[1] MOBILE, RADIODETERMINATION, AMATEUR, et al. IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond[M]. Electronic Publication Geneva, Switzerland, 2015.
[2] NIGHTINGALE J, SALVA-GARCIA P, CALERO J M A, et al. 5G-QoE: QoE modelling for ultra-HD video streaming in 5G networks[J]. IEEE Transactions on Broadcasting, 2018, 64(2): 621-634.
[3] EROL-KANTARCI M, SUKHMANI S. Caching and computing at the edge for mobile augmented reality and virtual reality (AR/VR) in 5G[C]//2017 9th International Conference (AdHocNets). Niagara Falls, ON, Canada. Springer, 2018: 169-177.
[4] TANGE K, DE DONNO M, FAFOUTIS X, et al. A systematic survey of industrial Internet of Things security: Requirements and fog computing opportunities[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2489-2520.
[5] SERROR M, HACK S, HENZE M, et al. Challenges and opportunities in securing the industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2020, 17(5): 2985-2996.
[6] KHAN W Z, REHMAN M, ZANGOTI H M, et al. Industrial internet of things: Recent advances, enabling technologies and open challenges[J]. Computers & electrical engineering, 2020, 81: 106522.
[7] XU H, YU W, GRIFFITH D, et al. A survey on industrial Internet of Things: A cyber-physical systems perspective[J]. IEEE Access, 2018, 6: 78238-78259.
[8] ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80-87.
[9] BARAKABITZE A A, AHMAD A, MIJUMBI R, et al. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges[J]. Computer Networks, 2020, 167: 106984.
[10] MIJUMBI R, SERRAT J, GORRICHO J L, et al. Network function virtualization: State-of-the-art and research challenges[J]. IEEE Communications surveys & tutorials, 2015, 18(1): 236-262.
[11] NGMN ALLIANCE. Description of network slicing concept[EB/OL]. (2016-01-13)
[2024-03-29]. https://ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf.
[12] TANG L, ZHAO G, WANG C, et al. Queue-aware reliable embedding algorithm for 5G network slicing[J]. Computer Networks, 2018, 146: 138-150.
[13] GUERZONI R, DESPOTOVIC Z, TRIVISONNO R, et al. Modeling reliability requirements in coordinated node and link mapping[C]//2014 33rd International Symposium on Reliable Distributed Systems (SRDS). Nara, Japan. IEEE, 2014: 321-330.
[14] CHANTRE H D, DA FONSECA N L. Multi-objective optimization for edge device placement and reliable broadcasting in 5G NFV-based small cell networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2304-2317.
[15] AFOLABI I, TALEB T, SAMDANIS K, et al. Network slicing and softwarization: A survey on principles, enabling technologies, and solutions[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2429-2453.
[16] CHAI R, XIE D, LUO L, et al. Multi-objective optimization-based virtual network embed ding algorithm for software-defined networking[J]. IEEE Transactions on Network and Service Management, 2019, 17(1): 532-546.
[17] NGMN ALLIANCE. 5G white paper[EB/OL]. (2015-02-17)
[2024-03-29]. https://ngmn.org /wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf.
[18] 3GPP. Study on management and orchestration of network slicing for next generation network [M]. 3rd Generation Partnership Project (3GPP). Valbonne, France, 2017.
[19] BÄCK T, SCHWEFEL H P. An overview of evolutionary algorithms for parameter optimization [J]. Evolutionary computation, 1993, 1(1): 1-23.
[20] MITCHELL M. An introduction to genetic algorithms[M]. MIT press, 1998.
[21] KENNEDY J, EBERHART R. Particle swarm optimization[C]//1995 Proceedings of ICNN’95- international conference on neural networks (ICNN). Perth, WA, Australia. IEEE, 1995: 1942- 1948.
[22] STORN R, PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11: 341-359.
[23] LAUMANNS M, ZITZLER E, THIELE L. A unified model for multi-objective evolutionary algorithms with elitism[C]//Proceedings of the 2000 Congress on Evolutionary Computation (CEC). La Jolla, CA, USA. IEEE, 2000: 46-53.
[24] DEB K. Multi-objective optimisation using evolutionary algorithms: an introduction[M]// Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, 2011: 3-34.
[25] LI K, CHEN R, FU G, et al. Two-archive evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 303-315.
[26] LAUMANNS M, THIELE L, ZITZLER E. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method[J]. European Journal of Operational Research, 2006, 169(3): 932-942.
[27] MIETTINEN K. Nonlinear multiobjective optimization[M]. Springer Science & Business Media, 1999.
[28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[29] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[30] LI B, TANG K, LI J, et al. Stochastic ranking algorithm for many-objective optimization based on multiple indicators[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 924- 938.
