[1] GUPTA K, LAUBSCHER R F. Sustainable machining of titanium alloys: A critical review[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(14): 2543-2560.
[2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(06): 6-41.
[3] EZUGWU E O, WANG Z M. Titanium alloys and their machinability—a review[J]. Journal of Materials Processing Technology, 1997, 68(3): 262-274.
[4] 中国有色金属工业协会钛锆铪分会: 《钛合金: 消费电子材料创新趋势》. 来源: https://titan.chinania.org.cn/html/yy/tai/2023/1106/7757.html.
[5] 刘明政. 低温冷风微量润滑磨削钛合金热力学作用规律与力热模型[D]. 青岛理工大学, 2023.
[6] GUO G, LIU Z, AN Q, et al. Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1): 135-142.
[7] SETTI D, SINHA M K, GHOSH S, et al. Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids[J]. International Journal of Machine Tools and Manufacture, 2015, 88(237-248.
[8] DE MELLO A, DE SILVA R B, MACHADO Á R, et al. Surface grinding of Ti-6Al-4V Alloy with SiC abrasive wheel at various cutting conditions[J]. Procedia Manufacturing, 2017, 10: 590-600.
[9] SADEGHI M H, HADDAD M J, TAWAKOLI T, et al. Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2008, 44(5-6): 487-500.
[10] 徐九华. 钛合金切削磨削加工技术研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(05): 1-4.
[11] 郭力, 阳超. 钛合金磨削加工研究的进展[J]. 湖南文理学院学报(自然科学版), 2009, 21(01): 67-72+86.
[12] MA X, JIAO F, NIU Y, et al. Modeling of the material removal rate in internal cylindrical plunge electrochemical grinding[J]. Journal of Manufacturing Processes, 2023, 92: 89-106.
[13] GE Y, ZHU Z, ZHU Y. Electrochemical deep grinding of cast nickel-base superalloys[J]. Journal of Manufacturing Processes, 2019, 47: 291-296.
[14] NIU S, QU N, YUE X, et al. Combined rough and finish machining of Ti–6Al–4V alloy by electrochemical mill-grinding[J]. Machining Science and Technology, 2020, 24(4): 621-637.
[15] NIU S, QU N, LI H. Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1371-1382.
[16] SIEGEL F, KLUG U, KLING R. Extensive micro-structuring of metals using picosecond pulses - ablation behavior and industrial relevance[J]. Journal of Laser Micro/nanoengineering, 2009, 4(2): 104-110.
[17] YADAV R S, YADAVA V. Experimental investigations on electrical discharge diamond peripheral surface grinding (EDDPSG) of hybrid metal matrix composite[J]. Journal of Manufacturing Processes, 2017, 27: 241-251.
[18] ŚWIĘCIK R. Experimental investigation of abrasive electrodischarge grinding of Ti6Al4V titanium alloy[J]. Journal of Achievements in Materials Manufacturing Engineering, 2009, 37(2): 706-711.
[19] SUTOWSKI P, ŚWIĘCIK R. The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94(1-4): 1263-1282.
[20] SINGH G K, YADAVA V, KUMAR R. Diamond face grinding of WC-Co composite with spark assistance: Experimental study and parameter optimization[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 509-518.
[21] HE Y, XIAO G, ZHU S, et al. Surface formation in laser-assisted grinding high-strength alloys[J]. International Journal of Machine Tools and Manufacture, 2023, 186: 104002.
[22] MA Z, WANG Q, CHEN H, et al. Surface prediction in laser-assisted grinding process considering temperature-dependent mechanical properties of zirconia ceramic[J]. Journal of Manufacturing Processes, 2022, 80: 491-503.
[23] RAHMAN RASHID R A, SUN S, WANG G, et al. The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining[J]. International Journal of Machine Tools and Manufacture, 2012, 63(41-43.
[24] 贺毅, 肖贵坚, 朱升旺, 等. 皮秒激光辅助砂带磨削TC17钛合金材料去除行为研究[J]. 机械工程学报, 2023, 59(09): 360-372.
[25] BRAHAM-BOUCHNAK T, GERMAIN G, MOREL A, et al. The influence of laser assistance on the machinability of the titanium alloy Ti555-3[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2471-2481.
[26] YANG Z, ZHU L, ZHANG G, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594.
[27] WU Y B, NOMURA M, ZHI J F, et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding[J]. Materials Science Forum, 2004, 471-472: 101-106.
