中文版 | English
题名

钛合金超声增强等离子体氧化辅助磨削加工方法研究

其他题名
INVESTIGATION ON ULTRASONIC- ENHANCED PLASMA OXIDATION GRINDING OF TITANIUM ALLOY
姓名
姓名拼音
WU Hanqiang
学号
12031212
学位类型
博士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
吴勇波
导师单位
机械与能源工程系
论文答辩日期
2024-05-06
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钛合金因具备比强度大、耐腐蚀性强和抗疲劳性好等优异性能,在航空航天、国防兵器、生物医学和消费电子等领域备受重视。磨削加工作为钛合金精密成型的必要工艺,占总工艺的60%以上。然而,钛合金高温下强度高、弹性模量低和热传导系数低等属性造成磨削过程磨削力大、材料去除比率低和砂轮粘附严重等问题,严重阻碍着钛合金零部件的广泛应用。为解决此问题,本文提出超声增强等离子体氧化辅助磨削加工技术。该技术充分发挥等离子体氧化对钛合金的软脆效应和超声对等离子体氧化的增强作用,将超声振动增强等离子体氧化应用于钛合金的端面和周面磨削中。本文针对该技术开发了相应的实验系统,并对其基本加工特性展开了系统研究。

首先,阐述了超声增强等离子体氧化辅助端/周磨的加工原理。根据辅助端/周磨的加工原理制定了相应的工艺流程。在辅助端磨中,详细介绍了自行研制的超声射流喷嘴的设计过程;在辅助周磨中,阐述了磨削过程中避免产生电火花的条件。通过研究不同溶液下工件表面等离子体的激发现象,阐明了阳极氧化层和极间气泡在等离子体的激发过程发挥着重要作用,而电解液的气液状态影响着阳极氧化层和极间气泡的产生。在辅助端/周磨中,将超声振动均施加于电解液上以改变其气液状态,在此情况下探究超声振动对等离子体氧化的增强作用。

随后,研究了超声增强等离子氧化辅助端磨的基本加工特性。借助静态射流等离子体氧化实验揭示了电源参数(电压幅值、频率和占空比)和溶液浓度对等离子体强度的调制机制。通过研究溶液种类对等离子体氧化层生长方向的影响,发现Na2SO4溶液下的等离子体氧化层主要由基体变质而来,呈现向内生长。在此基础上,选用Na2SO4溶液制备等离子体氧化层,硬度测试和XRD探测结果表明等离子体氧化可对钛合金产生软脆效应,刻划实验也验证了等离子体氧化层的机械强度相对于钛合金基体有所降低。从磨粒切削对象的角度出发,对比了传统端磨、等离子体氧化辅助端磨和超声增强等离子体氧化辅助端磨的磨削力、表面粗糙度和沟槽形状精度,挖掘出磨粒切削等离子体氧化层时加工性能的提升机制。

进一步,研究了超声增强等离子氧化辅助周磨的基本加工特性。借助原子力显微镜考察载荷与钛合金表面划痕形貌特征(深度和体积)演变的关系。理论分析得知磨削运动参数(切深Δ、砂轮线速度vw和工件进给速度vs)通过控制最大未变形磨屑厚度tm和氧化层厚度to之间的关系决定磨粒的切削对象,并利用磨削后工件表面残留氧化层的有无进行了验证。在此基础上,研究工艺参数对磨削力、材料去除比率和表面粗糙度的影响,揭示了超声振动增强等离子体氧化下的加工性能提升机制。

最后,研究了超声增强等离子体氧化辅助磨削下磨粒和工件材料之间的相互作用。通过观测砂轮表面的粘附状态和加工表面微观形貌,分析得到辅助端/周磨中磨粒和工件材料之间的相互作用模型,揭示出辅助端/侧中的砂轮粘附抑制和表面微观形貌创成的内在机制。

