[1] SINGER N G, CAPLAN A I. Mesenchymal stem cells: mechanisms of inflammation[J]. Annu Rev Pathol, 2011, 6: 457-478.
[2] UCCELLI A, MORETTA L, PISTOIA V. Mesenchymal stem cells in health and disease[J]. Nat Rev Immunol, 2008, 8(9): 726-736.
[3] WEISS A R R, DAHLKE M H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs[J]. Front Immunol, 2019, 10: 1191.
[4] WEISSMAN I L. Developmental switches in the immune system[J]. Cell, 1994, 76(2): 207-218.
[5] GOTTS J E, MATTHAY M A. Sepsis: pathophysiology and clinical management[J]. Bmj, 2016, 353: i1585.
[6] GOTTS J E, MATTHAY M A. Cell-based Therapy in Sepsis. A Step Closer[J]. Am J Respir Crit Care Med, 2018, 197(3): 280-281.
[7] BERNARDO M E, FIBBE W E. Mesenchymal stromal cells: sensors and switchers of inflammation[J]. Cell Stem Cell, 2013, 13(4): 392-402.
[8] DI NICOLA M, CARLO-STELLA C, MAGNI M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10): 3838-3843.
[9] MEZEY É. Human Mesenchymal Stem/Stromal Cells in Immune Regulation and Therapy[J]. Stem Cells Transl Med, 2022, 11(2): 114-134.
[10] BURNHAM A J, DALEY-BAUER L P, HORWITZ E M. Mesenchymal stromal cells in hematopoietic cell transplantation[J]. Blood Adv, 2020, 4(22): 5877-5887.
[11] BOREGOWDA S V, PHINNEY D G. Therapeutic applications of mesenchymal stem cells: current outlook[J]. BioDrugs, 2012, 26(4): 201-208.
[12] NéMETH K, LEELAHAVANICHKUL A, YUEN P S, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
[13] LIU F, XIE J, ZHANG X, et al. Overexpressing TGF-β1 in mesenchymal stem cells attenuates organ dysfunction during CLP-induced septic mice by reducing macrophage-driven inflammation[J]. Stem Cell Res Ther, 2020, 11(1): 378.
[14] JUAREZ J, BENDALL L, BRADSTOCK K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis[J]. Curr Pharm Des, 2004, 10(11): 1245-1259.
[15] LI M, RANSOHOFF R M. The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis[J]. Semin Cancer Biol, 2009, 19(2): 111-115.
[16] WüRTH R, BAJETTO A, HARRISON J K, et al. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment[J]. Front Cell Neurosci, 2014, 8: 144.
[17] CHEN S, HE T, ZHONG Y, et al. Roles of focal adhesion proteins in skeleton and diseases[J]. Acta Pharm Sin B, 2023, 13(3): 998-1013.
[18] CHEN S, WU X, LAI Y, et al. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc[J]. Bone Res, 2022, 10(1): 5.
[19] WU X, LAI Y, CHEN S, et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis[J]. Nat Aging, 2022, 2(4): 332-347.
[20] GAO H, ZHONG Y, ZHOU L, et al. Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function[J]. Elife, 2023, 12
[21] XU H, CAO H, XIAO G. Signaling via PINCH: Functions, binding partners and implications in human diseases[J]. Gene, 2016, 594(1): 10-15.
[22] LEI Y, FU X, LI P, et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice[J]. Bone Res, 2020, 8: 37.
[23] WU X, CHEN M, LIN S, et al. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice[J]. Aging Dis, 2023,14(5): 1818-1833.
[24] WANG Y, FANG J, LIU B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11): 1515-1530.
[25] SHI Y, WANG Y, LI Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8): 493-507.
[26] PATEL B K, RAABE M J, LANG E R, et al. Spatial Transcriptomics Reveals Distinct Tissue Niches Linked with Steroid Responsiveness in Acute Gastrointestinal GVHD[J]. Blood, 2023
[27] WU R, LIU C, DENG X, et al. Enhanced alleviation of aGVHD by TGF-β1-modified mesenchymal stem cells in mice through shifting MΦ into M2 phenotype and promoting the differentiation of Treg cells[J]. J Cell Mol Med, 2020, 24(2): 1684-1699.
