中文版 | English
题名

基于折叠叉指电极的柔性压力传感器

其他题名
FLEXIBLE PRESSURE SENSOR BASED ON FOLDED INTERDIGITAL ELECTRODE
姓名
姓名拼音
WU Jiaxin
学号
12132478
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
王敏
导师单位
深港微电子学院
论文答辩日期
2024-05-06
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
柔性压力传感器在智能机器人、可穿戴设备、人机交互等领域有广阔的应用前景。压阻式柔性压力传感器因其原理简单、响应信号易于读出和处理而受到研究人员的广泛关注。当前对于高灵敏度压阻式压力传感器的需求巨大。前人的研究主要通过设计压阻材料和器件结构来提升灵敏度,然而多数传感器在 100 kPa 以上的高压范围内的灵敏度较低。本文提出一种折叠叉指电极压力传感器来解决这一问题。主要研究内容如下:
1)提出通过折弯柔性叉指电极以实现具有多层堆叠结构的柔性压阻式压力传感器。经理论分析,阐述该压力传感器的电学工作原理,包括由单敏感层实现压力传感的原理和多个导电敏感层之间的电学关系。通过力学仿真,确定了单个电极折弯结构的受压形变过程以及在该过程中敏感层与电极的接触面积随压力变化的关系,并进一步分析了折弯结构的多层堆叠对器件灵敏度的提升作用。
2)将定制的柔性叉指电极的铜层减薄,以降低结构刚度,便于模压折弯。折弯的电极将与纸基导电敏感材料组装为一体,再以堆叠形式封装该组装体,制备压力传感器。其灵敏度在 3.6~714.3 kPa 范围内不低于 300 kPa-1,最高为 1431.7 kPa-1,明显优于传统的三明治结构器件及前人的相关工作,表明本文的传感器在宽的测量范围内,特别是 100 kPa 以上的高压范围内,保持着较高的灵敏度。同时,设计了正交实验研究敏感层的导电性、叉指电极的线宽线距及电极的接线方式对传感器的灵敏度和线性度的影响。此外,成功展示了使用该传感器控制 LED 灯亮度和检测手指弯曲程度的应用场景。
在前人的工作中,压阻式压力传感器的敏感层与电极的接触面积在高压范围内易饱和,造成灵敏度下降。为此,本文提出了一种通过折弯叉指电极实现具有多层堆叠结构的柔性压阻式压力传感器,以提高接触面积和响应电流在整个压力测量范围内的变化量,从而提高器件在宽量程范围内的灵敏度。本研究对新型高灵敏度压力传感器的结构设计、制备和性能提升有一定的工程价值和指导意义。
其他摘要
Flexible pressure sensors have broad application prospects in intelligent robots, wearable devices, human-machine interaction and other fields. The piezoresistive pressure sensors have attracted wide attention because of their simple structure and readout mechanism. There are great application requirements of piezoresistive pressure sensors with high sensitivity. Many researchers have focused on the design of piezoresistive material and sensor structure to improve the sensitivity. However, most sensors have low sensitivity in the high pressure range above 100 kPa. In this paper, a novel pressure sensor structure is proposed to solve this problem. The main research contents are as follows:
(1) A flexible piezoresistive pressure sensor with multilayer stacked structure is proposed by bending the flexible interfinger electrode. The electrical working principle of the pressure sensor is described by theoretical analysis, including the principle of pressure sensing by a single sensitive layer and the electrical relationship between multiple conductive sensitive layers. Through mechanical simulation, the deformation process of a single electrode bending structure is established. We also figure out the relationship between the contact area of a single sensitive layer and the electrode and the pressure. Moreover, the effect of multilayer stacking on the sensitivity of the device is analyzed.
(2) In order to bend the flexible interdigital electrode by mold pressing as well as reduce the structural stiffness, the copper layer of the customized flexible interfinger electrode is thinned down to several micrometer. The bent electrode is assembled with a paper-based conductive sensitive material, and then the assembly is packaged in a stacked form to prepare the prototype of sensor. The sensitivities of prototypes with different conductive layers are not less than 300 kPa-1 in the range of 3.571-714.286 kPa with a maximum value of 1431.7kPa-1, which is obviously better than the sandwiched sensor and previous researches. In addition, a demonstration is made where the sensor is used to control the LED brightness.