本文的研究证明了超声增强等离子体氧化辅助磨削的可行性,为该技术的应用发展提供了相应的理论基础,同时也为钛合金的高效精密加工提供了一种新的加工路线,对促进钛合金关键零部件的应用具有一定的意义。

其他摘要

Titanium alloys have been widely used in aerospace, national defense, biomedical, and consumer electronics due to their excellent properties, such as high specific strength, strong corrosion resistance, and good fatigue resistance. Grinding is necessary for titanium alloy precision machining, accounting for more than 60% of the total machining process. However, high strength at the elevated temperature, low elastic modulus, and low thermal conductivity of titanium alloys perform high grinding force, low material removal rate, and severe chip adhesion on the wheel working surface in the grinding process, which seriously hinders the broad application of critical components made from titanium alloy. To address this problem, a novel machining technology, namely ultrasonic-enhanced plasma oxidation grinding (UEPOG), was proposed in this paper. Taking full advantage of the soft-brittle effect of the plasma oxidation on the titanium alloys and the promotion effect of ultrasonic vibration on the plasma oxidation, the UEPOG applied the ultrasonic vibration and plasma oxidation to the face and peripheral grinding. In this paper, the corresponding experimental device was developed, and the fundamental processing characteristics of the UEPOG were systematically investigated.

Firstly, the processing principle of ultrasonic-enhanced plasma oxidation face/peripheral grinding was described, and the corresponding processes were formulated. In face grinding, the design process of the in-house ultrasonic jet nozzle was introduced in detail. In peripheral grinding, the condition to avoid electric discharge was introduced. By recording the excitation phenomena of the plasma on the workpiece surface under different electrolytes, it was demonstrated that the anodic oxide layer and bubbles between the electrodes might play a significant role in plasma generation. In general, the generation of the anodic oxide layer and bubbles was associated with the gas-liquid state of the electrolyte. Hence, the ultrasonic vibration was applied to the electrolyte to change its gas-liquid state. In this case, the enhancement effect of the ultrasonic vibration on the plasma was investigated.

Then, the fundamental machining characteristics of ultrasonic-enhanced plasma oxidation face grinding were studied. The modulation mechanism of the power supply parameters (i.e., amplitude, frequency, and duty ratio of voltage) and the electrolyte concentration on the plasma intensity were revealed using the static jet plasma oxidation test. The effects of electrolyte type on the growth direction of the plasma oxide layer were explored. It was found that the plasma oxide layer, which was mainly modified from the Ti-6Al-4V substrate, exhibited an inward growth in the Na2SO4 solution. On this basis, the Na2SO4 solution was used to prepare the plasma oxide layer on the Ti-6Al-4V workpiece. The hardness test and XRD detection results showed that plasma oxidation can produce a soft-brittle effect on titanium alloy. Moreover, the scratching test demonstrated that the mechanical strength of the plasma oxide layer was lower than that of the titanium alloy substrate. From the point of view of the removed material of abrasive grains, the grinding force, surface roughness, and groove shape accuracy of conventional face grinding, plasma oxidation face grinding, and ultrasonic-enhanced plasma oxidation face grinding were compared. The improvement mechanism of grinding performance was discovered by removing the plasma oxide layer.

Further, the fundamental processing characteristics of ultrasonic-enhanced plasma oxidation peripheral grinding were studied. Employing atomic force microscopy, the relationship between the normal load and the evolution of scratch characteristics on the surface of titanium alloy samples was investigated. Theoretical analysis showed that grinding parameters (i.e., depth of cut Δ, wheel peripheral speed vs, and workpiece feed speed vw) determine the removed material of abrasive grains by controlling the relationship between the maximum thickness tm of the undeformed chip and the thickness to of the oxide layer. The presence and absence of the residual oxide layer on the ground workpiece surface verified this analysis. On this basis, the effects of processing parameters on grinding force, actual material removal ratio, and surface roughness were studied, and the improvement mechanism of grinding performance was revealed under the enhancement effect of the ultrasonic vibration on plasma oxidation.