[28] ROBLES J D, LIU Y P, CAO J, et al. Immunosuppressive mechanisms of human bone marrow derived mesenchymal stromal cells in BALB/c host graft versus host disease murine models[J]. Exp Hematol Oncol, 2015, 4: 13.
[29] VACARU A M, MAZILU A M, DUMITRESCU M, et al. Treatment with Mesenchymal Stromal Cells Overexpressing Fas-Ligand Ameliorates Acute Graft-versus-Host Disease in Mice[J]. Int J Mol Sci, 2022, 23(1): 534.
[30] DE LUCA L, TRINO S, LAURENZANA I, et al. Mesenchymal Stem Cell Derived Extracellular Vesicles: A Role in Hematopoietic Transplantation?[J]. Int J Mol Sci, 2017, 18(5)
[31] GUO L, LAI P, WANG Y, et al. Extracellular vesicles from mesenchymal stem cells prevent contact hypersensitivity through the suppression of Tc1 and Th1 cells and expansion of regulatory T cells[J]. Int Immunopharmacol, 2019, 74: 105663.
[32] GAUTHIER S D, LEBOEUF D, MANUGUERRA-GAGNé R, et al. Stromal-Derived Factor-1α and Interleukin-7 Treatment Improves Homeostatic Proliferation of Naïve CD4(+) T Cells after Allogeneic Stem Cell Transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(10): 1721-1731.
[33] DAL COLLO G, ADAMO A, GATTI A, et al. Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease[J]. Stem Cells, 2020, 38(5): 698-711.
[34] LI K L, LI J Y, XIE G L, et al. Exosomes Released From Human Bone Marrow-Derived Mesenchymal Stem Cell Attenuate Acute Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation in Mice[J]. Front Cell Dev Biol, 2021, 9: 617589.
[35] ZHU H, LAN L, ZHANG Y, et al. Epidermal growth factor stimulates exosomal microRNA-21 derived from mesenchymal stem cells to ameliorate aGVHD by modulating regulatory T cells[J]. Faseb j, 2020, 34(6): 7372-7386.
[36] TOUIL H, LI R, ZUROFF L, et al. Cross-talk between B cells, microglia and macrophages, and implications to central nervous system compartmentalized inflammation and progressive multiple sclerosis[J]. EBioMedicine, 2023, 96: 104789.
[37] PILIPOVIĆ I, STOJIĆ-VUKANIĆ Z, LEPOSAVIĆ G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis[J]. Pharmacol Ther, 2023, 243: 108358.
[38] LIU Y, MA Y, DU B, et al. Mesenchymal Stem Cells Attenuated Blood-Brain Barrier Disruption via Downregulation of Aquaporin-4 Expression in EAE Mice[J]. Mol Neurobiol, 2020, 57(9): 3891-3901.
[39] ZHANG J, BULLER B A, ZHANG Z G, et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system[J]. Exp Neurol, 2022, 347: 113895.
[40] FAN J, HAN Y, SUN H, et al. Mesenchymal stem cell-derived exosomal microRNA-367-3p alleviates experimental autoimmune encephalomyelitis via inhibition of microglial ferroptosis by targeting EZH2[J]. Biomed Pharmacother, 2023, 162: 114593.
[41] MATHIAN A, ARNAUD L, RUIZ-IRASTORZA G. Is it safe to withdraw low-dose glucocorticoids in SLE patients in remission?[J]. Autoimmun Rev, 2023: 103446.
[42] GAO L, BIRD A K, MEEDNU N, et al. Bone Marrow-Derived Mesenchymal Stem Cells From Patients With Systemic Lupus Erythematosus Have a Senescence-Associated Secretory Phenotype Mediated by a Mitochondrial Antiviral Signaling Protein-Interferon-β Feedback Loop[J]. Arthritis Rheumatol, 2017, 69(8): 1623-1635.
[43] ZHOU K, ZHANG H, JIN O, et al. Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice[J]. Cell Mol Immunol, 2008, 5(6): 417-424.
[44] LEE H K, KIM H S, KIM J S, et al. CCL2 deficient mesenchymal stem cells fail to establish long-lasting contact with T cells and no longer ameliorate lupus symptoms[J]. Sci Rep, 2017, 7: 41258.
