中文版 | English
题名

超低损耗热固性聚合物复合材料及其介电性能稳定性研究

其他题名
Study of thermosetting polymer-based composites with ultra-low dielectric loss and the stability of dielectric properties
姓名
姓名拼音
FANG Zeming
学号
12031292
学位类型
博士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
KE WANG
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-09
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

超低介电损耗的热固性芯片封装载板和印刷电路板基板材料,是高算力芯片、5G通信、汽车雷达等新型高频高速系统中的基础材料。近年来,尽管不断有新型低损耗材料问世,但在投入实际应用前这些材料还需要经过广泛的验证,包括可靠性的验证和工业化工艺条件的适配等。随着系统工作频率的提升和工况的复杂化,对基板材料介电常数(Dk)与介电损耗因子(Df)的要求也越来越严苛,在受热情况下基板材料介电性能的劣化问题已成为影响基板材料和高频高速系统可靠性的新因素。然而,当前对其背后的化学反应机理和介电性能变化规律的研究还不够深入,未形成标准的测试方法,也缺乏相应的解决方案。

材料老化过程中结构的变化与微波介电性能之间的联系是探究介电性能劣化机理的基础。本文以当前广泛应用的超低损耗热固性聚苯醚/碳氢树脂体系为研究对象进行了加速老化实验,确认了材料的介电性能劣化源于材料的热氧老化。通过研究材料热氧老化过程中交联结构与化学结构的变化,发现在材料老化初期,氧化反应主要发生在固化反应不完全的碳氢树脂链段,而且材料的Df与材料老化产物的积累量之间接近线性的关系。此外,我们还分析了样品尺寸、吸湿等因素对介电性能劣化的影响。

基于上述老化机理,我们进一步研究了材料的固化反应动力学。结果表明聚苯醚/碳氢低损耗树脂体系的交联固化过程为减速反应,与常规的环氧树脂等材料不同。固化反应的转化率受到引发剂含量的影响,并呈现出出多步骤的特点,活化能随反应物迁移能力的下降、不同活性官能团的聚合反应的切换、以及玻璃化对反应物扩散的限制而逐步增大。由于在环氧体系中常用的等转化率分析方法并不完全适用于本文体系,我们设计了一种可有效拟合反应速率曲线的半经验性的方案。通过分析不同引发剂含量样品的性能,我们提出固化过程中引发剂的分解副产物影响了材料的Df ,并初步探讨了兼顾材料固化程度和超低Df的方案。

在介电性能劣化问题的解决方案方面,我们首先尝试了受阻酚类主抗氧剂、芳香胺类主抗氧剂、辅助抗氧剂、金属螯合剂在自由基交联的超低损耗树脂体系中的应用,发现所有的抗氧剂都提高了材料的初始Dk,大部分同时提高了材料的初始Df。然而,由于抗氧剂与材料固化反应的拮抗作用,包括两种反应性抗氧剂在内的大部分抗氧剂并未提高材料的抗热氧老化能力。仅有两种金属螯合剂通过减少树脂内铜离子的催化作用而提供了氧化诱导期,从而提高了材料长期抗老化能力。

除了抗氧剂外,为了同时达成材料的低损耗和高抗老化能力,我们还探究了多乙烯基含硅交联剂在自由基交联的热固性聚苯醚体系中的应用。实验结果表明,这类交联剂与聚苯醚有良好的相容性以及合适的反应温度。相比使用已广泛商用的交联剂,使用含硅交联剂固化产物可以达到更低的Df,代号为PPO-SiX1的样品在10 GHz下的Df达到了0.00159。还展现出更强的抗热氧老化能力,碳氢树脂交联的样品在150℃下老化7天后Df增大了0.0043,而三种含硅交联剂交联样品的增长均少于0.0015

为建立介电性能劣化问题的评价方法,我们采用商业级的低损耗基板材料以及实验室内制备的基板材料进行了多温度的长期老化实验。结果表明碳氢树脂类样品老化速度最快、介电性能劣化最为显著;环氧树脂类和马来酰亚胺类样品虽然老化迅速,但介电性能变化较小;而聚苯醚类样品尤其是含硅的聚苯醚样品的介电性能劣化速度最慢。结合质量、交联结构和化学结构的变化,我们讨论了各类样品在不同温度下介电性能的不同变化规律,通过Arrhenius方法计算了材料在70℃工况下的预期寿命,并指出材料在不同温度下的反应机理差异可能导致了寿命预测时的误差。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] HASCH J. Driving towards 2020: Automotive radar technology trends[C]//2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). 2015: 1-4.
[2] 赵孔双. 介电谱方法及应用[M]. 化学工业出版社, 2008.
[3] MAIER G. Low dielectric constant polymers for microelectronics[J]. Progress in Polymer Science, 2001, 26(1): 3-65.
[4] OKUBO T, SUDO T, HOSOI T, et al. Signal transmission loss on printed circuit board in GHz frequency region[C]//2013 IEEE Electrical Design of Advanced Packaging Systems Symposium (EDAPS). IEEE, 2013.
[5] MURAYAMA T, SATO M, SUZUKI A, et al. Plasma Dry Process Technology Development of Glass-Epoxy Film on the Silicon Substrate to Fabricate RDL for Future GPU/AI Application[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). Las Vegas, NV, USA: IEEE, 2019: 1865-1869.
[6] EZZULDDIN S K, HASAN S O, AMEEN M M. Microstrip patch antenna design, simulation and fabrication for 5G applications[J]. Simulation Modelling Practice and Theory, 2022, 116: 102497.