Finally, the interaction between abrasive grains and oxidation material was explored. By observing the chip adhesion on the wheel’s working surface and the micro morphology of the ground workpiece surface, the interaction model between the abrasive grains and the workpiece material in the face/peripheral grinding was respectively proposed. Moreover, the internal mechanism of the inhibition of the chip adhesion on the wheel’s working surface and the formation of the surface morphology in the face/peripheral grinding were revealed.

The study in this paper proved the feasibility of ultrasonic-enhanced plasma oxidation grinding. It provided the corresponding theoretical basis for the application and development of this novel technology, which had a particular significance for promoting the application of critical components made from titanium alloy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] GUPTA K, LAUBSCHER R F. Sustainable machining of titanium alloys: A critical review[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(14): 2543-2560.
[2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(06): 6-41.
[3] EZUGWU E O, WANG Z M. Titanium alloys and their machinability—a review[J]. Journal of Materials Processing Technology, 1997, 68(3): 262-274.
[4] 中国有色金属工业协会钛锆铪分会: 《钛合金: 消费电子材料创新趋势》. 来源: https://titan.chinania.org.cn/html/yy/tai/2023/1106/7757.html.
[5] 刘明政. 低温冷风微量润滑磨削钛合金热力学作用规律与力热模型[D]. 青岛理工大学, 2023.
[6] GUO G, LIU Z, AN Q, et al. Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1): 135-142.
[7] SETTI D, SINHA M K, GHOSH S, et al. Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids[J]. International Journal of Machine Tools and Manufacture, 2015, 88(237-248.
[8] DE MELLO A, DE SILVA R B, MACHADO Á R, et al. Surface grinding of Ti-6Al-4V Alloy with SiC abrasive wheel at various cutting conditions[J]. Procedia Manufacturing, 2017, 10: 590-600.
[9] SADEGHI M H, HADDAD M J, TAWAKOLI T, et al. Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2008, 44(5-6): 487-500.
[10] 徐九华. 钛合金切削磨削加工技术研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(05): 1-4.
[11] 郭力, 阳超. 钛合金磨削加工研究的进展[J]. 湖南文理学院学报(自然科学版), 2009, 21(01): 67-72+86.
[12] MA X, JIAO F, NIU Y, et al. Modeling of the material removal rate in internal cylindrical plunge electrochemical grinding[J]. Journal of Manufacturing Processes, 2023, 92: 89-106.
[13] GE Y, ZHU Z, ZHU Y. Electrochemical deep grinding of cast nickel-base superalloys[J]. Journal of Manufacturing Processes, 2019, 47: 291-296.
[14] NIU S, QU N, YUE X, et al. Combined rough and finish machining of Ti–6Al–4V alloy by electrochemical mill-grinding[J]. Machining Science and Technology, 2020, 24(4): 621-637.
[15] NIU S, QU N, LI H. Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1371-1382.
[16] SIEGEL F, KLUG U, KLING R. Extensive micro-structuring of metals using picosecond pulses - ablation behavior and industrial relevance[J]. Journal of Laser Micro/nanoengineering, 2009, 4(2): 104-110.
[17] YADAV R S, YADAVA V. Experimental investigations on electrical discharge diamond peripheral surface grinding (EDDPSG) of hybrid metal matrix composite[J]. Journal of Manufacturing Processes, 2017, 27: 241-251.
[18] ŚWIĘCIK R. Experimental investigation of abrasive electrodischarge grinding of Ti6Al4V titanium alloy[J]. Journal of Achievements in Materials Manufacturing Engineering, 2009, 37(2): 706-711.
[19] SUTOWSKI P, ŚWIĘCIK R. The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94(1-4): 1263-1282.