[45] GENG L, TANG X, ZHOU K, et al. MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus[J]. Cell Mol Immunol, 2019, 16(3): 260-274.
[46] TAN W, GU Z, LENG J, et al. Let-7f-5p ameliorates inflammation by targeting NLRP3 in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus[J]. Biomed Pharmacother, 2019, 118: 109313.
[47] YANG C, SUN J, TIAN Y, et al. Immunomodulatory Effect of MSCs and MSCs-Derived Extracellular Vesicles in Systemic Lupus Erythematosus[J]. Front Immunol, 2021, 12: 714832.
[48] CHE N, LI X, ZHANG L, et al. Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression[J]. J Immunol, 2014, 193(10): 5306-5314.
[49] LEE H K, KIM H S, PYO M, et al. Phorbol ester activates human mesenchymal stem cells to inhibit B cells and ameliorate lupus symptoms in MRL.Fas(lpr) mice[J]. Theranostics, 2020, 10(22): 10186-10199.
[50] LIU H, LI R, LIU T, et al. Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis[J]. Front Immunol, 2020, 11: 1912.
[51] SHAO Y, ZHOU F, HE D, et al. Overexpression of CXCR7 promotes mesenchymal stem cells to repair phosgene-induced acute lung injury in rats[J]. Biomed Pharmacother, 2019, 109: 1233-1239.
[52] WEI S T, HUANG Y C, CHIANG J Y, et al. Gain of CXCR7 function with mesenchymal stem cell therapy ameliorates experimental arthritis via enhancing tissue regeneration and immunomodulation[J]. Stem Cell Res Ther, 2021, 12(1): 314.
[53] ERDMAN R, STAHL R C, ROTHBLUM K, et al. Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3[J]. J Biol Chem, 2002, 277(9): 7619-7625.
[54] JONES F K, STEFAN A, KAY A G, et al. Syndecan-3 regulates MSC adhesion, ERK and AKT signalling in vitro and its deletion enhances MSC efficacy in a model of inflammatory arthritis in vivo[J]. Sci Rep, 2020, 10(1): 20487.
[55] TIAN S, YAN Y, QI X, et al. Treatment of Type II Collagen-Induced Rat Rheumatoid Arthritis Model by Interleukin 10 (IL10)-Mesenchymal Stem Cells (BMSCs)[J]. Med Sci Monit, 2019, 25: 2923-2934.
[56] HU Q Y, YUAN Y, LI Y C, et al. Programmed Cell Death Ligand 1-Transfected Mouse Bone Marrow Mesenchymal Stem Cells as Targeted Therapy for Rheumatoid Arthritis[J]. Biomed Res Int, 2021, 2021: 5574282.
[57] CAO Y, BROMBACHER F, TUNYOGI-CSAPO M, et al. Interleukin-4 regulates proteoglycan-induced arthritis by specifically suppressing the innate immune response[J]. Arthritis Rheum, 2007, 56(3): 861-870.
[58] HAIKAL S M, ABDELTAWAB N F, RASHED L A, et al. Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model[J]. Cells, 2019, 8(8)
[59] ALCARAZ M J, GUILLéN M I. Cellular and Molecular Targets of Extracellular Vesicles from Mesenchymal Stem/Stromal Cells in Rheumatoid Arthritis[J]. Stem Cells Transl Med, 2022, 11(12): 1177-1185.
[60] NGUYEN H, NGUYEN H L, LAN P D, et al. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation[J]. Chem Soc Rev, 2023
[61] WANG Y, GAO T, LI W, et al. Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies[J]. Cell Biosci, 2023, 13(1): 160.
[62] HAO S, NING K, KUZ C A, et al. SARS-CoV-2 infection of polarized human airway epithelium induces necroptosis that causes airway epithelial barrier dysfunction[J]. J Med Virol, 2023, 95(9): e29076.
[63] ROSSELLO-GELABERT M, GONZALEZ-PUJANA A, IGARTUA M, et al. Clinical progress in MSC-based therapies for the management of severe COVID-19[J]. Cytokine Growth Factor Rev, 2022, 68: 25-36.