[7] 李志光, 唐军旗. 5G射频PA模组用Low Loss&Low CTE封装基板材料的开发[C]//第二十四届中国覆铜板技术研讨会论文集. 中国电子材料行业协会覆铜板材料分会、中国电子电路行业协会覆铜板分会, 2023: 8.
[8] WALDSCHMIDT C, HASCH J, MENZEL W. Automotive Radar — From First Efforts to Future Systems[J]. IEEE Journal of Microwaves, 2021, 1(1): 135-148.
[9] ZHAO B, CHEN X, CHEN N, et al. Low-temperature-sintered MgO-based microwave dielectric ceramics with ultralow loss and high thermal conductivity[J]. Journal of the American Ceramic Society, 2023, 106(2): 1159-1169.
[10] GOULAS A, MCGHEE J R, WHITTAKER T, et al. Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing[J]. Additive Manufacturing, 2022, 55: 102844.
[11] YAO Y, ZENG X, GUO K, et al. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 49-55.
[12] LI H, ENG D, TANG C, et al. Low dielectric glass fibre development – new printed circuit board base materials[J]. Glass Technology - European Journal of Glass Science and Technology Part A, 2013, 54(2): 81-85.
[13] LI J, WANG Y, ZHAO W, et al. High-performance quartz fiber/polysilazane and epoxy-modified cyanate ester microwave-transparent composites[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 1830-1840.
[14] WANG Z, LI S, WANG J, et al. Dielectric and mechanical properties of polyimide fiber reinforced cyanate ester resin composites with varying resin contents[J]. Journal of Polymer Research, 2020, 27(6): 160.
[15] ZHANG X, WANG Y, CHENG S. Properties of UHMWPE fiber-reinforced composites[J]. Polymer Bulletin, 2013, 70(3): 821-835.
[16] 穆拉利·塞瑟马达范, 安妮·希尔, 迈克·怀特. 电路材料、电路层合体及由其形成的物品: CN106232901A[P]. 2016-12-14.
[17] MURALI K P, RAJESH S, PRAKASH O, 等. Preparation and properties of silica filled PTFE flexible laminates for microwave circuit applications[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1179-1185.
[18] XU J, XU R, WANG Z, et al. Polyphenylene oxide/boron nitride–alumina hybrid composites with high thermal conductivity, low thermal expansion and ultralow dielectric loss[J]. Polymer Composites, 2024, 45(6): 5267-5280.
[19] ZHU X, FANG Z, YI Y, et al. Ultra-low loss polyphenylene oxide-based composites with negative thermal expansion fillers[J]. Polymer Composites, 2023, 44(3): 1849-1858.
[20] HINAGA S, KOLEDINTSEVA M, ANMULA P, et al. Effect of Conductor Surface Roughness upon Measured Loss and Extracted Values of PCB Laminate Material Dissipation Factor[C]//Proc. Tech. Conf. IPC Expo/APEX: Vol. 5. 2009.
[21] SCHÖNHALS A, KREMER F. Theory of Dielectric Relaxation[M]//KREMER F, SCHÖNHALS A. Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer, 2003: 1-33.
[22] TAKAHASHI S, IMAI Y, KAN A, et al. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications[J]. Journal of Alloys and Compounds, 2014, 615: 141-145.
[23] 高爱君, 刘文翰, 蒋亚锋, 等. 树脂基透波复合材料在5G天线罩中的应用分析[J]. 化工新型材料, 2021, 49(7): 190-193.
[24] LIU F, JIN Y, LI J, et al. Improved coefficient thermal expansion and mechanical properties of PTFE composites for high-frequency communication[J]. Composites Science and Technology, 2023, 241: 110142.
[25] SNOW A W, BUCKLEY L J. Fluoromethylene Cyanate Ester Resins. Synthesis, Characterization, and Fluoromethylene Chain Length Effects[J]. Macromolecules, 1997, 30(3): 394-405.
[26] CHEN S, REN D, LI B, et al. Benzoxazine Containing Fluorinated Aromatic Ether Nitrile Linkage: Preparation, Curing Kinetics and Dielectric Properties[J]. Polymers, 2019, 11(6): 1036.
[27] QIAN C, BEI R, ZHU T, et al. Facile Strategy for Intrinsic Low-k Dielectric Polymers: Molecular Design Based on Secondary Relaxation Behavior[J]. Macromolecules, 2019, 52(12): 4601-4609.
[28] 陈昱呈, 齐慕桓, 林士晴, 等. 复合材料及由其制成的覆铜层压物: CN113942277A[P]. 2022-01-18.
[29] CHEN W, YANG H, ZOU H, et al. Compatibilized the thermosetting blend of epoxy and redistributed low molecular weight poly(phenylene oxide) with triallylisocyanurate[J]. Journal of Applied Polymer Science, 2016, 133(20).
[30] GE M, ZHANG J, ZHAO C, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates[J]. Materials & Design, 2019, 182: 108028.
[31] WU X, XU C, LU M, et al. Preparation and characterization of high temperature resistant thermosetting polyphenylene ether resin[J]. Journal of Applied Polymer Science, 2022, 139(39): e52858.
[32] WU B, MAO X, XU Y, et al. Improved dielectric and thermal properties of core-shell structured SiO2/polyolefin polymer composites for high-frequency copper clad laminates[J]. Applied Surface Science, 2021, 544: 148911.
[33] WU N, WU B, XU Y, et al. Relationships of the Degree of C=C Double Bond Conversion with the Dielectric Properties for SiO2/1,2-PB/SBS/EPDM Composites Cured by Organic Peroxide[J]. ChemistrySelect, 2022, 7(3): e20210407.