[31] MEI C, LIU J, LI J, et al. 5G network slices embedding with sharable virtual network functions [J]. Journal of Communications and Networks, 2020, 22(5): 415-427.
[32] LI H, KONG Z, CHEN Y, et al. Slice-Based Service Function Chain Embedding for End-to-End Network Slice Deployment[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 3652-3672.
[33] ESTEVES J J A, BOUBENDIR A, GUILLEMIN F, et al. A heuristically assisted deep reinforcement learning approach for network slice placement[J]. IEEE Transactions on Network and Service Management, 2021, 19(4): 4794-4806.
[34] YUSUPOV J, KSENTINI A, MARCHETTO G, et al. Multi-objective function splitting and placement of network slices in 5G mobile networks[C]//2018 IEEE Conference on Standards for Communications and Networking (CSCN). Paris, France. IEEE, 2018: 1-6.
[35] GONG L, WEN Y, ZHU Z, et al. Toward profit-seeking virtual network embedding algorithm via global resource capacity[C]//2014 IEEE Conference on Computer Communications (INFO COM). Toronto, Canada. IEEE, 2014: 1-9.
[36] YAN Z, GE J, WU Y, et al. Automatic virtual network embedding: A deep reinforcement learning approach with graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(6): 1040-1057.
[37] WEI F, FENG G, SUN Y, et al. Network slice reconfiguration by exploiting deep reinforcement learning with large action space[J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2197-2211.
[38] WANG G, FENG G, QUEK T Q, et al. Reconfiguration in network slicing—Optimizing the profit and performance[J]. IEEE Transactions on Network and Service Management, 2019, 16 (2): 591-605.
[39] LIU Q, CHOI N, HAN T. Atlas: automate online service configuration in network slicing[C]// 2022 Proceedings of the 18th International Conference on emerging Networking Experiments and Technologies (CoNEXT). Roma, Italy. ACM, 2022: 140-155.
[40] CHOWDHURY M, RAHMAN M R, BOUTABA R. ViNEYard: Virtual network embedding algorithms with coordinated node and link mapping[J]. IEEE/ACM Transactions on Networking, 2011, 20(1): 206-219.
[41] BENKACEM I, TALEB T, BAGAA M, et al. Optimal VNFs placement in CDN slicing over multi-cloud environment[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 616-627.
[42] LANGE S, GRIGORJEW A, ZINNER T, et al. A multi-objective heuristic for the optimization of virtual network function chain placement[C]//2017 29th International Teletraffic Congress (ITC). Genoa, Italy. IEEE, 2017: 152-160.
[43] WOLSEY L A. Integer programming[M]. John Wiley & Sons, 2020.
[44] FISCHER A, BOTERO J F, BECK M T, et al. Virtual network embedding: A survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1888-1906.
[45] HAERI S, TRAJKOVIĆ L. Virtual network embedding via Monte Carlo tree search[J]. IEEE transactions on cybernetics, 2017, 48(2): 510-521.
[46] LIU Q, CHOI N, HAN T. OnSlicing: online end-to-end network slicing with reinforcement learning[C]//2021 Proceedings of the 17th International Conference on emerging Networking Experiments and Technologies (CoNEXT). Virtual Event, Munich, Germany. ACM, 2021: 141- 153.
[47] WAXMAN B M. Routing of multipoint connections[J]. IEEE Journal on Selected Areas in Communications, 1988, 6(9): 1617-1622.
[48] LI J, ZHANG X. Deep reinforcement learning-based joint scheduling of eMBB and URLLC in 5G networks[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1543-1546.
[49] YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38 (2): 17-29.
[50] WANG G, FENG G, TAN W, et al. Resource allocation for network slices in 5G with network resource pricing[C]//2017 IEEE Global Communications Conference (GLOBECOM). Singa pore. IEEE, 2017: 1-6.
[51] DOLATI M, HASSANPOUR S B, GHADERI M, et al. DeepViNE: Virtual network embedding with deep reinforcement learning[C]//2019 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Paris, France. IEEE, 2019: 879-885.
[52] WEN R, FENG G, TANG J, et al. On robustness of network slicing for next-generation mobile networks[J]. IEEE Transactions on Communications, 2018, 67(1): 430-444.
[53] MLADENOVIĆ N, HANSEN P. Variable neighborhood search[J]. Computers & operations research, 1997, 24(11): 1097-1100.
[54] ESTEVES J J A, BOUBENDIR A, GUILLEMIN F, et al. Heuristic for edge-enabled network slicing optimization using the “power of two choices”[C]//2020 16th International Conference on Network and Service Management (CNSM). Izmir, Turkey. IEEE, 2020: 1-9.
