[1] LUO Y F, ABIDIAN M R, AHN J H, et al. Technology Roadmap for Flexible Sensors[J]. ACS Nano, 2023, 17(6): 5211-5295.
[2] LEE S, SHI Q F, LEE C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks[J]. APL Materials, 2019, 7(3).
[3] KHAN Y, THIELENS A, MUIN S, et al. A New Frontier of Printed Electronics: Flexible Hybrid Electronics[J]. Advanced Materials, 2020, 32(15): 1905279.
[4] LUO Y, WANG M, WAN C, et al. Devising Materials Manufacturing Toward Lab-to Fab Translation of Flexible Electronics[J]. Advanced Materials, 2020, 32(37): 2001903.
[5] ZANG Y P, ZHANG F J, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[6] BOUTRY C M, NEGRE M, JORDA M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics[J]. Science Robotics, 2018, 3(24): 6914.
[7] 钟雅琪. 柔性压力传感器设计及在氢燃料电池气压泄漏监测中的应用[D]. 太原: 太原理工大学, 2022.
[8] HUANG Y, FAN X Y, CHEN S C, et al. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509.
[9] BAI N, WANG L, XUE Y, et al. Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range[J]. ACS Nano, 2022, 16(3): 4338-4347.
[10] YIN R Y, WANG D P, ZHAO S F, et al. Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application[J]. Advanced Functional Materials, 2021, 31(11): 2008936.
[11] CHEN Y W, PANCHAM P P, MUKHERJEE A, et al. Recent advances in flexible force sensors and their applications: a review[J]. Flexible and Printed Electronics, 2022, 7(3).
[12] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering Pressure Sensor Active Layers for Improved Performance[J]. Advanced Functional Materials, 2020, 30(39): 2003491.
[13] JASON N N, HO M D, CHENG W L. Resistive electronic skin[J]. Journal of Materials Chemistry C, 2017, 5(24): 5845-5866.
[14] CLAVER U P, ZHAO G. Recent Progress in Flexible Pressure Sensors Based Electronic Skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187.
[15] CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review[J]. Journal of Materials Science & Technology, 2020, 43: 175-188.
[16] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[17] CHANG Y, WANG L, LI R Y, et al. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins[J]. Advanced Materials, 2021, 33(7): 2003464.
[18] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[19] HE H, FU Y, ZANG W, et al. A flexible self-powered T-ZnO/PVDF/fabric electronic skin with multi-functions of tactile-perception, atmosphere-detection and self clean[J]. Nano Energy, 2017, 31: 37-48.
[20] 苏元捷. 摩擦纳米发电机设计与制备及应用研究[D]. 成都: 电子科技大学, 2016.
[21] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用[J]. 物理学报, 2020, 69(17): 70-85.
[22] ZHONG F, HU W, ZHU P N, et al. Piezoresistive design for electronic skin: from fundamental to emerging applications[J]. Opto-Electronic Advances, 2022, 5(8): 210029.
[23] NGUYEN T, DINH T, PHAN H P, et al. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications[J]. Materials Horizons, 2021, 8(8): 2123-2150.
[24] ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020, 36: 158-179.
[25] AMJADI M, KYUNG K-U, PARK I, et al. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.
[26] CHOONG C-L, SHIM M-B, LEE B-S, et al. Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array[J]. Advanced Materials, 2014, 26(21): 3451-3458.
[27] YAO H-B, GE J, WANG C-F, et al. A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
[28] PENG S, BLANLOEUIL P, WU S, et al. Rational Design of Ultrasensitive Pressure Sensors by Tailoring Microscopic Features[J]. Advanced Materials Interfaces, 2018, 5(18): 1800403.
[29] GAO Y, LU C, GUOHUI Y, et al. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins[J]. Nanotechnology, 2019, 30(32): 325502.
[30] PANG Y, ZHANG K, YANG Z, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity[J]. ACS Nano, 2018, 12(3): 2346-2354.
[31] SHI J, WANG L, DAI Z, et al. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range[J]. Small, 2018, 14(27): 1800819.
[32] HUANG F L, HU G H, YU Z H, et al. Highly sensitive and wide linearity flexible pressure sensor with randomly distributed columnar arrays[J]. Journal of Materials Science, 2023: 3735-3751.
[33] DING Y C, XU T, ONYILAGHA O, et al. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6685-6704.
