中文版 | English
题名

刚柔耦合厚板折纸机器人的结构设计与运动控制研究

其他题名
STUDY ON STRUCTURE DESIGN AND MOTION CONTROL OF RIGID-FLEXIBLE COUPLED THICK PANEL ORIGAMI ROBOT
姓名
姓名拼音
LIU Qingjiang
学号
12132278
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
葛锜
导师单位
机械与能源工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Origami 是一种将二维平面折叠成三维物体的折纸艺术。基于 Origami 折纸图案的机器人被称为折纸机器人,具有易于变形、节省空间、良好的人机交互等优点。然而,目前大多数基于传统制造方法的薄板折纸机器人存在制造过程繁琐和力学性能较弱的不足,从而限制了它们在工程应用中的潜力。此外,折纸机器人驱动系统较为复杂,运动控制研究缺乏定量分析与运动建模。本研究结合熔融沉积成型的多材料3D打印技术制造刚柔耦合厚板折纸机器人。该机器人兼具良好的力学性能和折叠能力,并能够通过正交控制实现任意方向弯曲。 刚柔耦合厚板折纸机器人的柔性铰链由软材料构成,面板采用软材料包裹刚性材料的结构。在这种设计下,折纸机器人的应变主要集中在柔性铰链处,同时保证了面板与铰链之间牢固的界面。利用 D-H Convention 方法,证明了刚柔耦合厚板折纸保持和零厚度折纸结构一致的折叠运动特征和功能。相比于传统厚板折纸结构,刚柔耦合厚板折纸结构可以直接使用零厚度折纸结构图案,无需重新设计图案和铰链,大大简化了设计与制造流程。通过调节柔性铰链的位置,可以系统调整刚柔耦合折纸结构的刚度进而获得了能够承受超过 100 次循环加载且具有优越的冲击吸能效果的折纸结构。 在调节柔性铰链的基础上,对 Yoshimura 图案进行了修改,成功设计出了一种刚柔耦合折纸机器人。该机器人不仅具备了良好的变形能力和一定的刚度,还能够通过正交控制实现任意方向弯曲。建立驱动控制及测量系统,可以通过线缆驱动控制折纸机器人弯曲变形并实时监测线缆的力和机器人的弯曲程度。通过利用折纸机器人弯曲角度与线缆拉伸位移之间的线性关系,实现了对折纸机器人的快速精准控制。通过协同驱动多根线缆, 实现了折纸机器人的多向协同弯曲控制,进而使折纸机器人能够实现复杂的多向运动。对刚柔耦合厚板折纸机器人进行建模分析,深入探究不同设计参数下的可达空间,为未来工程应用提供了理论支持。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Lang R J. The science of origami[J]. Physics world, 2007, 20(2): 30.
[2] DEBNATH S, FEI L J. Origami theory and its applications: a literature review[J]. world academy of science, engineering and technology, 2013: 1131-1135.
[3] PERAZA-HERNANDEZ E A, HARTL D J, MALAK Jr R J, et al. Origami-inspired active structures: a synthesis and review[J]. Smart Materials and Structures, 2014, 23(9): 094001.
[4] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197): 644-646.
[5] MELANCON D, GORISSEN B, GARCÍA-MORA C J, et al. Multistable inflatable origami structures at the metre scale[J]. Nature, 2021, 592(7855): 545-550.
[6] ZIRBEL S A, LANG R J, THOMSON M W, et al. Accommodating thickness in origami-based deployable arrays[J]. Journal of Mechanical Design, 2013, 135(11): 111005.
[7] BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11): 1-11.
[8] SURJADI J U, GAO L, DU H, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864.
[9] WEGENER M. Metamaterials beyond optics[J]. Science, 2013, 342(6161): 939-940.
[10] ZHAI Z, WANG Y, JIANG H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness[J]. Proceedings of the National Academy of Sciences, 2018, 115(9): 2032-2037.
[11] MIYASHITA S, GUITRON S, YOSHIDA K, et al. Ingestible, controllable, and degradable origami robot for patching stomach wounds[C]//2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016: 909-916.