[64] XIANG B, CHEN L, WANG X, et al. Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury[J]. Int J Mol Sci, 2017, 18(4)
[65] MORRISON T J, JACKSON M V, CUNNINGHAM E K, et al. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer[J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
[66] SU Y, SILVA J D, DOHERTY D, et al. Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis[J]. Thorax, 2023, 78(6): 617-630.
[67] MATTOLI S, SCHMIDT M. Investigational Use of Mesenchymal Stem/Stromal Cells and Their Secretome as Add-On Therapy in Severe Respiratory Virus Infections: Challenges and Perspectives[J]. Adv Ther, 2023, 40(6): 2626-2692.
[68] STOKEL-WALKER C. What do we know about the adaptive immune response to covid-19?[J]. Bmj, 2023, 380: 19.
[69] KASPI H, SEMO J, ABRAMOV N, et al. MSC-NTF (NurOwn®) exosomes: a novel therapeutic modality in the mouse LPS-induced ARDS model[J]. Stem Cell Res Ther, 2021, 12(1): 72.
[70] ZHU R, YAN T, FENG Y, et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms[J]. Cell Res, 2021, 31(12): 1244-1262.
[71] SHI L, WANG L, XU R, et al. Mesenchymal stem cell therapy for severe COVID-19[J]. Signal Transduct Target Ther, 2021, 6(1): 339.
[72] BEHESHTI MAAL A, SHAHRBAF M A, SADRI B, et al. Prevalence of hepatobiliary manifestations in inflammatory bowel disease: a GRADE assessed systematic review and meta-analysis on more than 1.7 million patients[J]. J Crohns Colitis, 2023
[73] HULDANI H, MARGIANA R, AHMAD F, et al. Immunotherapy of inflammatory bowel disease (IBD) through mesenchymal stem cells[J]. Int Immunopharmacol, 2022, 107: 108698.
[74] PARK J S, YI T G, PARK J M, et al. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease[J]. J Clin Biochem Nutr, 2015, 57(3): 192-203.
[75] LEE H J, OH S H, JANG H W, et al. Long-Term Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Dextran Sulfate Sodium-Induced Murine Chronic Colitis[J]. Gut Liver, 2016, 10(3): 412-419.
[76] HOFFMAN A M, DOW S W. Concise Review: Stem Cell Trials Using Companion Animal Disease Models[J]. Stem Cells, 2016, 34(7): 1709-1729.
[77] SOONTARARAK S, CHOW L, JOHNSON V, et al. Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose-Derived MSC in Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model[J]. Stem Cells Transl Med, 2018, 7(6): 456-467.
[78] XIONG X, CHENG Z, WU F, et al. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells[J]. Biomed Pharmacother, 2021, 134: 111129.
[79] LUZ-CRAWFORD P, KURTE M, BRAVO-ALEGRíA J, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells[J]. Stem Cell Res Ther, 2013, 4(3): 65.
[80] GONG W, GUO M, HAN Z, et al. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury[J]. Cell Death Dis, 2016, 7(9): e2387.
[81] SCHUMACHER S, VAZQUEZ NUNEZ R, BIERTüMPFEL C, et al. Bottom-up reconstitution of focal adhesion complexes[J]. Febs j, 2022, 289(12): 3360-3373.
[82] REVACH O Y, GROSHEVA I, GEIGER B. Biomechanical regulation of focal adhesion and invadopodia formation[J]. J Cell Sci, 2020, 133(20)
[83] OAKES P W, GARDEL M L. Stressing the limits of focal adhesion mechanosensitivity[J]. Curr Opin Cell Biol, 2014, 30: 68-73.
[84] MISHRA Y G, MANAVATHI B. Focal adhesion dynamics in cellular function and disease[J]. Cell Signal, 2021, 85: 110046.
[85] BOSCH-FORTEA M, MARTíN-BELMONTE F. Mechanosensitive adhesion complexes in epithelial architecture and cancer onset[J]. Curr Opin Cell Biol, 2018, 50: 42-49.
[86] WU S, CHEN M, HUANG J, et al. ORAI2 Promotes Gastric Cancer Tumorigenicity and Metastasis through PI3K/Akt Signaling and MAPK-Dependent Focal Adhesion Disassembly[J]. Cancer Res, 2021, 81(4): 986-1000.