In the previous research, the contact area between the sensitive layer and the electrode of the pressure sensor is saturated in the high pressure range. Therefore, a flexible piezoresistive pressure sensor with bent interfinger electrode and multilayered stacked structure is proposed in this paper, which increases the variation of the contact area and response current in the high pressure range, so as to improve the sensitivity of the device.. It has certain engineering value and guiding significance for the structural design, fabrication and performance improvement of new high-sensitivity pressure sensors.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LUO Y F, ABIDIAN M R, AHN J H, et al. Technology Roadmap for Flexible Sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
[2] LEE S, SHI Q F, LEE C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks[J]. APL Materials, 2019, 7(3).
[3] KHAN Y, THIELENS A, MUIN S, et al. A New Frontier of Printed Electronics: Flexible Hybrid Electronics[J]. Advanced Materials, 2020, 32(15): 1905279.
[4] LUO Y, WANG M, WAN C, et al. Devising Materials Manufacturing Toward Lab-to Fab Translation of Flexible Electronics[J]. Advanced Materials, 2020, 32(37): 2001903.
[5] ZANG Y P, ZHANG F J, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[6] BOUTRY C M, NEGRE M, JORDA M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics[J]. Science Robotics, 2018, 3(24): 6914.
[7] 钟雅琪. 柔性压力传感器设计及在氢燃料电池气压泄漏监测中的应用[D]. 太原: 太原理工大学, 2022.
[8] HUANG Y, FAN X Y, CHEN S C, et al. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509.
[9] BAI N, WANG L, XUE Y, et al. Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range[J]. ACS Nano, 2022, 16(3): 4338-4347.
[10] YIN R Y, WANG D P, ZHAO S F, et al. Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application[J]. Advanced Functional Materials, 2021, 31(11): 2008936.
[11] CHEN Y W, PANCHAM P P, MUKHERJEE A, et al. Recent advances in flexible force sensors and their applications: a review[J]. Flexible and Printed Electronics, 2022, 7(3).
[12] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering Pressure Sensor Active Layers for Improved Performance[J]. Advanced Functional Materials, 2020, 30(39): 2003491.
[13] JASON N N, HO M D, CHENG W L. Resistive electronic skin[J]. Journal of Materials Chemistry C, 2017, 5(24): 5845-5866.
[14] CLAVER U P, ZHAO G. Recent Progress in Flexible Pressure Sensors Based Electronic Skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187.
[15] CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review[J]. Journal of Materials Science & Technology, 2020, 43: 175-188.
[16] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[17] CHANG Y, WANG L, LI R Y, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[18] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[19] HE H, FU Y, ZANG W, et al. A flexible self-powered T-ZnO/PVDF/fabric electronic skin with multi-functions of tactile-perception, atmosphere-detection and self clean[J]. Nano Energy, 2017, 31: 37-48.
[20] 苏元捷. 摩擦纳米发电机设计与制备及应用研究[D]. 成都: 电子科技大学, 2016.
[21] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用[J]. 物理学报, 2020, 69(17): 70-85.
[22] ZHONG F, HU W, ZHU P N, et al. Piezoresistive design for electronic skin: from fundamental to emerging applications[J]. Opto-Electronic Advances, 2022, 5(8): 210029.
[23] NGUYEN T, DINH T, PHAN H P, et al. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications[J]. Materials Horizons, 2021, 8(8): 2123-2150.
[24] ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020, 36: 158-179.
[25] AMJADI M, KYUNG K-U, PARK I, et al. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.
[26] CHOONG C-L, SHIM M-B, LEE B-S, et al. Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array[J]. Advanced Materials, 2014, 26(21): 3451-3458.
[27] YAO H-B, GE J, WANG C-F, et al. A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
[28] PENG S, BLANLOEUIL P, WU S, et al. Rational Design of Ultrasensitive Pressure Sensors by Tailoring Microscopic Features[J]. Advanced Materials Interfaces, 2018, 5(18): 1800403.
[29] GAO Y, LU C, GUOHUI Y, et al. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J]. Nanotechnology, 2019, 30(32): 325502.
[30] PANG Y, ZHANG K, YANG Z, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity[J]. ACS Nano, 2018, 12(3): 2346-2354.
[31] SHI J, WANG L, DAI Z, et al. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range[J]. Small, 2018, 14(27): 1800819.
[32] HUANG F L, HU G H, YU Z H, et al. Highly sensitive and wide linearity flexible pressure sensor with randomly distributed columnar arrays[J]. Journal of Materials Science, 2023: 3735-3751.
[33] DING Y C, XU T, ONYILAGHA O, et al. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-6704.
[34] LIU H, DONG M, HUANG W, et al. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C, 2017, 5(1): 73-83.
[35] ZHANG H, LIU N S, SHI Y L, et al. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22374-22381.