[34] 张恩宁. 填料特性对碳氢树脂高频覆铜板高频特性影响研究[D]. 上海第二工业大学, 2023.
[35] GAO R, GU A, LIANG G, et al. Properties and origins of high-performance poly(phenylene oxide)/cyanate ester resins for high-frequency copper-clad laminates[J]. Journal of Applied Polymer Science, 2011, 121(3): 1675-1684.
[36] CHEN Y C, YANG J B, KAMANI S K R, et al. Enhanced flame retardant and dielectric properties of oligo(2,6-dimethyl-1,4-phenylene ether) resins through DOPO derivative incorporation[J]. Polymer, 2024, 290: 126474.
[37] SCHOLZ W F. Bond ply materials and circuit assemblies formed therefrom: US10233365B2[P]. 2019-03-19.
[38] ZENG M, TAN D, FENG Z, et al. Preparation of high-performance thermosetting films from novel diallyl bisphenol A/furfurylamine type benzoxazine and oligo(phenylene oxide)[J]. Journal of Polymer Research, 2023, 30(4): 140.
[39] TSUDA K, SAITO H, WANG Y, et al. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition: US20230193024A1[P]. 2023-06-22.
[40] PAUL S, KENNEDY S D, BAARS D M. Dielectric materials, methods of forming subassemblies therefrom, and the subassemblies formed therewith: US9265160B2[P]. 2016-02-16.
[41] 佐藤幹男, 北井佑季, 星野泰范, 等. 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板: CN112368311A[P]. 2021-02-12.
[42] CURRAN B, TSCHOBAN C, NDIP I, et al. Dielectric material characterization of high frequency printed circuit board laminates and an analysis of their transmission line high frequency losses[C]//2016 46th European Microwave Conference (EuMC). 2016: 1457-1460.
[43] MAYER J, MARTINA M, GOTTWALD T, et al. PCB Laminates for Automotive Radar Antenna Modules Under Different Environmental Conditions[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 6051-6058.
[44] 王爱戎. 2022年全球刚性覆铜板经营情况[C]//第二十四届中国覆铜板技术研讨会论文集. 中国电子材料行业协会覆铜板材料分会、中国电子电路行业协会覆铜板分会, 2023: 9.
[45] XU Y J, SHI X H, LU J H, et al. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Composites Part B: Engineering, 2020, 184: 107673.
[46] INAMDAR A, CHERUKATTU J, ANAND A, et al. Thermoplastic-Toughened High-Temperature Cyanate Esters and Their Application in Advanced Composites[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4479-4504.
[47] TONG J, DIAO S, JIN K, et al. Benzocyclobutene-functionalized poly(m-phenylene): A novel polymer with low dielectric constant and high thermostability[J]. Polymer, 2014, 55(16): 3628-3633.
[48] CHEN X, FANG L, CHEN X, et al. A Low-Dielectric Polymer Derived from a Biorenewable Phenol (Eugenol)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13518-13523.
[49] DANAEI S, POORABDOLLAH M, RAJABI L. Investigation of diffusion and cure kinetic in nanoclay-reinforced unsaturated polyester resin[J]. Thermochimica Acta, 2017, 651: 34-42.
[50] VYAZOVKIN S, ACHILIAS D, FERNANDEZ-FRANCOS X, et al. ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics[J]. Thermochimica Acta, 2022, 714: 179243.
[51] YAVARI N, POORABDOLLAH M, RAJABI L. Graphene oxide and silane-modified graphene oxide/unsaturated polyester resin nanocomposites: A comparative cure kinetic and diffusion study[J]. Thermochimica Acta, 2022, 707: 179081.
[52] VAFAYAN M, HOSAIN BEHESHTY M, GHOREISHY M H R, et al. Advanced integral isoconversional analysis for evaluating and predicting the kinetic parameters of the curing reaction of epoxy prepreg[J]. Thermochimica Acta, 2013, 557: 37-43.
[53] 谢旻, 张佐光, 顾轶卓, 等. 用DMA研究环氧预浸料的等温固化过程[J]. 复合材料学报, 2009, 26(6): 78-84.
[54] KIM Y C, MIN H, YU J, et al. Nonlinear and complex cure kinetics of ultra-thin glass fiber epoxy prepreg with highly-loaded silica bead under isothermal and dynamic-heating conditions[J]. Thermochimica Acta, 2016, 644: 28-32.
[55] POORABDOLLAH M, BEHESHTY M H, ATAI M, et al. Cure kinetic study of organoclay-unsaturated polyester resin nanocomposites by using advanced isoconversional approach[J]. Polymer Composites, 2013, 34(11): 1824-1831.
[56] VARGAS M A, VÁZQUEZ H, GUTHAUSEN G. Non-isothermal curing kinetics and physical properties of MMT-reinforced unsaturated polyester (UP) resins[J]. Thermochimica Acta, 2015, 611: 10-19.
[57] WU B, MAO X, WANG C, et al. Different organic peroxides that cure low-k 1,2-PB/SBS/EPDM composites for high-frequency substrate[J]. Journal of Vinyl and Additive Technology, 2020, 26(4): 524-535.
[58] YU X, FANG Z, LIU Q, et al. Effects of peroxide initiator on the structure and properties of ultralow loss thermosetting polyphenylene oxide-based composite[J]. Polymers, 2022, 14(9): 1752.
[59] SHIRANGI M H. Simulation-based Investigation of Interface Delamination in Plastic IC Packages under Temperature and Moisture Loading[D]. Technischen Universität Berlin, 2010.
[60] 黄斌. 印制电路板制造和使役过程的翘曲变形研究[D]. 山东大学, 2023.