[87] ZHAN J, ZHANG H. Kindlins: Roles in development and cancer progression[J]. Int J Biochem Cell Biol, 2018, 98: 93-103.
[88] SCHELL C, ROGG M, SUHM M, et al. The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier[J]. Proc Natl Acad Sci U S A, 2017, 114(23): E4621-e4630.
[89] ZENARO E, PIETRONIGRO E, DELLA BIANCA V, et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin[J]. Nat Med, 2015, 21(8): 880-886.
[90] BILDYUG N. Integrins in cardiac hypertrophy: lessons learned from culture systems[J]. ESC Heart Fail, 2021, 8(5): 3634-3642.
[91] HE X, SONG J, CAI Z, et al. Kindlin-2 deficiency induces fatal intestinal obstruction in mice[J]. Theranostics, 2020, 10(14): 6182-6200.
[92] ZHU K, LAI Y, CAO H, et al. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice[J]. Nat Commun, 2020, 11(1): 484.
[93] CAO H, YAN Q, WANG D, et al. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice[J]. Bone Res, 2020, 8: 2.
[94] LEGERSTEE K, HOUTSMULLER A B. A Layered View on Focal Adhesions[J]. Biology (Basel), 2021, 10(11)
[95] HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly[J]. Nat Cell Biol, 2015, 17(12): 1577-1587.
[96] LUO B H, CARMAN C V, SPRINGER T A. Structural basis of integrin regulation and signaling[J]. Annu Rev Immunol, 2007, 25: 619-647.
[97] SUN Z, COSTELL M, FäSSLER R. Integrin activation by talin, kindlin and mechanical forces[J]. Nat Cell Biol, 2019, 21(1): 25-31.
[98] MURPHY K N, BRINKWORTH A J. Manipulation of Focal Adhesion Signaling by Pathogenic Microbes[J]. Int J Mol Sci, 2021, 22(3)
[99] MAKRIS E A, GOMOLL A H, MALIZOS K N, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
[100] KATZ J N, ARANT K R, LOESER R F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review[J]. Jama, 2021, 325(6): 568-578.
[101] ZHENG L, ZHANG Z, SHENG P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J]. Ageing Res Rev, 2021, 66: 101249.
[102] WOLFENSON H, LAVELIN I, GEIGER B. Dynamic regulation of the structure and functions of integrin adhesions[J]. Dev Cell, 2013, 24(5): 447-458.
[103] TIAN J, ZHANG F J, LEI G H. Role of integrins and their ligands in osteoarthritic cartilage[J]. Rheumatol Int, 2015, 35(5): 787-798.
[104] LOESER R F. Integrins and chondrocyte-matrix interactions in articular cartilage[J]. Matrix Biol, 2014, 39: 11-16.
[105] LOESER R F, CARLSON C S, MCGEE M P. Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage[J]. Exp Cell Res, 1995, 217(2): 248-257.
[106] WANG Q, ONUMA K, LIU C, et al. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis[J]. JCI Insight, 2019, 4(18): e128616.
[107] ANDERSEN C, UVEBRANT K, MORI Y, et al. Human integrin α10β1-selected mesenchymal stem cells home to cartilage defects in the rabbit knee and assume a chondrocyte-like phenotype[J]. Stem Cell Res Ther, 2022, 13(1): 206.
[108] ALMONTE-BECERRIL M, GIMENO L I, VILLARROYA O, et al. Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice[J]. PLoS One, 2018, 13(6): e0198559.
[109] RADUCANU A, HUNZIKER E B, DROSSE I, et al. Beta1 integrin deficiency results in multiple abnormalities of the knee joint[J]. J Biol Chem, 2009, 284(35): 23780-23792.
[110] TAPIAL MARTíNEZ P, LóPEZ NAVAJAS P, LIETHA D. FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions[J]. Biomolecules, 2020, 10(2)
[111] WU T J, LIN C Y, TSAI C H, et al. Glucose suppresses IL-1β-induced MMP-1 expression through the FAK, MEK, ERK, and AP-1 signaling pathways[J]. Environ Toxicol, 2018, 33(10): 1061-1068.