[34] LIU H, DONG M, HUANG W, et al. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C, 2017, 5(1): 73-83.
[35] ZHANG H, LIU N S, SHI Y L, et al. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22374-22381.
[36] VISSER C W, AMATO D N, MUELLER J, et al. Architected Polymer Foams via Direct Bubble Writing[J]. Advanced Materials, 2019, 31(46): 1904668.
[37] XU M, GAO Y, YU G, et al. Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing[J]. Sensors and Actuators A: Physical, 2018, 284: 260-265.
[38] YANG T, MATIVETSKY J M. Paper-Based Mechanical Sensors Enabled by Folding and Stacking[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26339-26345.
[39] XU M D, GAO Y, YU G H, et al. Flexible pressure sensor using carbon nanotube wrapped polydimethylsiloxane microspheres for tactile sensing[J]. Sensors and Actuators a-Physical, 2018, 284: 260-265.
[40] TIMSIT R S. Electrical contact resistance: Properties of stationary interfaces[J]. Ieee Transactions on Components and Packaging Technologies, 1999, 22(1): 85-98.
[41] GREENWOOD J A, WILLIAMSON J B. CONTACT OF NOMINALLY FLAT SURFACES[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1966, 295(1442): 300.
[42] 吴志会, 王东平, 周连生, et al. 胶粘剂对光机结构动力学特性的影响[J]. 光电工程, 2014, 41(06): 75-80.
[43] 罗威, 马娇, 陈正龙, et al. 胶粘剂弹性模量对折曲胶接接头应力分布的影响[J]. 中国胶粘剂, 2019, 28(04): 20-23.
[44] 杨焰, 李德良, 陈茜文, et al. 过硫酸盐/硫酸体系微蚀性能的研究[J]. 表面技术, 2009, 38(03): 54-55.
[45] YI C, HOU Y, HE K, et al. Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19563-19571.
[46] DU Q F, LIU L L, TANG R T, et al. High-Performance Flexible Pressure Sensor Based on Controllable Hierarchical Microstructures by Laser Scribing for Wearable Electronics[J]. Advanced Materials Technologies, 2021, 6(9).
[47] YANG L, WANG H, YUAN W, et al. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60531-60543.
[48] YAN S B, ZHANG X Y, LIU J L, et al. Multiwalled Carbon Nanotube/Graphite Powder Film for Wearable Pressure Sensors with High Sensing Performance[J]. Nanomaterials, 2022, 12(15).
[49] YANG M, CHENG Y, YUE Y, et al. High-Performance Flexible Pressure Sensor with a Self-Healing Function for Tactile Feedback[J]. Advanced Science, 2022, 9(20): 2200507.
[50] ZHENG W, XU H, WANG M, et al. On-Skin Flexible Pressure Sensor with High Sensitivity for Portable Pulse Monitoring[J]. Micromachines, 2022, 13(9): 1390.
[51] ZHU J, XUE X, LI J, et al. Flexible pressure sensor with a wide pressure measurement range and an agile response based on multiscale carbon fibers/carbon nanotubes composite[J]. Microelectronic Engineering, 2022, 257: 111750.
[52] CUI X H, JIANG Y, HU L, et al. Synergistically Microstructured Flexible Pressure Sensors with High Sensitivity and Ultrawide Linear Range for Full-Range Human Physiological Monitoring[J]. Advanced Materials Technologies, 2023, 8(1): 2200609.
[53] WANG C, GONG D, FENG P, et al. Ultra-Sensitive and Wide Sensing-Range Flexible Pressure Sensors Based on the Carbon Nanotube Film/Stress-Induced Square Frustum Structure[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8546-8554.
[54] WANG W, ZHANG X, ZHAO N, et al. Occlusal Paper-Based Flexible Pressure Sensor for in Situ Measuring Oral Occlusal Force[C]. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS): 783-786.
[55] WANG Z, DING J J, GUO R S. Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range[J]. ACS Applied Materials & Interfaces, 2023.
[56] ZHANG Z, ZHANG Q, ZHANG H, et al. A novel MXene-based high-performance flexible pressure sensor for detection of human motion[J]. Smart Materials and Structures, 2023, 32(6): 065007.
[57] WANG S, WANG C, ZHAO Y, et al. Flexible pressure sensors with ultrahigh stress tolerance enabled by periodic microslits[J]. Microsystems & Nanoengineering, 2024, 10(1): 24.
修改评论