[28] NIK M G, MOVAHHEDY M R, AKBARI J. Ultrasonic-assisted grinding of Ti6Al4V alloy[J]. Procedia CIRP, 2012, 1: 353-358.
[29] WANG Y, LIN B, CAO X, et al. An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium[J]. Journal of Materials Processing Technology, 2014, 214(9): 1871-1878.
[30] LI S, WU Y, FUJIMOTO M, et al. Improving the working surface condition of electroplated cubic boron nitride grinding quill in surface grinding of Inconel 718 by the assistance of ultrasonic vibration[J]. Journal of Manufacturing Science and Engineering, 2016, 138(7): 0710081-0710088.
[31] ELHAMI S, RAZFAR M R. Effect of ultrasonic vibration on the single discharge of electrochemical discharge machining[J]. Materials and Manufacturing Processes, 2017, 33(4): 444-451.
[32] ALIOFKHAZRAEI M, MACDONALD D D, MATYKINA E, et al. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations[J]. Applied Surface Science Advances, 2021, 5: 100121.
[33] 雷欣, 林乃明, 邹娇娟, 等. 铝合金微弧氧化的研究进展[J]. 表面技术, 2019, 48(12): 10-22.
[34] 倪尔鑫, 严继康, 唐婉霞, 等. 钛及钛合金复合微弧氧化的研究进展[J]. 材料导报, 2015, 29(S1): 457-461.
[35] MARCHENOIR J C, LOUP J P, MASSON J. Étude des couches poreuses formées par oxydation anodique du titane sous fortes tensions[J]. Thin Solid Films, 1980, 66(3): 357-369.
[36] WANG Y, SHEN J, WU G, et al. Growth characteristics of scanning micro-arc oxidation coating on Ti6Al4V alloy[J]. Surface Engineering, 2023, 39(2): 218-228.
[37] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. Journal of Physics D: Applied Physics, 2010, 43(10): 105203.
[38] MARTIN J, MELHEM A, SHCHEDRINA I, et al. Effects of electrical parameters on plasma electrolytic oxidation of aluminium[J]. Surface and Coatings Technology, 2013, 221: 70-76.
[39] 王亚明, 韩晓东, 郭立新, 等. LY12铝合金表面喷射式微弧氧化工艺研究[J]. 材料热处理学报, 2009, 30(02): 121-124.
[40] YEROKHIN A L, SNIZHKO L O, GUREVINA N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminium[J]. Journal of Physics D: Applied Physics, 2003, 36(17): 2110-2120.
[41] HAN Y, HONG S H, XU K W. Porous nanocrystalline titania films by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2002, 154(2): 314-318.
[42] LAURINDO C A H, LEPIENSKI C M, AMORIM F L, et al. Mechanical and tribological properties of Ca/P-doped titanium dioxide layer produced by plasma electrolytic oxidation: effects of applied voltage and heat treatment[J]. Tribology Transactions, 2018, 61(4): 733-741.
[43] WANG J-H, WANG J, LU Y, et al. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy[J]. Applied Surface Science, 2015, 324: 405-413.
[44] LEDERER S, ARAT S, FUERBETH W. Influence of process parameters on the tribological behavior of PEO coatings on CP-Titanium 4+ alloys for biomedical applications[J]. Materials, 2021, 14(18): 5364.
[45] RAFIEERAD A R, ASHRA M R, MAHMOODIAN R, et al. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper[J]. Materials Science and Engineering C, 2015, 57: 397-413.
[46] DURDU S, DENIZ Ö F, KUTBAY I, et al. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation[J]. Journal of Alloys and Compounds, 2013, 551: 422-429.
[47] YAO Z, JIANG Y, JIA F, et al. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy[J]. Applied Surface Science, 2008, 254(13): 4084-4091.
[48] WEI C B, TIAN X B, YANG S Q, et al. Anode current effects in plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2007, 201(9-11): 5021-5024.
[49] JADHAV P, BONGALE A, KUMAR S, et al. Development of an oxide layer on Al 6061 using plasma arc electrolytic oxidation in silicate-based electrolyte[J]. Materials (Basel), 2022, 15(4): 1616.
[50] WEN L, WANG Y, JIN Y, et al. Microarc oxidation of 2024 Al alloy using spraying polar and its influence on microstructure and corrosion behavior[J]. Surface and Coatings Technology, 2013, 228: 92-99.
[51] XIA L, HAN J, DOMBLESKY J P, et al. Study of scanning micro-arc oxidation and coating development[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5323-5332.