[20] SINGH G K, YADAVA V, KUMAR R. Diamond face grinding of WC-Co composite with spark assistance: Experimental study and parameter optimization[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 509-518.
[21] HE Y, XIAO G, ZHU S, et al. Surface formation in laser-assisted grinding high-strength alloys[J]. International Journal of Machine Tools and Manufacture, 2023, 186: 104002.
[22] MA Z, WANG Q, CHEN H, et al. Surface prediction in laser-assisted grinding process considering temperature-dependent mechanical properties of zirconia ceramic[J]. Journal of Manufacturing Processes, 2022, 80: 491-503.
[23] RAHMAN RASHID R A, SUN S, WANG G, et al. The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining[J]. International Journal of Machine Tools and Manufacture, 2012, 63(41-43.
[24] 贺毅, 肖贵坚, 朱升旺, 等. 皮秒激光辅助砂带磨削TC17钛合金材料去除行为研究[J]. 机械工程学报, 2023, 59(09): 360-372.
[25] BRAHAM-BOUCHNAK T, GERMAIN G, MOREL A, et al. The influence of laser assistance on the machinability of the titanium alloy Ti555-3[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2471-2481.
[26] YANG Z, ZHU L, ZHANG G, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594.
[27] WU Y B, NOMURA M, ZHI J F, et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding[J]. Materials Science Forum, 2004, 471-472: 101-106.
[28] NIK M G, MOVAHHEDY M R, AKBARI J. Ultrasonic-assisted grinding of Ti6Al4V alloy[J]. Procedia CIRP, 2012, 1: 353-358.
[29] WANG Y, LIN B, CAO X, et al. An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium[J]. Journal of Materials Processing Technology, 2014, 214(9): 1871-1878.
[30] LI S, WU Y, FUJIMOTO M, et al. Improving the working surface condition of electroplated cubic boron nitride grinding quill in surface grinding of Inconel 718 by the assistance of ultrasonic vibration[J]. Journal of Manufacturing Science and Engineering, 2016, 138(7): 0710081-0710088.
[31] ELHAMI S, RAZFAR M R. Effect of ultrasonic vibration on the single discharge of electrochemical discharge machining[J]. Materials and Manufacturing Processes, 2017, 33(4): 444-451.
[32] ALIOFKHAZRAEI M, MACDONALD D D, MATYKINA E, et al. Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations[J]. Applied Surface Science Advances, 2021, 5: 100121.
[33] 雷欣, 林乃明, 邹娇娟, 等. 铝合金微弧氧化的研究进展[J]. 表面技术, 2019, 48(12): 10-22.
[34] 倪尔鑫, 严继康, 唐婉霞, 等. 钛及钛合金复合微弧氧化的研究进展[J]. 材料导报, 2015, 29(S1): 457-461.
[35] MARCHENOIR J C, LOUP J P, MASSON J. Étude des couches poreuses formées par oxydation anodique du titane sous fortes tensions[J]. Thin Solid Films, 1980, 66(3): 357-369.
[36] WANG Y, SHEN J, WU G, et al. Growth characteristics of scanning micro-arc oxidation coating on Ti6Al4V alloy[J]. Surface Engineering, 2023, 39(2): 218-228.
[37] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. Journal of Physics D: Applied Physics, 2010, 43(10): 105203.
[38] MARTIN J, MELHEM A, SHCHEDRINA I, et al. Effects of electrical parameters on plasma electrolytic oxidation of aluminium[J]. Surface and Coatings Technology, 2013, 221: 70-76.
[39] 王亚明, 韩晓东, 郭立新, 等. LY12铝合金表面喷射式微弧氧化工艺研究[J]. 材料热处理学报, 2009, 30(02): 121-124.
[40] YEROKHIN A L, SNIZHKO L O, GUREVINA N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminium[J]. Journal of Physics D: Applied Physics, 2003, 36(17): 2110-2120.
[41] HAN Y, HONG S H, XU K W. Porous nanocrystalline titania films by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2002, 154(2): 314-318.