[36] VISSER C W, AMATO D N, MUELLER J, et al. Architected Polymer Foams via Direct Bubble Writing[J]. Advanced Materials, 2019, 31(46): 1904668.
[37] XU M, GAO Y, YU G, et al. Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing[J]. Sensors and Actuators A: Physical, 2018, 284: 260-265.
[38] YANG T, MATIVETSKY J M. Paper-Based Mechanical Sensors Enabled by Folding and Stacking[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26339-26345.
[39] XU M D, GAO Y, YU G H, et al. Flexible pressure sensor using carbon nanotube wrapped polydimethylsiloxane microspheres for tactile sensing[J]. Sensors and Actuators a-Physical, 2018, 284: 260-265.
[40] TIMSIT R S. Electrical contact resistance: Properties of stationary interfaces[J]. Ieee Transactions on Components and Packaging Technologies, 1999, 22(1): 85-98.
[41] GREENWOOD J A, WILLIAMSON J B. CONTACT OF NOMINALLY FLAT SURFACES[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1966, 295(1442): 300.
[42] 吴志会, 王东平, 周连生, et al. 胶粘剂对光机结构动力学特性的影响[J]. 光电工程, 2014, 41(06): 75-80.
[43] 罗威, 马娇, 陈正龙, et al. 胶粘剂弹性模量对折曲胶接接头应力分布的影响[J]. 中国胶粘剂, 2019, 28(04): 20-23.
[44] 杨焰, 李德良, 陈茜文, et al. 过硫酸盐/硫酸体系微蚀性能的研究[J]. 表面技术, 2009, 38(03): 54-55.
[45] YI C, HOU Y, HE K, et al. Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19563-19571.
[46] DU Q F, LIU L L, TANG R T, et al. High-Performance Flexible Pressure Sensor Based on Controllable Hierarchical Microstructures by Laser Scribing for Wearable Electronics[J]. Advanced Materials Technologies, 2021, 6(9).
[47] YANG L, WANG H, YUAN W, et al. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60531-60543.
[48] YAN S B, ZHANG X Y, LIU J L, et al. Multiwalled Carbon Nanotube/Graphite Powder Film for Wearable Pressure Sensors with High Sensing Performance[J]. Nanomaterials, 2022, 12(15).
[49] YANG M, CHENG Y, YUE Y, et al. High-Performance Flexible Pressure Sensor with a Self-Healing Function for Tactile Feedback[J]. Advanced Science, 2022, 9(20): 2200507.
[50] ZHENG W, XU H, WANG M, et al. On-Skin Flexible Pressure Sensor with High Sensitivity for Portable Pulse Monitoring[J]. Micromachines, 2022, 13(9): 1390.
[51] ZHU J, XUE X, LI J, et al. Flexible pressure sensor with a wide pressure measurement range and an agile response based on multiscale carbon fibers/carbon nanotubes composite[J]. Microelectronic Engineering, 2022, 257: 111750.
[52] CUI X H, JIANG Y, HU L, et al. Synergistically Microstructured Flexible Pressure Sensors with High Sensitivity and Ultrawide Linear Range for Full-Range Human Physiological Monitoring[J]. Advanced Materials Technologies, 2023, 8(1): 2200609.
[53] WANG C, GONG D, FENG P, et al. Ultra-Sensitive and Wide Sensing-Range Flexible Pressure Sensors Based on the Carbon Nanotube Film/Stress-Induced Square Frustum Structure[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8546-8554.
[54] WANG W, ZHANG X, ZHAO N, et al. Occlusal Paper-Based Flexible Pressure Sensor for in Situ Measuring Oral Occlusal Force[C]. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS): 783-786.
[55] WANG Z, DING J J, GUO R S. Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range[J]. ACS Applied Materials & Interfaces, 2023.
[56] ZHANG Z, ZHANG Q, ZHANG H, et al. A novel MXene-based high-performance flexible pressure sensor for detection of human motion[J]. Smart Materials and Structures, 2023, 32(6): 065007.
[57] WANG S, WANG C, ZHAO Y, et al. Flexible pressure sensors with ultrahigh stress tolerance enabled by periodic microslits[J]. Microsystems & Nanoengineering, 2024, 10(1): 24.

所在学位评定分委会
材料与化工
国内图书分类号
TP212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766121
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
吴佳鑫. 基于折叠叉指电极的柔性压力传感器[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132478-吴佳鑫-南方科技大学-(11328KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴佳鑫]的文章
百度学术
百度学术中相似的文章
[吴佳鑫]的文章
必应学术
必应学术中相似的文章
[吴佳鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。