[52] 吕鹏翔, 韦东波, 郭成波, 等. 2024铝合金表面扫描式微弧氧化工艺研究[J]. 无机材料学报, 2013, 28(04): 381-386.
[53] LV P, CHI G-x, WEI D-b, et al. Design of scanning micro-arc oxidation forming ceramic coatings on 2024 aluminium alloy[J]. Advanced Materials Research, 2011, 189-193: 1296 - 1300.
[54] CLARE A T, SPEIDEL A, MITCHELL-SMITH J, et al. Surface enhanced micro features using electrochemical jet processing[J]. CIRP Annals, 2019, 68(1): 177-180.
[55] LU J, LIU S, ZHAO Y. Enabling jet-electrochemical discharge machining on niobium-like passivating metal and the single step fabrication of coated microstructures[J]. Journal of The Electrochemical Society, 2023, 170(9): 093508.
[56] 高宾华, 保文成, 陈超群, 等. 延塑性航空合金磨削砂轮粘附及粘附抑制技术的研究现状与展望[J]. 航空制造技术, 2021, 64(07): 53-71.
[57] DING W, LINKE B, ZHU Y, et al. Review on monolayer CBN superabrasive wheels for grinding metallic materials[J]. Chinese Journal of Aeronautics, 2017, 30(1): 109-134.
[58] XU X, YU Y, HUANG H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear, 2003, 255(7-12): 1421-1426.
[59] KUMAR K V. Superabrasive Grinding of Titanium Alloys[J]. SME MR90-505, 1990.
[60] XU X, YU Y. Adhesion at abrasive-Ti6Al4V interface with elevated grinding temperatures[J]. Journal of Materials Science Letters, 2002, 21(16): 1293-1295.
[61] GIFT F C, Jr., MISIOLEK W Z, FORCE E, II. Mechanics of loading for electroplated cubic boron nitride (CBN) wheels during grinding of a nickel-based superalloy in water-based lubricating fluids[J]. Journal of Tribology, 2004, 126(4): 795-801.
[62] 任敬心, 华定安, 黄奇. 磨削钛合金的砂轮粘附[J]. 磨料磨具与磨削, 1986, 02: 13-18.
[63] PASHMFOROUSH F, DELIR BAGHERINIA R. Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy[J]. Journal of Cleaner Production, 2018, 178: 363-372.
[64] ELANCHEZHIAN J, PRADEEP KUMAR M, MANIMARAN G. Grinding titanium Ti-6Al-4V alloy with electroplated cubic boron nitride wheel under cryogenic cooling[J]. Journal of Mechanical Science and Technology, 2015, 29(11): 4885-4890.
[65] XUN L. Application of self-inhaling internal cooling wheel in vertical surface grinding[J]. Chinese Journal of Mechanical Engineering, 2014, 27(01): 86-91.
[66] ÖPöZ T T, CHEN X. Experimental investigation of material removal mechanism in single grit grinding[J]. International Journal of Machine Tools and Manufacture, 2012, 63: 32-40.
[67] GHOSH S, CHATTOPADHYAY A B, PAUL S. Modelling of specific energy requirement during high-efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11): 1242-1253.
[68] WANG H, SUBHASH G, CHANDRA A. Characteristics of single-grit rotating scratch with a conical tool on pure titanium[J]. Wear, 2001, 249(7): 566-581.
[69] ZHOU H, DING W, LIU C. Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains[J]. The International Journal of Advanced Manufacturing Technology, 2018, 100(1-4): 153-165.
[70] DING W, ZHAO B, XU J, et al. Grinding behavior and surface appearance of (TiCp+TiBw)/Ti-6Al-4V titanium matrix composites[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1334-1342.
[71] ZHAO Y, QIAN H, H.AWAD S, et al. Review of micro plasma oxidation on titanium alloy[J]. Surface Technology, 2005, 34(03): 9-12.
[72] GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[73] CLYNE T W, TROUGHTON S C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals[J]. International Materials Reviews, 2018, 64(3): 127-162.
[74] KOZAK J, RAJURKAR K P, BALKRISHNA R. Study of electrochemical jet machining process[J]. Journal of Manufacturing Science and Engineering, 1996, 118(4): 490-498.
[75] KAWANAKA T, KUNIEDA M. Mirror-like finishing by electrolyte jet machining[J]. CIRP Annals, 2015, 64(1): 237-240.
[76] HACKERT-OSCHäTZCHEN M, PAUL R, MARTIN A, et al. Study on the dynamic generation of the jet shape in jet electrochemical machining[J]. Journal of Materials Processing Technology, 2015, 223(240-251.