[112] SHAHRARA S, CASTRO-RUEDA H P, HAINES G K, et al. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues[J]. Arthritis Res Ther, 2007, 9(5): R112.
[113] MA S N, XIE Z G, GUO Y, et al. Effect of Acupotomy on FAK-PI3K Signaling Pathways in KOA Rabbit Articular Cartilages[J]. Evid Based Complement Alternat Med, 2017, 2017: 4535326.
[114] ZHANG C, ZHU M, WANG H, et al. LOXL2 attenuates osteoarthritis through inactivating Integrin/FAK signaling[J]. Sci Rep, 2021, 11(1): 17020.
[115] WU C, JIAO H, LAI Y, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis[J]. Nat Commun, 2015, 6: 7531.
[116] WU X, QU M, GONG W, et al. Kindlin-2 deletion in osteoprogenitors causes severe chondrodysplasia and low-turnover osteopenia in mice[J]. J Orthop Translat, 2022, 32: 41-48.
[117] KERR B A, SHI L, JINNAH A H, et al. Kindlin-3 mutation in mesenchymal stem cells results in enhanced chondrogenesis[J]. Exp Cell Res, 2021, 399(2): 112456.
[118] KOSHIMIZU T, KAWAI M, KONDOU H, et al. Vinculin functions as regulator of chondrogenesis[J]. J Biol Chem, 2012, 287(19): 15760-15775.
[119] GUO S S, AU T Y K, WYNN S, et al. β1 Integrin regulates convergent extension in mouse notogenesis, ensures notochord integrity and the morphogenesis of vertebrae and intervertebral discs[J]. Development, 2020, 147(22)
[120] KANDA Y, YURUBE T, MORITA Y, et al. Delayed notochordal cell disappearance through integrin α5β1 mechanotransduction during ex-vivo dynamic loading-induced intervertebral disc degeneration[J]. J Orthop Res, 2021, 39(9): 1933-1944.
[121] KURAKAWA T, KAKUTANI K, MORITA Y, et al. Functional impact of integrin α5β1 on the homeostasis of intervertebral discs: a study of mechanotransduction pathways using a novel dynamic loading organ culture system[J]. Spine J, 2015, 15(3): 417-426.
[122] TRAN C M, SCHOEPFLIN Z R, MARKOVA D Z, et al. CCN2 suppresses catabolic effects of interleukin-1β through α5β1 and αVβ3 integrins in nucleus pulposus cells: implications in intervertebral disc degeneration[J]. J Biol Chem, 2014, 289(11): 7374-7387.
[123] ZHAO C M, CHEN Q, ZHANG W J, et al. 17β-Estradiol Protects Rat Annulus Fibrosus Cells Against Apoptosis via α1 Integrin-Mediated Adhesion to Type I Collagen: An In-vitro Study[J]. Med Sci Monit, 2016, 22: 1375-1383.
[124] WU X, CHEN M, LIN S, et al. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice[J]. Aging Dis, 2023, 14(5): 1818-1833.
[125] GAO G, LI H, HUANG Y, et al. Periodic Mechanical Stress Induces Extracellular Matrix Expression and Migration of Rat Nucleus Pulposus Cells Through Src-GIT1-ERK1/2 Signaling Pathway[J]. Cell Physiol Biochem, 2018, 50(4): 1510-1521.
[126] HUANG B R, CHEN T S, BAU D T, et al. EGFR is a pivotal regulator of thrombin-mediated inflammation in primary human nucleus pulposus culture[J]. Sci Rep, 2017, 7(1): 8578.
[127] YE D, LIANG W, DAI L, et al. Moderate Fluid Shear Stress Could Regulate the Cytoskeleton of Nucleus Pulposus and Surrounding Inflammatory Mediators by Activating the FAK-MEK5-ERK5-cFos-AP1 Signaling Pathway[J]. Dis Markers, 2018, 2018: 9405738.
[128] HUANG B R, BAU D T, CHEN T S, et al. Pro-Inflammatory Stimuli Influence Expression of Intercellular Adhesion Molecule 1 in Human Anulus Fibrosus Cells through FAK/ERK/GSK3 and PKCδ Signaling Pathways[J]. Int J Mol Sci, 2018, 20(1)
[129] ZHANG Z, MU Y, ZHANG J, et al. Kindlin-2 Is Essential for Preserving Integrity of the Developing Heart and Preventing Ventricular Rupture[J]. Circulation, 2019, 139(12): 1554-1556.