[42] LAURINDO C A H, LEPIENSKI C M, AMORIM F L, et al. Mechanical and tribological properties of Ca/P-doped titanium dioxide layer produced by plasma electrolytic oxidation: effects of applied voltage and heat treatment[J]. Tribology Transactions, 2018, 61(4): 733-741.
[43] WANG J-H, WANG J, LU Y, et al. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy[J]. Applied Surface Science, 2015, 324: 405-413.
[44] LEDERER S, ARAT S, FUERBETH W. Influence of process parameters on the tribological behavior of PEO coatings on CP-Titanium 4+ alloys for biomedical applications[J]. Materials, 2021, 14(18): 5364.
[45] RAFIEERAD A R, ASHRA M R, MAHMOODIAN R, et al. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper[J]. Materials Science and Engineering C, 2015, 57: 397-413.
[46] DURDU S, DENIZ Ö F, KUTBAY I, et al. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation[J]. Journal of Alloys and Compounds, 2013, 551: 422-429.
[47] YAO Z, JIANG Y, JIA F, et al. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy[J]. Applied Surface Science, 2008, 254(13): 4084-4091.
[48] WEI C B, TIAN X B, YANG S Q, et al. Anode current effects in plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2007, 201(9-11): 5021-5024.
[49] JADHAV P, BONGALE A, KUMAR S, et al. Development of an oxide layer on Al 6061 using plasma arc electrolytic oxidation in silicate-based electrolyte[J]. Materials (Basel), 2022, 15(4): 1616.
[50] WEN L, WANG Y, JIN Y, et al. Microarc oxidation of 2024 Al alloy using spraying polar and its influence on microstructure and corrosion behavior[J]. Surface and Coatings Technology, 2013, 228: 92-99.
[51] XIA L, HAN J, DOMBLESKY J P, et al. Study of scanning micro-arc oxidation and coating development[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5323-5332.
[52] 吕鹏翔, 韦东波, 郭成波, 等. 2024铝合金表面扫描式微弧氧化工艺研究[J]. 无机材料学报, 2013, 28(04): 381-386.
[53] LV P, CHI G-x, WEI D-b, et al. Design of scanning micro-arc oxidation forming ceramic coatings on 2024 aluminium alloy[J]. Advanced Materials Research, 2011, 189-193: 1296 - 1300.
[54] CLARE A T, SPEIDEL A, MITCHELL-SMITH J, et al. Surface enhanced micro features using electrochemical jet processing[J]. CIRP Annals, 2019, 68(1): 177-180.
[55] LU J, LIU S, ZHAO Y. Enabling jet-electrochemical discharge machining on niobium-like passivating metal and the single step fabrication of coated microstructures[J]. Journal of The Electrochemical Society, 2023, 170(9): 093508.
[56] 高宾华, 保文成, 陈超群, 等. 延塑性航空合金磨削砂轮粘附及粘附抑制技术的研究现状与展望[J]. 航空制造技术, 2021, 64(07): 53-71.
[57] DING W, LINKE B, ZHU Y, et al. Review on monolayer CBN superabrasive wheels for grinding metallic materials[J]. Chinese Journal of Aeronautics, 2017, 30(1): 109-134.
[58] XU X, YU Y, HUANG H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear, 2003, 255(7-12): 1421-1426.
[59] KUMAR K V. Superabrasive Grinding of Titanium Alloys[J]. SME MR90-505, 1990.
[60] XU X, YU Y. Adhesion at abrasive-Ti6Al4V interface with elevated grinding temperatures[J]. Journal of Materials Science Letters, 2002, 21(16): 1293-1295.
[61] GIFT F C, Jr., MISIOLEK W Z, FORCE E, II. Mechanics of loading for electroplated cubic boron nitride (CBN) wheels during grinding of a nickel-based superalloy in water-based lubricating fluids[J]. Journal of Tribology, 2004, 126(4): 795-801.
[62] 任敬心, 华定安, 黄奇. 磨削钛合金的砂轮粘附[J]. 磨料磨具与磨削, 1986, 02: 13-18.
[63] PASHMFOROUSH F, DELIR BAGHERINIA R. Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy[J]. Journal of Cleaner Production, 2018, 178: 363-372.