[77] VOLEIŠIS A, KAŽYS R, VOLEIŠIENĖ B, et al. Simultaneous generation of longitudinal and shear ultrasonic waves: knowledge summary, PZT piezoelements manufacturing and experiments[J]. Ultragarsas/Ultrasound, 2011, 66(1): 25-31.
[78] NAGALINGAM A P, YEO S H. Effects of ambient pressure and fluid temperature in ultrasonic cavitation machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(9-12): 2883-2894.
[79] ZHANG S, GUO Y, CHEN Z, et al. Proposal for a novel elliptical ultrasonic aspirator and its fundamental performance in cartilage removal[J]. Ultrasonics, 2021, 109(106259.
[80] MATHIESON A, CARDONI A, CERISOLA N, et al. The influence of piezoceramic stack location on nonlinear behavior of langevin transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(6): 1126-1133.
[81] 张诗博. 基于压电超声换能器的骨切割手术器械关键技术研究[D]. 南方科技大学, 2023.
[82] LI S, WU Y, NOMURA M. Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1): 1113-1125.
[83] LI S, WU Y, NOMURA M, et al. Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti–6Al–4V[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071009.
[84] MALKIN S. Grinding technology : theory and applications of machining with abrasives[M]. New York: Industrial Press, 1989.
[85] MAYER J E, FANG G P, KEGG R L. Effect of grit depth of cut on strength of ground ceramics[J]. CIRP Annals, 1994, 43(1): 309-312.
[86] XU H H K, JAHANMIR S, IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina[J]. Machining Science and Technology, 1997, 1(1): 49-66.
[87] IKONOPISOV S, GIRGINOV A, MACHKOVA M. Electrical breaking down of barrier anodic films during their formation[J]. Electrochimica Acta, 1979, 24(4): 451-456.
[88] ALBELLA J M, MONTERO I, MARTINEZ-DUART J M. A theory of avalanche breakdown during anodic oxidation[J]. Electrochimica Acta, 1987, 32(2): 255-258.
[89] KLEIN N. Electrical breakdown mechanisms in thin insulators[J]. Thin Solid Films, 1978, 50: 223-232.
[90] KRYSMANN W, KURZE P, DITTRICH K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Crystal Research Technology, 1984, 19(7): 973-979.
[91] YEROKHIN A L, SNIZHKO L O, GUREVINA N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminium[J]. Journal of Physics D: Applied Physics, 2003, 36(17): 2110.
[92] BAKOVETS V, POLYAKOV O, DOLGOVESOVA I. Plasma electrolytic anode treatment of metals[J]. Nauka Novosibirsk, 1991, 168: 66.
[93] ENGELL H J. Stability and breakdown phenomena of passivating films[J]. Electrochimica Acta, 1977, 22(9): 987-993.
[94] CHEN X, XU Z, ZHU D, et al. Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk[J]. Chinese Journal of Aeronautics, 2016, 29(1): 274-282.
[95] KUROMOTO N K, SIMãO R A, SOARES G A. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages[J]. Materials Characterization, 2007, 58(2): 114-121.
[96] CHENG Y-l, WU X-Q, XUE Z-g, et al. Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte[J]. Surface and Coatings Technology, 2013, 217: 129-139.
[97] LU J, ZHAN S, LIU B, et al. Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 045101.
[98] LU J, GUAN J, DONG B, et al. Control principle of anodic discharge for enhanced performance in jet-electrochemical discharge machining of semiconductor 4H-SiC[J]. Journal of Manufacturing Processes, 2023, 92: 435-452.
[99] 卢家俊. 射流电化学放电加工难电解材料机理与工艺研究[D]. 南方科技大学, 2023.
[100] 徐明刚, 张建华, 张勤河. 超声振动辅助气体介质电火花加工放电通道的研究[J]. 电加工与模具, 2005, 04): 16-18+28.
[101] NGUYEN T T, ASAKURA Y, OKADA N, et al. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone[J]. Japanese Journal of Applied Physics, 2017, 56(7S1): 07JE06.
[102] 詹顺达. 阴极等离子体辅助微细电解加工方法与机理研究[D]. 南方科技大学, 2023.
[103] ZHAN S, ZHAO Y. Plasma-assisted electrochemical machining of microtools and microstructures[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103596.
[104] 刘世敏. 钛表面微弧氧化层的制备及评价[D]. 天津大学, 2011.