[130] BOCK-MARQUETTE I, SAXENA A, WHITE M D, et al. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair[J]. Nature, 2004, 432(7016): 466-472.
[131] LIANG X, SUN Y, YE M, et al. Targeted ablation of PINCH1 and PINCH2 from murine myocardium results in dilated cardiomyopathy and early postnatal lethality[J]. Circulation, 2009, 120(7): 568-576.
[132] GAO H, ZHOU L, ZHONG Y, et al. Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice[J]. Nat Commun, 2022, 13(1): 1025.
[133] GAO H, ZHONG Y, DING Z, et al. Pinch Loss Ameliorates Obesity, Glucose Intolerance, and Fatty Liver by Modulating Adipocyte Apoptosis in Mice[J]. Diabetes, 2021, 70(11): 2492-2505.
[134] FRIDENSHTEĬN A, PIATETSKIĬ S, II, PETRAKOVA K V. [Osteogenesis in transplants of bone marrow cells][J]. Arkh Anat Gistol Embriol, 1969, 56(3): 3-11.
[135] DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[136] CHISWELL B P, ZHANG R, MURPHY J W, et al. The structural basis of integrin-linked kinase-PINCH interactions[J]. Proc Natl Acad Sci U S A, 2008, 105(52): 20677-20682.
[137] STANCHI F, BORDOY R, KUDLACEK O, et al. Consequences of loss of PINCH2 expression in mice[J]. J Cell Sci, 2005, 118(Pt 24): 5899-5910.
[138] SANCHEZ-GURMACHES J, HSIAO W Y, GUERTIN D A. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre[J]. Stem Cell Reports, 2015, 4(4): 541-550.
[139] WILK K, YEH S A, MORTENSEN L J, et al. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration[J]. Stem Cell Reports, 2017, 8(4): 933-946.
[140] BUDGUDE P, KALE V, VAIDYA A. Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability[J]. Stem Cell Rev Rep, 2021, 17(6): 2210-2222.
[141] HAJISHENGALLIS G, LI X, CHAVAKIS T. Immunometabolic control of hematopoiesis[J]. Mol Aspects Med, 2021, 77: 100923.
[142] ZHOU B O, YUE R, MURPHY M M, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2): 154-168.
[143] OMATSU Y. Cellular niches for hematopoietic stem cells in bone marrow under normal and malignant conditions[J]. Inflamm Regen, 2023, 43(1): 15.
[144] COMAZZETTO S, MURPHY M M, BERTO S, et al. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow[J]. Cell Stem Cell, 2019, 24(3): 477-486.e476.
[145] GIRI J, DAS R, NYLEN E, et al. CCL2 and CXCL12 Derived from Mesenchymal Stromal Cells Cooperatively Polarize IL-10+ Tissue Macrophages to Mitigate Gut Injury[J]. Cell Rep, 2020, 30(6): 1923-1934.e1924.
[146] SCHOFIELD R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J]. Blood Cells, 1978, 4(1-2): 7-25.
[147] WANG Y, LAN W, XU M, et al. Cancer-associated fibroblast-derived SDF-1 induces epithelial-mesenchymal transition of lung adenocarcinoma via CXCR4/β-catenin/PPARδ signalling[J]. Cell Death Dis, 2021, 12(2): 214.
[148] REITER J, DRUMMOND S, SAMMOUR I, et al. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia[J]. Respir Res, 2017, 18(1): 137.
[149] BAČENKOVá D, TREBUŇOVá M, MOROCHOVIČ R, et al. Interaction between Mesenchymal Stem Cells and the Immune System in Rheumatoid Arthritis[J]. Pharmaceuticals (Basel), 2022, 15(8)
[150] KALKAL M, TIWARI M, THAKUR R S, et al. Mesenchymal Stem Cells: A Novel Therapeutic Approach to Enhance Protective Immunomodulation and Erythropoietic Recovery in Malaria[J]. Stem Cell Rev Rep, 2021, 17(6): 1993-2002.