[64] ELANCHEZHIAN J, PRADEEP KUMAR M, MANIMARAN G. Grinding titanium Ti-6Al-4V alloy with electroplated cubic boron nitride wheel under cryogenic cooling[J]. Journal of Mechanical Science and Technology, 2015, 29(11): 4885-4890.
[65] XUN L. Application of self-inhaling internal cooling wheel in vertical surface grinding[J]. Chinese Journal of Mechanical Engineering, 2014, 27(01): 86-91.
[66] ÖPöZ T T, CHEN X. Experimental investigation of material removal mechanism in single grit grinding[J]. International Journal of Machine Tools and Manufacture, 2012, 63: 32-40.
[67] GHOSH S, CHATTOPADHYAY A B, PAUL S. Modelling of specific energy requirement during high-efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11): 1242-1253.
[68] WANG H, SUBHASH G, CHANDRA A. Characteristics of single-grit rotating scratch with a conical tool on pure titanium[J]. Wear, 2001, 249(7): 566-581.
[69] ZHOU H, DING W, LIU C. Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains[J]. The International Journal of Advanced Manufacturing Technology, 2018, 100(1-4): 153-165.
[70] DING W, ZHAO B, XU J, et al. Grinding behavior and surface appearance of (TiCp+TiBw)/Ti-6Al-4V titanium matrix composites[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1334-1342.
[71] ZHAO Y, QIAN H, H.AWAD S, et al. Review of micro plasma oxidation on titanium alloy[J]. Surface Technology, 2005, 34(03): 9-12.
[72] GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[73] CLYNE T W, TROUGHTON S C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals[J]. International Materials Reviews, 2018, 64(3): 127-162.
[74] KOZAK J, RAJURKAR K P, BALKRISHNA R. Study of electrochemical jet machining process[J]. Journal of Manufacturing Science and Engineering, 1996, 118(4): 490-498.
[75] KAWANAKA T, KUNIEDA M. Mirror-like finishing by electrolyte jet machining[J]. CIRP Annals, 2015, 64(1): 237-240.
[76] HACKERT-OSCHäTZCHEN M, PAUL R, MARTIN A, et al. Study on the dynamic generation of the jet shape in jet electrochemical machining[J]. Journal of Materials Processing Technology, 2015, 223(240-251.
[77] VOLEIŠIS A, KAŽYS R, VOLEIŠIENĖ B, et al. Simultaneous generation of longitudinal and shear ultrasonic waves: knowledge summary, PZT piezoelements manufacturing and experiments[J]. Ultragarsas/Ultrasound, 2011, 66(1): 25-31.
[78] NAGALINGAM A P, YEO S H. Effects of ambient pressure and fluid temperature in ultrasonic cavitation machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(9-12): 2883-2894.
[79] ZHANG S, GUO Y, CHEN Z, et al. Proposal for a novel elliptical ultrasonic aspirator and its fundamental performance in cartilage removal[J]. Ultrasonics, 2021, 109(106259.
[80] MATHIESON A, CARDONI A, CERISOLA N, et al. The influence of piezoceramic stack location on nonlinear behavior of langevin transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(6): 1126-1133.
[81] 张诗博. 基于压电超声换能器的骨切割手术器械关键技术研究[D]. 南方科技大学, 2023.
[82] LI S, WU Y, NOMURA M. Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1): 1113-1125.
[83] LI S, WU Y, NOMURA M, et al. Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti–6Al–4V[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071009.
[84] MALKIN S. Grinding technology : theory and applications of machining with abrasives[M]. New York: Industrial Press, 1989.
[85] MAYER J E, FANG G P, KEGG R L. Effect of grit depth of cut on strength of ground ceramics[J]. CIRP Annals, 1994, 43(1): 309-312.
[86] XU H H K, JAHANMIR S, IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina[J]. Machining Science and Technology, 1997, 1(1): 49-66.