[61] WANG Z, FANG Z, WU H, et al. Effects of interfacial bonding strength on the formation of conductive anodic filament in polyphenylene oxide/glass fiber laminates[J]. Microelectronics Reliability, 2022, 135: 114608.
[62] CHENG S, HUANG C M, PECHT M. A review of lead-free solders for electronics applications[J]. Microelectronics Reliability, 2017, 75: 77-95.
[63] LAU C S, YE N, TAKIAR H. A Response Spectrum Method and Post-layout Optimization for Mechanical Shock Analysis of 3D NAND BGA Packages[C]//2018 IEEE CPMT Symposium Japan (ICSJ). 2018: 1-4.
[64] NADA S A, ATTIA A M A, ELFEKY K E. Experimental study of solving thermal heterogeneity problem of data center servers[J]. Applied Thermal Engineering, 2016, 109: 466-474.
[65] FUJIBAYASHI T, TAKEDA Y, WANG W, et al. A 76- to 81-GHz Multi-Channel Radar Transceiver[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2226-2241.
[66] DuPontTM Pyralux® AC flexible circuit materials: H-73247[R]. DuPont, 2016.
[67] RO4835TM Laminate Data Sheet - High frequency circuit materials: 92-160[R]. Rogers Corporation, 2020.
[68] ROGERS. MATERIAL SELECTION CRITERIA FOR PA and ANTENNA[R]. CHENNAI, 2014.
[69] ISOLA. New Thermoset PCB Materials Improve Millimeter Wave Performance and Reliability at Reduced Cost[R]. 2015.
[70] KONISHI J, CHOI H W, WEI Q. Antenna Materials Development in Automotive Radars[C]//2023 International Workshop on Antenna Technology (iWAT). 2023: 1-3.
[71] KÖSZEGI J M, ROSSI M, WITTLER O, et al. The Impact of Ageing on the Dielectric Properties of Laminates for 79 GHz Automotive Radar[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC). 2021: 1858-1863.
[72] 何毅, 介星迪, 颜善银. TAC在覆铜板中的应用研究[C]//第二十四届中国覆铜板技术研讨会论文集. 中国电子材料行业协会覆铜板材料分会、中国电子电路行业协会覆铜板分会, 2023: 6.
[73] Aspects Common to all Oxidation Processes[M]//Oxidative Ageing of Polymers. John Wiley & Sons, Ltd, 2012: 17-43.
[74] RICHAUD E, LE GAC P Y, VERDU J. Thermooxidative aging of polydicyclopentadiene in glassy state[J]. Polymer Degradation and Stability, 2014, 102: 95-104.
[75] KEMARI Y, MEKHALDI A, TEYSSEDRE G, et al. Correlations between structural changes and dielectric behavior of thermally aged XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1859-1866.
[76] 云浩, 李亮, 丁宁, 等. 基于Havriliak-Negami介电模型的油纸绝缘老化参数提取[J]. 电力工程技术, 2021, 40(2): 147-153.
[77] 曹春诚, 李文博, 林海涛, 等. 纳米SiO2/环氧树脂复合材料的电热性能研究[J]. 塑料工业, 2020, 48(12): 30-34.
[78] SATO Y, YASHIRO T. The effect of polar groups on the dielectric loss of polyethylene[J]. Journal of Applied Polymer Science, 1978, 22(8): 2141-2153.
[79] SRIRAMAN A. Dielectric and Mechanical Behavior of Thermally Aged EPR/CPE Cable Materials[C]//Materials Science and Engineering Conference Papers, Posters and Presentations Materials Science and Engineering. 2018.
[80] HORNAK J, KADLEC P, KOPŘIVA J, et al. Dielectric, structural and mechanical properties of thermally aged biaxially oriented polymeric substrates for flexible electronics[J]. Polymer Degradation and Stability, 2022, 199: 109906.
[81] LINDE E, VERARDI L, FABIANI D, et al. Dielectric spectroscopy as a condition monitoring technique for cable insulation based on crosslinked polyethylene[J]. Polymer Testing, 2015, 44: 135-142.
[82] LINDE E, VERARDI L, POURMAND P, et al. Non-destructive condition monitoring of aged ethylene-propylene copolymer cable insulation samples using dielectric spectroscopy and NMR spectroscopy[J]. Polymer Testing, 2015, 46: 72-78.
[83] LIU P, JIN Z, CHEN Y, et al. Lifetime Prediction and Aging Mechanism of Glass Fiber Reinforced Acrylate-Styrene-Acrylonitrile/Polycarbonate Composite under Hygrothermal Conditions[J]. Macromolecular Materials and Engineering, 2023, 308(12): 2300167.
[84] SURACI S V, FABIANI D, SIPILÄ K, et al. Filler impact analysis on aging of crosslinked polyethylene for nuclear applications through dielectric spectroscopy[C]//2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). 2019: 166-169.
[85] HETTAL S, SURACI S V, ROLAND S, et al. Towards a kinetic modeling of the changes in the electrical properties of cable insulation during radio-thermal ageing in nuclear power plants. Application to silane-crosslinked polyethylene[J]. Polymers, 2021, 13(24): 4427.
[86] KRUPKA J, GREGORY A P, ROCHARD O C, et al. Uncertainty of complex permittivity measurements by split-post dielectric resonator technique[J]. Journal of the European Ceramic Society, 2001, 21(15): 2673-2676.
[87] BOWLER N, LIU S. Aging Mechanisms and Monitoring of Cable Polymers[J]. International Journal of Prognostics and Health Management, 2015, 6(3): 1-12.
[88] SURACI S V, FABIANI D, MAZZOCCHETTI L, et al. Degradation Assessment of Polyethylene-Based Material Through Electrical and Chemical-Physical Analyses[J]. Energies, 2020, 13(3): 650.