[12] KURIBAYASHI K, TSUCHIYA K, YOU Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering: A, 2006, 419(1-2): 131-137.
[13] FEI L, SUJAN D. Origami theory and its applications: A literature review[J]. International journal of humanities and social sciences, 2013, 7: 229 -233.
[14] PERAZA-HERNANDEZ E A, HARTL D J, MALAK R J, et al. Origami-inspired active structures: A synthesis and review[J]. Smart Materials and Structures, 2014, 23(9): 094001.
[15] WU S, ZE Q, DAI J, et al. Stretchable origami robotic arm with omnidirectional bending and twisting[J]. Proceedings of the National Academy of Sciences, 2021, 118(36): e2110023118.
[16] MORGAN J, MAGLEBY S P, HOWELL L L. An approach to designing origami-adapted aerospace mechanisms[J]. Journal of Mechanical Design, 2016, 138(5): 052301.
[17] MA J, YOU Z. A novel origami crash box with varying profiles[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013, 55942: V06BT07A048.
[18] MA J, YOU Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern—part I: geometry and numerical simulation[J]. Journal of applied mechanics, 2014, 81(1): 011003.
[19] ZHOU C, WANG B, MA J, et al. Dynamic axial crushing of origami crash boxes[J]. International journal of mechanical sciences, 2016, 118: 1-12.
[20] RUS D, SUNG C. Spotlight on origami robots[J]. Science Robotics, 2018, 3(15): eaat0938.
[21] MIYASHITA S, GUITRON S, LI S, et al. Robotic metamorphosis by origami exoskeletons[J]. Science Robotics, 2017, 2(10): eaao4369.
[22] LI S, VOGT D M, RUS D, et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National academy of Sciences, 2017, 114(50): 13132-13137.
[23] MIYASHITA S, GUITRON S, LUDERSDORFER M, et al. An untethered miniature origami robot that self-folds, walks, swims, and degrades[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 1490-1496.
[24] ONAL C D, WOOD R J, RUS D. An origami-inspired approach to worm robots[J]. IEEE/ASME Transactions on Mechatronics, 2012, 18(2): 430-438.
[25] WOOD R J, AVADHANULA S, SAHAI R, et al. Microrobot design using fiber reinforced composites[J]. 2008.
[26] ZHANG C, ZHANG Z, PENG Y, et al. Plug & play origami modules with all-purpose deformation modes[J]. Nature Communications, 2023, 14(1): 4329.
[27] OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three -dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7: 10929.
[28] INTCHEV S, SALERNO M, CHERPILLOD A, et al. A portable three-degrees-of-freedom force feedback origami robot for human-robot interactions[J]. Nature Machine Intelligence, 2019, 1(12): 584-593.
[29] ILIEVSKI F, MAZZEO A D, SHEPHERD R E, et al. Soft robotics for chemists[J]. Angewandte Chemie-International Edition, 2011, 50(8): 1890-1895.
[30] KIM Y, CHA Y. Soft pneumatic gripper with a tendon-driven soft origami pump[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 00461.
[31] POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, 2013: 1512-1517.
[32] ZAGHLOUL A, BONE G M. 3D shrinking for rapid fabrication of origami-inspired semi-soft pneumatic actuators[J]. IEEE Access, 2020, 8: 191330-191340.
[33] ELGENEIDY K, LOHSE N, JACKSON M. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors - a data-driven approach[J]. Mechatronics, 2018, 50: 234-247.
[34] WANG W, RODRIGUE H, AHN S H. Deployable soft composite structures[J]. Scientific Reports, 2016, 6: 20869.
[35] GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
[36] MARTINEZ R V, FISH C R, CHEN X, et al. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators[J]. Advanced Functional Materials, 2012, 22(7): 1376-1384.
[37] KIM W, BYUN J, KIM J K, et al. Bioinspired dual-morphing stretchable origami[J]. Science Robotics, 2019, 4(36): eaay3493.
[38] SCHMITT F, PICCIN O, BARBE L, et al. Soft robots manufacturing: A review[J]. Frontiers in Robotics and AI, 2018, 5: 84.
[39] GIBSON I, ROSEN D W, STUCKER B, et al. Additive manufacturing technologies[M]. Cham, Switzerland: Springer, 2021.