[151] ZANGI L, MARGALIT R, REICH-ZELIGER S, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells[J]. Stem Cells, 2009, 27(11): 2865-2874.
[152] SKRAHIN A, JENKINS H E, HUREVICH H, et al. Effectiveness of a novel cellular therapy to treat multidrug-resistant tuberculosis[J]. Int J Mycobacteriol, 2016, 5 Suppl 1: S23.
[153] ZHANG Z, FU J, XU X, et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients[J]. Aids, 2013, 27(8): 1283-1293.
[154] TRAGGIAI E, VOLPI S, SCHENA F, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients[J]. Stem Cells, 2008, 26(2): 562-569.
[155] JI Y R, YANG Z X, HAN Z B, et al. Mesenchymal stem cells support proliferation and terminal differentiation of B cells[J]. Cell Physiol Biochem, 2012, 30(6): 1526-1537.
[156] RABANI R, VOLCHUK A, JERKIC M, et al. Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis[J]. Eur Respir J, 2018, 51(4)
[157] MITEVA K, PAPPRITZ K, EL-SHAFEEY M, et al. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3-Induced Myocarditis[J]. Stem Cells Transl Med, 2017, 6(4): 1249-1261.
[158] HOLERS V M. Complement therapeutics are coming of age in rheumatology[J]. Nat Rev Rheumatol, 2023(8): 470-485.
[159] ZHENG D, OH S H, JUNG Y, et al. Oval cell response in 2-acetylaminofluorene/partial hepatectomy rat is attenuated by short interfering RNA targeted to stromal cell-derived factor-1[J]. Am J Pathol, 2006, 169(6): 2066-2074.
[160] BARRATT J, LAFAYETTE R A, ZHANG H, et al. IgA nephropathy: the lectin pathway and implications for targeted therapy[J]. Kidney Int, 2023(2): 254-264.
[161] EISEN D P, MINCHINTON R M. Impact of mannose-binding lectin on susceptibility to infectious diseases[J]. Clin Infect Dis, 2003, 37(11): 1496-1505.
[162] KALIA N, SINGH J, KAUR M. The ambiguous role of mannose-binding lectin (MBL) in human immunity[J]. Open Med (Wars), 2021, 16(1): 299-310.
[163] SINGH H, JADHAV S, CHAUWARE V. Impact of MBL-2 coding region polymorphism on modulation of HAND and HIV-1 acquisition[J]. Microb Pathog, 2021, 160: 105163.
[164] GUPTA A, GUPTA G S. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs[J]. Mol Cell Biochem, 2021, 476(8): 2917-2942.
[165] VALDIMARSSON H, STEFANSSON M, VIKINGSDOTTIR T, et al. Reconstitution of opsonizing activity by infusion of mannan-binding lectin (MBL) to MBL-deficient humans[J]. Scand J Immunol, 1998, 48(2): 116-123.
[166] GARRED P, PRESSLER T, LANNG S, et al. Mannose-binding lectin (MBL) therapy in an MBL-deficient patient with severe cystic fibrosis lung disease[J]. Pediatr Pulmonol, 2002, 33(3): 201-207.
[167] ZENG Q, KO C H, SIU W S, et al. Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways[J]. Chin J Nat Med, 2018, 16(7): 481-489.
[168] LIU T C, STAPPENBECK T S. Genetics and Pathogenesis of Inflammatory Bowel Disease[J]. Annu Rev Pathol, 2016, 11: 127-148.
[169] CAO L, XU H, WANG G, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization[J]. Int Immunopharmacol, 2019, 72: 264-274.
[170] LI Y L, QIN S Y, LI Q, et al. Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway[J]. Phytomedicine, 2023, 114: 154744.
[171] PERLEE D, VAN VUGHT L A, SCICLUNA B P, et al. Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial[J]. Stem Cells, 2018, 36(11): 1778-1788.
[172] MATTHAY M A, CALFEE C S, ZHUO H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2): 154-162.
[173] YANG X, YU Y, XU J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8(5): 475-481.
[174] YOUSEFI DEHBIDI M, GOODARZI N, AZHDARI M H, et al. Mesenchymal stem cells and their derived exosomes to combat Covid-19[J]. Rev Med Virol, 2022, 32(2): e2281.
修改评论