[89] CHUNG T C M. Functional polyolefins for energy applications[J]. Macromolecules, 2013, 46(17): 6671-6698.
[90] CHEN J, LI B W, SUN Y, et al. Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene[J]. IET Nanodielectrics, 2021, 4(4): 223-228.
[91] CARSI M, SANCHIS M J, DIAZ-CALLEJA R, et al. Effect of cross-linking on the molecular motions and nanodomains segregation in polymethacrylates containing aliphatic alcohol ether residues[J]. Macromolecules, 2012, 45(8): 3571-3580.
[92] ROLAND C M, CASALINI R, SANTANGELO P, et al. Chemical Structure and Local Segmental Dynamics in 1,2-Polybutadiene[J]. Macromolecules, 2003, 36(13): 4954-4959.
[93] COQUILLAT M, VERDU J, COLIN X, et al. Thermal oxidation of polybutadiene. Part 2: Mechanistic and kinetic schemes for additive-free non-crosslinked polybutadiene[J]. Polymer Degradation and Stability, 2007, 92(7): 1334-1342.
[94] GILCHRIST J L G. Low-temperature dielectric spectrum of thermally oxidized polyethylene[J]. Journal of Polymer Science: Polymer Physics Edition, 1978, 16(10): 1773-1787.
[95] CIMBALA R, GERMAN-SOBEK M, BUCKO S. The assessment of influence of thermal aging to dielectric properties of XLPE insulation using dielectric relaxation spectroscopy[J]. Acta Electrotechnica et Informatica, 2015, 15(3): 14-17.
[96] DOXASTAKIS M, THEODOROU D N, FYTAS G, et al. Chain and local dynamics of polyisoprene as probed by experiments and computer simulations[J]. The Journal of Chemical Physics, 2003, 119(13): 6883-6894.
[97] CASALINI R, ROLAND C M. Effect of crosslinking on the secondary relaxation in polyvinylethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(5): 582-587.
[98] LIONETTO F, MAFFEZZOLI A. Relaxations during the postcure of unsaturated polyester networks by ultrasonic wave propagation, dynamic mechanical analysis, and dielectric analysis: Unsaturated Polyester Networks[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(5): 596-602.
[99] JOHN J, KLEPAC D, DIDOVIĆ M, et al. Main chain and segmental dynamics of semi interpenetrating polymer networks based on polyisoprene and poly(methyl methacrylate)[J]. Polymer, 2010, 51(11): 2390-2402.
[100] CHEN C H, LEE K W, LIN C H, et al. Low-dissipation thermosets derived from oligo(2,6-dimethyl phenylene oxide)-containing benzoxazines[J]. Polymers, 2018, 10(4): 411.
[101] YUAN L, HUANG S, HU Y, et al. Poly(phenylene oxide) modified cyanate resin for self-healing[J]. Polymers for Advanced Technologies, 2014, 25(7): 752-759.
[102] HUANG P, GU A, LIANG G, et al. Synthesis of epoxy-functionalized hyperbranched poly(phenylene oxide) and its modification of cyanate ester resin[J]. Journal of Applied Polymer Science, 2012, 123(4): 2351-2359.
[103] GILLHAM J K, MENTZER C C. Thermosetting reactions: Thermochemical reactions of triallyl cyanurate and triallyl isocyanurate[J]. Journal of Applied Polymer Science, 1973, 17(4): 1143-1164.
[104] TAN K T, WHITE C C, BENATTI D J, et al. Evaluating aging of coatings and sealants: Mechanisms[J]. Polymer Degradation and Stability, 2008, 93(3): 648-656.
[105] YU X, FANG Z, QIN Y, et al. FTIR and NMR characterization of thermosetting methyl methacrylate terminated poly(2,6-dimethyl-1,4-phenylene oxide)—triallyl isocyanurate copolymer[J]. Journal of Polymer Research, 2021, 28(7).
[106] ZHANG W, YANG L, ZHANG H, et al. Investigation on multifunctional monomer modified polypropylene and its foamability[J]. Journal of Applied Polymer Science, 2013, 130(3): 1675-1681.
[107] FANG Y, QIAN L, HUANG Z, et al. Synergistic charring effect of triazinetrione-alkyl-phosphinate and phosphaphenanthrene derivatives in epoxy thermosets[J]. RSC Adv., 2017, 7(73): 46505-46513.
[108] MUROGA S, TAKAHASHI Y, HIKIMA Y, et al. New evaluation method for the curing degree of rubber and its nanocomposites using ATR-FTIR spectroscopy[J]. Polymer Testing, 2021, 93: 106993.
[109] LI X, YUAN L, LIU D, et al. High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries[J]. Energy Storage Materials, 2020, 26: 570-576.
[110] MATSUMOTO A, HIRAO C, MIYATA K, et al. Further discussion of the specific polymerization behavior of triallyl isocyanurate. Enhanced occurrence of intermolecular crosslinking at an early stage of polymerization[J]. Polymer Journal, 2002, 34(7): 558-562.
[111] HU W, SHEN J, ZHOU J, et al. Styrene-terminated polyphenylene oxide and polybutadiene low dielectric reactive blend[J]. 2019, 699: 012018.
[112] NGUYEN Q H, CHU V H, HOANG N C, et al. Studies on thermo-oxidative degradation of synthetic rubbers 1-4 and 1-2 polybutadienes[J]. Vietnam Journal of Science, Technology and Engineering, 2017, 59(3): 7-13.