[87] IKONOPISOV S, GIRGINOV A, MACHKOVA M. Electrical breaking down of barrier anodic films during their formation[J]. Electrochimica Acta, 1979, 24(4): 451-456.
[88] ALBELLA J M, MONTERO I, MARTINEZ-DUART J M. A theory of avalanche breakdown during anodic oxidation[J]. Electrochimica Acta, 1987, 32(2): 255-258.
[89] KLEIN N. Electrical breakdown mechanisms in thin insulators[J]. Thin Solid Films, 1978, 50: 223-232.
[90] KRYSMANN W, KURZE P, DITTRICH K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Crystal Research Technology, 1984, 19(7): 973-979.
[91] YEROKHIN A L, SNIZHKO L O, GUREVINA N L, et al. Discharge characterization in plasma electrolytic oxidation of aluminium[J]. Journal of Physics D: Applied Physics, 2003, 36(17): 2110.
[92] BAKOVETS V, POLYAKOV O, DOLGOVESOVA I. Plasma electrolytic anode treatment of metals[J]. Nauka Novosibirsk, 1991, 168: 66.
[93] ENGELL H J. Stability and breakdown phenomena of passivating films[J]. Electrochimica Acta, 1977, 22(9): 987-993.
[94] CHEN X, XU Z, ZHU D, et al. Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk[J]. Chinese Journal of Aeronautics, 2016, 29(1): 274-282.
[95] KUROMOTO N K, SIMãO R A, SOARES G A. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages[J]. Materials Characterization, 2007, 58(2): 114-121.
[96] CHENG Y-l, WU X-Q, XUE Z-g, et al. Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte[J]. Surface and Coatings Technology, 2013, 217: 129-139.
[97] LU J, ZHAN S, LIU B, et al. Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 045101.
[98] LU J, GUAN J, DONG B, et al. Control principle of anodic discharge for enhanced performance in jet-electrochemical discharge machining of semiconductor 4H-SiC[J]. Journal of Manufacturing Processes, 2023, 92: 435-452.
[99] 卢家俊. 射流电化学放电加工难电解材料机理与工艺研究[D]. 南方科技大学, 2023.
[100] 徐明刚, 张建华, 张勤河. 超声振动辅助气体介质电火花加工放电通道的研究[J]. 电加工与模具, 2005, 04): 16-18+28.
[101] NGUYEN T T, ASAKURA Y, OKADA N, et al. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone[J]. Japanese Journal of Applied Physics, 2017, 56(7S1): 07JE06.
[102] 詹顺达. 阴极等离子体辅助微细电解加工方法与机理研究[D]. 南方科技大学, 2023.
[103] ZHAN S, ZHAO Y. Plasma-assisted electrochemical machining of microtools and microstructures[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103596.
[104] 刘世敏. 钛表面微弧氧化层的制备及评价[D]. 天津大学, 2011.
[105] MATYKINA E, BERKANI A, SKELDON P, et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium[J]. Electrochimica Acta, 2007, 53(4): 1987-1994.
[106] OHMORI H, KATAHIRA K, MIZUTANI M, et al. Investigation on color-finishing process conditions for titanium alloy applying a new electrical grinding process[J]. CIRP Annals, 2004, 53(1): 455-458.
[107] DONG B, ZHAN S, LU J, et al. Phenomena and mechanism of local oxidation microlithography of 4H–SiC via electrochemical jet anodisation[J]. Ceramics International, 2023, 49(6): 8781-8792.
[108] LI Q, YANG W, LIU C, et al. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes[J]. Surface and Coatings Technology, 2017, 316: 162-170.
[109] LI Q B, LIU C C, YANG W B, et al. Growth mechanism and adhesion of PEO coatings on 2024Al alloy[J]. Surface Engineering, 2016, 33(10): 760-766.
[110] ZHANG C, FENG P, ZHANG J. Ultrasonic vibration-assisted scratch-induced characteristics of C-plane sapphire with a spherical indenter[J]. International Journal of Machine Tools and Manufacture, 2013, 64: 38-48.
[111] DAVIS J R. Metals Handbook: Desk Edition[M]. ASM: International Press, 1998.