[55] MITZENMACHER M. The power of two choices in randomized load balancing[J]. IEEE Transactions on Parallel and Distributed Systems, 2001, 12(10): 1094-1104.
[56] ESTEVES J J A, BOUBENDIR A, GUILLEMIN F, et al. Location-based data model for optimized network slice placement[C]//2020 6th IEEE Conference on Network Softwarization (NetSoft). Ghent, Belgium. IEEE, 2020: 404-412.
[57] CHANTRE H D, DA FONSECA N L S. The location problem for the provisioning of protected slices in NFV-based MEC infrastructure[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1505-1514.
[58] SIERRA M R, COELLO COELLO C A. Improving PSO-based multi-objective optimization using crowding, mutation and 𝜖-dominance[C]//2005 International conference on evolutionary multi-criterion optimization (EMO). Guanajuato, Mexico. Springer, 2005: 505-519.
[59] ABUSUBAIH M. Intelligent wireless networks: challenges and future research topics[J]. Journal of Network and Systems Management, 2022, 30(1): 18.
[60] ABOOD M S, WANG H, HE D, et al. Intelligent network slicing in V2X networks–A comprehensive review[J]. Journal of Artificial Intelligence and Technology, 2023, 3(2): 75-84.
[61] KUO S Y, YEH F M, LIN H Y. Efficient and exact reliability evaluation for networks with imperfect vertices[J]. IEEE Transactions on Reliability, 2007, 56(2): 288-300.
[62] BRYANT R E. Graph-based algorithms for boolean function manipulation[J]. IEEE Transactions on Computers, 1986, 100(8): 677-691.
[63] LI K, DEB K, ZHANG Q, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.
[64] WANG H, JIAO L, YAO X. Two_Arch2: An improved two-archive algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(4): 524- 541.
[65] ORLOWSKI S, WESSÄLY R, PIÓRO M, et al. SNDlib 1.0—Survivable network design library [J]. Networks: An International Journal, 2010, 55(3): 276-286.
[66] Blank J, Deb K. Pymoo: Multi-Objective Optimization in Python[J]. IEEE Access, 2020, 8: 89497-89509.
[67] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[68] WIJETHILAKA S, LIYANAGE M. Survey on network slicing for Internet of Things realization in 5G networks[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 957-994.
[69] JI L, HE S, WU W, et al. Dynamic network slicing orchestration for remote adaptation and configuration in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6): 4297-4307.
[70] SKONDRAS E, MICHALAS A, VERGADOS D J, et al. Network slicing on 5G vehicular cloud computing systems[J]. Electronics, 2021, 10(12): 1474.
[71] BAI G, LIU T, ZHANG Y A, et al. An improved method for reliability evaluation of two terminal multistate networks based on state space decomposition[J]. IEEE Transactions on reliability, 2020, 70(3): 1084-1095.
[72] FRIEDMAN S J, SUPOWIT K J. Finding the optimal variable ordering for binary decision diagrams[C]//1987 Proceedings of the 24th Design Automation Conference (DAC). Miami Beach, FL, USA. ACM, 1987: 348-356.
[73] GAREY M R, JOHNSON D S. Computers and intractability: A Guide to the Theory of NP Completeness[M]. W. H. FREEMAN AND COMPANY, 1979.
[74] SAHINOGLU M, RAMAMOORTHY C, SMITH A E, et al. A reliability block diagramming tool to describe networks[C]//2004 Annual Symposium Reliability and Maintainability (RAMS). Los Angeles, CA, USA. IEEE, 2004: 141-145.
[75] SHARAFAT A R, MA’ROUZI O R. All-terminal network reliability using recursive truncation algorithm[J]. IEEE Transactions on Reliability, 2009, 58(2): 338-347.
[76] TRIVEDI K S, BOBBIO A. Reliability and availability engineering: modeling, analysis, and applications[M]. Cambridge University Press, 2017.
[77] ZHAI E, CHEN A, PISKAC R, et al. Check before you change: Preventing correlated failures in service updates[C]//2020 17th Symposium on Networked Systems Design and Implementation (NSDI). Boston, MA, USA. USENIX, 2020: 575-589.
[78] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154.
[79] SYSWERDA G, et al. Uniform crossover in genetic algorithms.[C]//1989 3rd International Conference on Genetic Algorithms (ICGA). East Lansing, MI, USA. Morgan Kaufmann, 1989: 2-9.
[80] POZZA M, NICHOLSON P K, LUGONES D F, et al. On reconfiguring 5G network slices[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1542-1554.
修改评论