[113] YAMANE S, SHINZAWA H, ATA S, et al. A thermal oxidative degradation study of triallyl isocyanurate crosslinking moiety in fluorinated rubber by two-dimensional infrared correlation spectroscopy[J]. Vibrational Spectroscopy, 2018, 98: 30-34.
[114] COQUILLAT M, VERDU J, COLIN X, et al. Thermal oxidation of polybutadiene. Part 1: Effect of temperature, oxygen pressure and sample thickness on the thermal oxidation of hydroxyl-terminated polybutadiene[J]. Polymer Degradation and Stability, 2007, 92(7): 1326-1333.
[115] VAN KREVELEN D W, TE NIJENHUIS K. Chapter 11 - Electrical Properties[M]//VAN KREVELEN D W, TE NIJENHUIS K. Properties of Polymers (Fourth Edition). Amsterdam: Elsevier, 2009: 319-354.
[116] MANTIA F P L, SCHIFANI R. Natural weathering of low density polyethylene: Part 2—Dielectric properties[J]. Polymer Degradation and Stability, 1985, 10(1): 67-78.
[117] SUN Y, WU D, LIU K, et al. Colossal permittivity and low dielectric loss of thermal oxidation single-crystalline Si wafers[J]. Materials, 2019, 12(7): 1102.
[118] TCHANGAI T, SEGUI Y, DOUKKALI K. Water sorption in polyamide–imide films and its effect on dielectric loss[J]. Journal of Applied Polymer Science, 1989, 38(2): 305-312.
[119] LEPRÓ X, EHRMANN P, RODRÍGUEZ J, et al. Enhancing the Oxidation Stability of Polydivinylbenzene Films via Residual Pendant Vinyl Passivation[J]. ChemistrySelect, 2018, 3(2): 500-506.
[120] LIAO L Y, RUAN W H, ZHANG M Q, et al. Improving the Dimensional Stability of Polyphenylene Oxide without Reducing Its Dielectric Properties for High-Frequency Communication Applications[J]. Industrial & Engineering Chemistry Research, 2023, 62(18): 7007-7016.
[121] 胡亚坤. 高频高速覆铜板基板树脂材料改性研究[D]. 大连理工大学, 2022.
[122] 胡婉霞. 热固改性聚苯醚高频复合介质材料研究[D]. 武汉理工大学, 2021.
[123] 石凯. 高频覆铜板用改性聚苯醚树脂的制备及性能研究[D]. 西安科技大学, 2022.
[124] ZHENG T, XI H, WANG Z, et al. The curing kinetics and mechanical properties of epoxy resin composites reinforced by PEEK microparticles[J]. Polymer Testing, 2020, 91: 106781.
[125] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19.
[126] MURAVYEV N V, PIVKINA A N, KOGA N. Critical Appraisal of Kinetic Calculation Methods Applied to Overlapping Multistep Reactions[J]. Molecules, 2019, 24(12): 2298.
[127] ROGERS CORPORATION. Processing Guidelines for RO4400 Bonding Layers: #92-005[R].
[128] PANASONIC CORPORATION. Process Guidelines for MEGTRON 7 High Speed, Low Loss Multi-layer Materials: No.19071968[R].
[129] ZHANG J, SHEN B, LIU Z, et al. Applying experiment and numerical simulation to evaluate the thermal hazards of Bis(1-(tert‑butylperoxy)-1-methylethyl)-benzene in the presence of metal ions or sulfuric acid[J]. Thermochimica Acta, 2022, 717: 179329.
[130] OKAMOTO H, IWAI T. Heat curing of radiation crosslinked and cyclized syndiotactic 1,2-polybutadiens[J]. KOBUNSHI RONBUNSHU, 1976, 33(6): 331-338.
[131] JAŠO V, STOILJKOVIĆ D, RADIČEVIĆ R, et al. Kinetic modeling of bulk free-radical polymerization of methyl methacrylate[J]. Polymer Journal, 2013, 45(6): 631-636.
[132] ACHILIAS D S, TSAGKALIAS I S. Investigation of radical polymerization kinetics of poly(ethylene glycol) methacrylate hydrogels via DSC and mechanistic or isoconversional models[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(2): 1307-1315.
[133] HILL D R J, VALENTINE L. The polymerization of allylidene diacetate[J]. Journal of Polymer Science, 1959, 37(132): 455-468.
[134] ACHILIAS D S, VERROS G D. Modeling of diffusion-controlled reactions in free radical solution and bulk polymerization: Model validation by DSC experiments[J]. Journal of Applied Polymer Science, 2010, 116(3): 1842-1856.
[135] VYAZOVKIN S, BURNHAM A K, FAVERGEON L, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochimica Acta, 2020, 689: 178597.
[136] SHENGYU WANG, MA S, LI N, et al. Branched thermotropic liquid crystal polymer with favourable processability and dielectric properties[J]. European Polymer Journal, 2023, 196: 112302.
[137] LEE J, YOO S, KIM D, et al. Intrinsic low-dielectric constant and low-dielectric loss aliphatic-aromatic copolyimides: The effect of chemical structure[J]. Materials Today Communications, 2022, 33: 104479.
[138] WALKER II R C, HAMEDI H, WOODWARD W H, et al. Thermally stimulated depolarization current spectra of cross-linked polyethylene and the influence of cross-linking byproducts[J]. Journal of Polymer Science, 2020, 58(22): 3142-3152.
[139] YU X, FANG Z, QIN Y, et al. FTIR and NMR characterization of thermosetting methyl methacrylate terminated poly(2,6-dimethyl-1,4-phenylene oxide)—triallyl isocyanurate copolymer[J]. Journal of Polymer Research, 2021, 28(7): 272.