[40] GE Q, LI Z, WANG Z, et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing, 2020, 2(2): 022004.
[41] GUL J Z, SAJID M, REHMAN M M, et al. 3D printing for soft robotics–a review[J]. Science and technology of advanced materials, 2018, 19(1): 243-262.
[42] RUS D, TOLLEY M T. Design, fabrication and control of origami robots[J]. Nature Reviews Materials, 2018, 3(6): 101-112.
[43] ZHAO Z A, WU J T, MU X M, et al. Origami by frontal photopolymerization[J]. Science Advances, 2017, 3(4): e1602326.
[44] ZHAO Z, KUANG X, Wu J, et al. 3D printing of complex origami assemblages for reconfigurable structures[J]. Soft Matter, 2018, 14(39): 8051-8059.
[45] KIMIONIS J, ISAKOV M, KOH B S, et al. 3D-printed origami packaging with inkjet-printed antennas for RF harvesting sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4521-4532.
[46] AHN B Y, SHOJI D, HANSEN C J, et al. Printed origami structures[J]. Advanced Materials, 2010, 22(20): 2251-2254.
[47] FABER J A, ARRIETA A F, STUDART A R. Bioinspired spring origami[J]. Science, 2018, 359(6382): 1386-1391.
[48] ZHANG K, ZHU Y, LOU C, et al. A design and fabrication approach for pneumatic soft robotic arms using 3D printed origami skeletons[C]// 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, 2019: 821-827.
[49] DUDEK P. FDM 3D printing technology in manufacturing composite elements[J]. Archives of metallurgy and materials, 2013, 58(4): 1415-1418.
[50] MAZZANTI V, MALAGUTTI L, MOLLICA F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties[J]. Polymers, 2019, 11(7): 1094.
[51] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. science, 2014, 345(6197): 647-650.
[52] TACHI T. Rigid-foldable thick origami[J]. Origami, 2011, 5(5): 253-264.
[53] EDMONDSON B J, LANG R J, MAGLEBY S P, et al. An offset panel technique for thick rigidily foldable origami[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014, 46377: V05BT08A054.
[54] KU J S, DEMAINE E D. Folding flat crease patterns with thick materials[J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031003.
[55] CHEN Y, PENG R, YOU Z. Origami of thick panels[J]. Science, 2015, 349(6246): 396-400.
[56] CHEN Y, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International journal of solids and structures, 2005, 42(8): 2287-2301.
[57] GU Y, WEI G, CHEN Y. Thick-panel origami cube[J]. Mechanism and Machine Theory, 2021, 164: 104411.
[58] SCHENK M, GUEST S D. Geometry of Miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3276-3281.
[59] FANG H, CHU S C A, XIA Y, et al. Programmable self‐locking origami mechanical metamaterials[J]. Advanced Materials, 2018, 30(15): 1706311.
[60] MA J, SONG J, CHEN Y. An origami-inspired structure with graded stiffness[J]. International Journal of Mechanical Sciences, 2018, 136: 134-142.
[61] WO Z, FILIPOV E T. Stiffening multi-stable origami tubes by outward popping of creases[J]. Extreme Mechanics Letters, 2023, 58: 101941.
[62] MELANCON D, FORTE A E, KAMP L M, et al. Inflatable origami: Multimodal deformation via multistability[J]. Advanced Functional Materials, 2022, 32(35): 2201891.
[63] LEE D Y, KIM S R, KIM J S, et al. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure[J]. Soft robotics, 2017, 4(2): 163-180.
[64] LEE D Y, KIM J K, SOHN C Y, et al. High–load capacity origami transformable wheel[J]. Science Robotics, 2021, 6(53): eabe0201.
[65] PAGANO A, YAN T, CHIEN B, et al. A crawling robot driven by multi-stable origami[J]. Smart Materials and Structures, 2017, 26(9): 094007.
[66] JEONG D, LEE K. Design and analysis of an origami-based three-finger manipulator[J]. Robotica, 2018, 36(2): 261-274.
[67] LI S, STAMPFLI J J, Xu H J, et al. A vacuum-driven origami “magic-ball” soft gripper[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7401-7408.
