLOV A N, PAVLOVA M A, KLOSTERHALFEN S, et al. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior[J]. Neuroscience and biobehavioral reviews, 2013, 37: 2445-2453.
[319] ZHU S, ZHAO C, WU Y, et al. Identification of a vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking[J]. Nature Protocols, 2015, 18(8): 1084-1093.
[320] HASEGAWA E, MIYASAKA A, SAKURAI K, et al. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice[J]. Science, 2022, 375(6584): 994-1000.
[321] KLEIN M O, BATTAGELLO D S, CARDOSO A R, et al. Dopamine: functions, signaling, and association with neurological diseases[J]. Cellular and Molecular Neurobiology, 2019, 39(1): 31-59.
[322] SIMMLER L D, LI Y, HADJAS L C, et al. Dual action of ketamine confines addiction liability[J]. Nature, 2022, 608(7922): 368-373.
[323] STUART T, JEANG W J, SLIVICKI R A, et al. Wireless, battery-free implants for electrochemical catecholamine sensing and optogenetic stimulation[J]. ACS Nano, 2023, 17(1): 561-574.
[324] LISTOS J, ŁUPINA M, TALAREK S, et al. The mechanisms involved in morphine addiction: an overview[J]. International Journal of Molecular sciences, 2019, 20(17): 4302.
[325] LI Y, LI C Y, XI W, et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence[J]. Neuron, 2019, 101(4): 748-761.
修改评论