[140] BRANDÁN S A, MÁRQUEZ LÓPEZ F, MONTEJO M, et al. Theoretical and experimental vibrational spectrum study of 4-hydroxybenzoic acid as monomer and dimer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(5): 1422-1434.
[141] NUNOSHIGE J, AKAHOSHI H, LIAO Y, et al. Mechanical and dielectric properties of a new polymer blend composed of 1,2-bis(vinylphenyl)ethane and thermosetting poly(phenylene ether) copolymer obtained from 2,6-dimethylphenol and 2-allyl-6-methylphenol[J]. Polymer Journal, 2007, 39(8): 828-833.
[142] SHI M, HUANG G, SUN J, et al. Constructing low-k polymers at high frequency from two propenyl-containing biomasses through the grubbs reaction[J]. Polymer Chemistry, 2023, 14(9): 999-1006.
[143] GUSTAFSSON B, BOSTRÖM J O, DAMMERT R C. Stabilization of peroxide crosslinked polyethylene[J]. Die Angewandte Makromolekulare Chemie, 1998, 261-262(1): 93-99.
[144] AL-MALAIKA S, RIASAT S, LEWUCHA C. Reactive antioxidants for peroxide crosslinked polyethylene[J]. Polymer Degradation and Stability, 2017, 145: 11-24.
[145] ALLEN N S, PENA J M, EDGE M, et al. Behaviour of carbon black pigments as excited state quenchers in LDPE[J]. Polymer Degradation and Stability, 2000, 67(3): 563-566.
[146] SLÁMA Z, ŠVEJDOVÁ E, MAJER J. Kinetics of Thermooxidation and Photooxidation of Poly(oxy-2,6-dimethyl-l,4-phenylene),1 Analysis of Products[J]. Die Makromolekulare Chemie, 1980, 181(12): 2449-2460.
[147] RIVATON A. Photochemical and thermal oxidation of poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Polymer Degradation and Stability, 1995, 49(1): 11-20.
[148] FITARONI L B, DE LIMA J A, CRUZ S A, et al. Effect of compatibilizer and Irganox MD 1024 on the thermo-oxidative stability of PP/PP-g-MA/OMMT nanocomposites[J]. Polymer Testing, 2016, 53: 165-173.
[149] HAY A S. Polymerization by oxidative coupling: Discovery and commercialization of PPO® and Noryl® resins[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36(4): 505-517.
[150] NUNOSHIGE J, AKAHOSHI H, SHIBASAKI Y, et al. Efficient oxidative coupling polymerization for synthesis of thermosetting poly(phenylene ether) copolymer with a low dielectric loss[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(15): 5278-5282.
[151] 徐玲, 毕雪玲, 华静. 合成1,2-聚丁二烯的催化剂体系[J]. 合成橡胶工业, 2009, 32(2): 165-169.
[152] SLÁMA Z, MAYER J. Study of the influence of stabilizers, metals, and peroxides on the thermo-oxidative degradation of poly(oxy-2,6-dimethyl-1,4-phenylene)[J]. Die Makromolekulare Chemie, 1981, 182(7): 1961-1971.
[153] CAPUTO A, TURBINI L J, PEROVIC D D. Conductive Anodic Filament (CAF) Formation Part I: the Influence of Water-Soluble Flux on Its Formation[J]. Journal of Electronic Materials, 2010, 39(1): 85-91.
[154] NOH B I, LEE J B, JUNG S B. Effect of surface finish material on printed circuit board for electrochemical migration[J]. Microelectronics Reliability, 2008, 48(4): 652-656.
[155] QU C, SHAN L, ZHANG G, et al. Preparation and dielectric properties research of a novel kind of intrinsic silane-containing polyimide[J]. Polymer, 2023, 285: 126361.
[156] LI J, ZHANG Z, ZHU T, et al. Multi-benzocyclobutene functionalized siloxane monomers prepared by Piers-Rubinsztajn reaction for low-k materials[J]. European Polymer Journal, 2020, 126: 109562.
[157] LIU F, CHEN X, HOU J, et al. A Fluorinated Thermocrosslinkable Organosiloxane: A New Low-k Material at High Frequency with Low Water Uptake[J]. Macromolecular Rapid Communications, 2021, 42(5): 2000600.
[158] KIM Y H, LIM Y W, KIM Y H, et al. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8335-8340.
[159] VYAZOVKIN S, SBIRRAZZUOLI N. Effect of viscosity on the kinetics of initial cure stages[J]. Macromolecular Chemistry and Physics, 2000, 201(2): 199-203.
[160] CHEN C H, LEE K W, LIN C H, et al. High-Tg, Low-Dielectric Epoxy Thermosets Derived from Methacrylate-Containing Polyimides[J]. Polymers, 2018, 10(1): 27.
[161] TIAN S, LI J, CAI Z, et al. Piers-Rubinsztajn reaction for BCB functionalized silphenylene/silbiphenylene siloxane oligomers to highly crosslinked low-k thermosets[J]. European Polymer Journal, 2018, 108: 373-379.
[162] HU H, MA J, LI X, et al. Benzocyclobutene-functional double-decker silsesquioxane: self-assembled hybrid resin for high-performance dielectrics and LED encapsulants[J]. Polymer Chemistry, 2019, 10(33): 4551-4560.
[163] VISHNEVSKIY A S, VOROTYNTSEV D A, SEREGIN D S, et al. Effect of surface hydrophobisation on the properties of a microporous phenylene-bridged organosilicate film[J]. Journal of Non-Crystalline Solids, 2022, 576: 121258.