[112] CAI J, LI F, LIU T, et al. Investigation of mechanical behavior of quenched Ti–6Al–4V alloy by microindentation[J]. Materials Characterization, 2011, 62(3): 287-293.
[113] BORGESE L, GELFI M, BONTEMPI E, et al. Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition[J]. Surface and Coatings Technology, 2012, 206(8-9): 2459-2463.
[114] NOHAVA J, MUŠáLEK R, MATĚJíČEK J, et al. A contribution to understanding the results of instrumented indentation on thermal spray coatings — Case study on Al2O3 and stainless steel[J]. Surface and Coatings Technology, 2014, 240: 243-249.
[115] SHAW M C. Principles of Abrasive Processing[M]. Clarendon Press, 1996.
[116] WU H, JIANG L, ZHONG X, et al. Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel[J]. Friction, 2020, 9(6): 1673-1687.
[117] HANAWA T, OTA M. Calcium phosphate naturally formed on titanium in electrolyte solution[J]. Biomaterials, 1991, 12(8): 767-774.
[118] ZHAO Y, WONG S M, WONG H M, et al. Effects of carbon and nitrogen plasma immersion ion implantation on In vitro and In vivo biocompatibility of titanium alloy[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1510-1516.
[119] GUO B, LIANG J, TIAN J, et al. The study of microstructure and composition of Ti-6Al-4V micro-arc oxidation ceramic film[J]. Rare Metal Materials and Engineering, 2005, 12: 1897-1900.
[120] VELON A, OLEFJORD I. Oxidation behavior of Ni3Al and Fe3Al: I. XPS calibrations of pure compounds and quantification of the results[J]. Oxidation of Metals, 2001, 56(5): 415-424.
[121] ZHU H, WANG X, LIU X, et al. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors[J]. Advanced Materials, 2012, 24(48): 6524-6529.
[122] VASILKOV A Y, NAUMKIN A V, VOLKOV I O, et al. XPS/TEM characterisation of PtAu/C cathode electrocatalysts prepared by metal vapour synthesis[J]. Surface and Interface Analysis, 2010, 42(6-7): 559-563.
[123] GIFT, Frank C. , Jr., MISIOLEK W Z. Fluid performance study for groove grinding a nickel-based superalloy using electroplated cubic boron nitride (CBN) grinding wheels[J]. Journal of Manufacturing Science and Engineering, 2004, 126(3): 451-458.
[124] QIAO J, FENG M, LI Y, et al. A study on tangential ultrasonic-assisted mirror grinding of zirconia ceramic curved surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9-10): 2837-2851.
[125] QIAO J, FENG M, WU H, et al. Experimental study on the effect of grinding path in tangential ultrasonic-assisted grinding for the curved surfaces of zirconia ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2021, 118(5-6): 1859-1872.
[126] FUJIMOTO M, TAKAHASHI Y, WU Y, et al. Study of ultrasonic vibration assisted internal grinding of small bore-high-efficiency mirror grinding[J]. Proceedings of JSPE Semestrial Meeting, 2010, 2010A: 7-8.
[127] CAO J, WU Y, LU D, et al. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools and Manufacture, 2014, 79(49-61.
[128] LIANG Z, WANG X, WU Y, et al. Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain[J]. International Journal of Machine Tools and Manufacture, 2013, 71: 41-51.

所在学位评定分委会
力学
国内图书分类号
TH162
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766129
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
武韩强. 钛合金超声增强等离子体氧化辅助磨削加工方法研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031212-武韩强-机械与能源工程(13116KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[武韩强]的文章
百度学术
百度学术中相似的文章
[武韩强]的文章
必应学术
必应学术中相似的文章
[武韩强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。