[105] MATYKINA E, BERKANI A, SKELDON P, et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium[J]. Electrochimica Acta, 2007, 53(4): 1987-1994.
[106] OHMORI H, KATAHIRA K, MIZUTANI M, et al. Investigation on color-finishing process conditions for titanium alloy applying a new electrical grinding process[J]. CIRP Annals, 2004, 53(1): 455-458.
[107] DONG B, ZHAN S, LU J, et al. Phenomena and mechanism of local oxidation microlithography of 4H–SiC via electrochemical jet anodisation[J]. Ceramics International, 2023, 49(6): 8781-8792.
[108] LI Q, YANG W, LIU C, et al. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes[J]. Surface and Coatings Technology, 2017, 316: 162-170.
[109] LI Q B, LIU C C, YANG W B, et al. Growth mechanism and adhesion of PEO coatings on 2024Al alloy[J]. Surface Engineering, 2016, 33(10): 760-766.
[110] ZHANG C, FENG P, ZHANG J. Ultrasonic vibration-assisted scratch-induced characteristics of C-plane sapphire with a spherical indenter[J]. International Journal of Machine Tools and Manufacture, 2013, 64: 38-48.
[111] DAVIS J R. Metals Handbook: Desk Edition[M]. ASM: International Press, 1998.
[112] CAI J, LI F, LIU T, et al. Investigation of mechanical behavior of quenched Ti–6Al–4V alloy by microindentation[J]. Materials Characterization, 2011, 62(3): 287-293.
[113] BORGESE L, GELFI M, BONTEMPI E, et al. Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition[J]. Surface and Coatings Technology, 2012, 206(8-9): 2459-2463.
[114] NOHAVA J, MUŠáLEK R, MATĚJíČEK J, et al. A contribution to understanding the results of instrumented indentation on thermal spray coatings — Case study on Al2O3 and stainless steel[J]. Surface and Coatings Technology, 2014, 240: 243-249.
[115] SHAW M C. Principles of Abrasive Processing[M]. Clarendon Press, 1996.
[116] WU H, JIANG L, ZHONG X, et al. Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel[J]. Friction, 2020, 9(6): 1673-1687.
[117] HANAWA T, OTA M. Calcium phosphate naturally formed on titanium in electrolyte solution[J]. Biomaterials, 1991, 12(8): 767-774.
[118] ZHAO Y, WONG S M, WONG H M, et al. Effects of carbon and nitrogen plasma immersion ion implantation on In vitro and In vivo biocompatibility of titanium alloy[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1510-1516.
[119] GUO B, LIANG J, TIAN J, et al. The study of microstructure and composition of Ti-6Al-4V micro-arc oxidation ceramic film[J]. Rare Metal Materials and Engineering, 2005, 12: 1897-1900.
[120] VELON A, OLEFJORD I. Oxidation behavior of Ni3Al and Fe3Al: I. XPS calibrations of pure compounds and quantification of the results[J]. Oxidation of Metals, 2001, 56(5): 415-424.
[121] ZHU H, WANG X, LIU X, et al. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors[J]. Advanced Materials, 2012, 24(48): 6524-6529.
[122] VASILKOV A Y, NAUMKIN A V, VOLKOV I O, et al. XPS/TEM characterisation of PtAu/C cathode electrocatalysts prepared by metal vapour synthesis[J]. Surface and Interface Analysis, 2010, 42(6-7): 559-563.
[123] GIFT, Frank C. , Jr., MISIOLEK W Z. Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride (CBN) grinding wheels[J]. Journal of Manufacturing Science and Engineering, 2004, 126(3): 451-458.
[124] QIAO J, FENG M, LI Y, et al. A study on tangential ultrasonic-assisted mirror grinding of zirconia ceramic curved surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9-10): 2837-2851.
[125] QIAO J, FENG M, WU H, et al. Experimental study on the effect of grinding path in tangential ultrasonic-assisted grinding for the curved surfaces of zirconia ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2021, 118(5-6): 1859-1872.
[126] FUJIMOTO M, TAKAHASHI Y, WU Y, et al. Study of ultrasonic vibration assisted internal grinding of small bore-high-efficiency mirror grinding[J]. Proceedings of JSPE Semestrial Meeting, 2010, 2010A: 7-8.
[127] CAO J, WU Y, LU D, et al. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools and Manufacture, 2014, 79(49-61.
[128] LIANG Z, WANG X, WU Y, et al. Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain[J]. International Journal of Machine Tools and Manufacture, 2013, 71: 41-51.
修改评论