[164] CHUN-XIAO Y, CHI Z, QING-QING S, et al. Preparation of Ultra Low-k Porous SiOCH Films from Ring-Type Siloxane with Unsaturated Hydrocarbon Side Chains by Spin-On Deposition[J]. Chinese Physics Letters, 2010, 27(2): 027701.
[165] ZHU L, CHENG X, SU W, et al. Molecular Insights into Sequence Distributions and Conformation-Dependent Properties of High-Phenyl Polysiloxanes[J]. Polymers, 2019, 11(12): 1989.
[166] PANASONIC INDUSTRY. High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type): No.22070137[R]. 2022.
[167] CHEN C H, GU Z C, TSAI Y L, et al. Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility[J]. Polymer, 2018, 140: 225-232.
[168] HOU J, SUN J, FANG Q. Oxygen-free polymers: new materials with low dielectric constant and ultra-low dielectric loss at high frequency[J]. Polymer Chemistry, 2023, 14(27): 3203-3212.
[169] WANG B, SHANG Y R, MA Z, et al. Non-porous ultra low dielectric constant materials based on novel silicon-containing cycloolefin copolymers with tunable performance[J]. Polymer, 2017, 116: 105-112.
[170] SATO S, SUZUKI M, KANEHASHI S, 等. Permeability, diffusivity, and solubility of benzene vapor and water vapor in high free volume silicon- or fluorine-containing polymer membranes[J]. Journal of Membrane Science, 2010, 360(1): 352-362.
[171] MONCADA J, TERRAZA C A, TAGLE L H, 等. Synthesis, characterization and studies of properties of six polyimides derived from two new aromatic diamines containing a central silicon atom[J]. European Polymer Journal, 2017, 91: 354-367.
[172] GUO J, WANG H, ZHANG C, et al. MPPE/SEBS Composites with low dielectric loss for high-frequency copper clad laminates applications[J]. Polymers, 2020, 12(9): 1875.
[173] WENG L, ZHANG Y, ZHANG X, et al. Synthesis and properties of cured epoxy mixed resin systems modified by polyphenylene oxide for production of high-frequency copper clad laminates[J]. Polymer Composites, 2018, 39(S4): E2334-E2345.
[174] DAI T, JIANG X, GE Y, et al. Thermosetting epoxidized polybutadiene/low-molecular weight polyphenylene oxide compatible system with quite low-dielectric constant and loss prepared through co-curing reaction[J]. Polymers for Advanced Technologies, 2023, 34(1): 419-429.
[175] YANG R, WEI R, LI K, et al. Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability[J]. Scientific Reports, 2016, 6(1): 36434.
[176] WANG Z, JIANG B, ZHANG Y, et al. Influence of crosslink density on thermal, mechanical and dielectric properties of cross-linked fluorinated poly(aryl ether)s[J]. European Polymer Journal, 2022, 172: 111244.
[177] EVANGELOPOULOS P, KANTARELIS E, YANG W. Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py–GC/MS)[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 337-343.
[178] TANG L, ZHANG J, TANG Y, et al. Polymer matrix wave-transparent composites: A review[J]. Journal of Materials Science & Technology, 2021, 75: 225-251.
[179] MOHSEN-NIA M, AMIRI H, JAZI B. Dielectric Constants of Water, Methanol, Ethanol, Butanol and Acetone: Measurement and Computational Study[J]. Journal of Solution Chemistry, 2010, 39(5): 701-708.
[180] SHAMIRYAN D, ABELL T, IACOPI F, et al. Low-k dielectric materials[J]. Materials Today, 2004, 7(1): 34-39.
[181] NISHIMURA I, FUJITOMI S, YAMASHITA Y, et al. Development of new dielectric material to reduce transmission loss[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). 2020: 641-646.
[182] CHEN Y, YE F, HU Q, et al. Research on the Influence of Solder Mask on Signal Integrity in High Speed PCB[C]//2021 IEEE 15th International Conference on Electronic Measurement & Instruments (ICEMI). Nanjing, China: IEEE, 2021: 259-263.
[183] ALLEN N S, EDGE M, HUSSAIN S. Perspectives on yellowing in the degradation of polymer materials: inter-relationship of structure, mechanisms and modes of stabilisation[J]. Polymer Degradation and Stability, 2022, 201: 109977.
[184] LINDE E, NILSSON F, BARRETT M, 等. Time- and Feedback-Dependent DLO Phenomena in Oxidative Polymer Aging[J]. Polymer Degradation and Stability, 2021, 189: 109598.
[185] FITZ B D, MIJOVIC J. Segmental Dynamics in Poly(methylphenylsiloxane) Networks by Dielectric Relaxation Spectroscopy[J]. Macromolecules, 1999, 32(10): 3518-3527.
[186] QUINTANA A, CELINA M C. Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation[J]. Polymer Degradation and Stability, 2018, 149: 173-191.
[187] DIJK M van, WITTLER O, WAGNER S, et al. Modification of Prony Series Coefficients to Account for Thermo-Oxidative Ageing Effects within Numerical Simulations[C]//2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). 2023: 1-5.
[188] Jacques Verdu. Stabilization[M]//Oxidative Ageing of Polymers. John Wiley & Sons, Ltd: 111-143.
[189] CELINA M, GILLEN K T, ASSINK R A. Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes[J]. Polymer Degradation and Stability, 2005, 90(3): 395-404.

所在学位评定分委会
力学
国内图书分类号
TM215
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766127
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
方泽铭. 超低损耗热固性聚合物复合材料及其介电性能稳定性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031292-方泽铭-系统设计与智能(7045KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[方泽铭]的文章
百度学术
百度学术中相似的文章
[方泽铭]的文章
必应学术
必应学术中相似的文章
[方泽铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。