[68] ZE Q, WU S, DAI J, et al. Spinning-enabled wireless amphibious origami millirobot[J]. Nature communications, 2022, 13(1): 3118.
[69] FANG H, ZHANG Y, WANG K W. Origami-based earthworm-like locomotion robots[J]. Bioinspiration & biomimetics, 2017, 12(6): 065003.
[70] ZHANG Q, FANG H, XU J. Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability[J]. Frontiers in Robotics and AI, 2021, 8: 738214.
[71] 马玉琼, 郑红伟, 王铁成, 等. 基于 FDM 技术的多喷头 3D 打印机关键技术研究[J]. 机床与液压, 2020, 48(04): 33-36.
[72] ILIEVSKI F, MAZZEO A D, SHEPHERD R E, et al. Soft robotics for chemists[J]. Angewandte Chemie-International Edition, 2011, 50(8): 1890-1895.
[73] 王海瑞. 基于刚性折纸原理的折叠结构设计及其特性研究[D]. 大连理工大学, 2019.
[74] JOHNSON M, CHEN Y, HOVET S, et al. Fabricating biomedical origami: a state-of-the-art review[J]. International journal of computer assisted radiology and surgery, 2017, 12: 2023-2032.
[75] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性 1[J]. 力学学报, 2019, 51(4): 1110-1121.
[76] LIU K, TACHI T, PAULINO G H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces[J]. Nature communications, 2019, 10(1): 4238.
[77] FILIPOV E T, TACHI T, PAULINO G H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12321-12326.
[78] LIU K, WU J, PAULINO G H, et al. Programmable deployment of tensegrity structures by stimulus-responsive polymers[J]. Scientific reports, 2017, 7(1): 3511.
[79] PRATAPA P P, LIU K, PAULINO G H. Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment[J]. Physical review letters, 2019, 122(15): 155501.
[80] MELONI M, CAI J, ZHANG Q, et al. Engineering origami: A comprehensive review of recent applications, design methods, and tools[J]. Advanced Science, 2021, 8(13): 2000636.
[81] 方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展[J]. 力学学报, 2022, 54(01): 1-38.
[82] ONAL C D, TOLLEY M T, WOOD R J, et al. Origami-inspired printed robots[J]. IEEE/ASME transactions on mechatronics, 2014, 20(5): 2214-2221.
[83] LIU K, PAULINO G H. Nonlinear mechanics of non-rigid origami: an efficient computational approach[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2206): 20170348.
[84] JASIM B, TAHERI P. An origami-based portable solar panel system[C]// 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, 2018: 199-203.
[85] SONG Z M, MA T, TANG R, et al. Origami lithium-ion batteries[J]. Nature Communications, 2014, 5(1): 3140.
[86] ACHI T, MIURA K. Rigid-foldable cylinders and cells[J]. Journal of the International Association for Shell and Spatial Structures, 2012, 53(4): 217 -226.
[87] ZHAKYPOV Z, FALAHI M, SHAH M, et al. The design and control of the multi-modal locomotion origami robot, Tribot[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 4349-4355.
[88] ONAL C D, WOOD R J, RUS D. Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms[C]//2011 IEEE international conference on robotics and automation. IEEE, 2011: 4608-4613.
[89] SANTOSO J, ONAL C D. An origami continuum robot capable of precise motion through torsionally stiff body and smooth inverse kinematics[J]. Soft Robotics, 2021, 8(4): 371-386.
[90] NOVELINO L S, ZE Q, WU S, et al. Untethered control of functional origami microrobots with distributed actuation[J]. Proceedings of the National Academy of Sciences, 2020, 117(39): 24096-24101.
[91] ZE Q, WU S, NISHIKAWA J, et al. Soft robotic origami crawler[J]. Science advances, 2022, 8(13): eabm7834.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766116
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
刘清江. 刚柔耦合厚板折纸机器人的结构设计与运动控制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132278-刘清江-机械与能源工程(16815KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘清江]的文章
百度学术
百度学术中相似的文章
[刘清江]的文章
必应学术
必应学术中相似的文章
[刘清江]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。