[1] CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People [J]. Age Ageing, 2010, 39(4): 412-23.
[2] DAMLUJI A A, ALFARAIDHY M, ALHAJRI N, et al. Sarcopenia and Cardiovascular Diseases [J]. Circulation, 2023, 147(20): 1534-53.
[3] CRUZ-JENTOFT A J, SAYER A A. Sarcopenia [J]. Lancet, 2019, 393(10191): 2636-46.
[4] CRUZ-JENTOFT A J, LANDI F, SCHNEIDER S M, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) [J]. Age Ageing, 2014, 43(6): 748-59.
[5] PEDERSEN B K, FEBBRAIO M A. Muscles, exercise and obesity: skeletal muscle as a secretory organ [J]. Nat Rev Endocrinol, 2012, 8(8): 457-65.
[6] KINNEY J M. Nutritional frailty, sarcopenia and falls in the elderly [J]. Curr Opin Clin Nutr Metab Care, 2004, 7(1): 15-20.
[7] ZHU H Q, GAO F H. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products [J]. Int J Biol Sci, 2017, 13(12): 1489-96.
[8] PETERMANN-ROCHA F, BALNTZI V, GRAY S R, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis [J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 86-99.
[9] COHEN S, NATHAN J A, GOLDBERG A L. Muscle wasting in disease: molecular mechanisms and promising therapies [J]. Nat Rev Drug Discov, 2015, 14(1): 58-74.
[10] LIU L, KIM S, BUCKLEY M T, et al. Exercise reprograms the inflammatory landscape of multiple stem cell compartments during mammalian aging [J]. Cell Stem Cell, 2023, 30(5): 689-705 e4.
[11] BELLARY S, KYROU I, BROWN J E, et al. Type 2 diabetes mellitus in older adults: clinical considerations and management [J]. Nat Rev Endocrinol, 2021, 17(9): 534-48.
[12] JOLLY L A, KUMAR R, PENZES P, et al. The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders [J]. Biol Psychiatry, 2022, 92(8): 614-25.
[13] LANGE S M, ARMSTRONG L A, KULATHU Y. Deubiquitinases: From mechanisms to their inhibition by small molecules [J]. Mol Cell, 2022, 82(1): 15-29.
[14] NELSON J K, SORRENTINO V, AVAGLIANO TREZZA R, et al. The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL [J]. Circ Res, 2016, 118(3): 410-9.
[15] CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48(1): 16-31.
[16] YUAN S, LARSSON S C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences [J]. Metabolism, 2023, 144: 155533.
[17] SHU X, LIN T, WANG H, et al. Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis [J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 145-58.
[18] XIE W Q, HE M, YU D J, et al. Mouse models of sarcopenia: classification and evaluation [J]. J Cachexia Sarcopenia Muscle, 2021, 12(3): 538-54.
[19] GIHA H A, ALAMIN O A O, SATER M S. Diabetic sarcopenia: metabolic and molecular appraisal [J]. Acta Diabetol, 2022, 59(8): 989-1000.
[20] FENG L, GAO Q, HU K, et al. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis [J]. J Clin Endocrinol Metab, 2022, 107(5): 1470-83.
[21] HASHIMOTO Y, TAKAHASHI F, OKAMURA T, et al. Diet, exercise, and pharmacotherapy for sarcopenia in people with diabetes [J]. Metabolism, 2023, 144: 155585.
[22] PURNAMASARI D, TETRASIWI E N, KARTIKO G J, et al. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus [J]. Rev Diabet Stud, 2022, 18(3): 157-65.
[23] IZZO A, MASSIMINO E, RICCARDI G, et al. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors [J]. Nutrients, 2021, 13(1).
[24] ANDREASSEN C S, JAKOBSEN J, FLYVBJERG A, et al. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength [J]. Brain, 2009, 132(Pt 10): 2724-33.
[25] FINOL H J, LEWIS D M, OWENS R. The effects of denervation on contractile properties or rat skeletal muscle [J]. J Physiol, 1981, 319: 81-92.
[26] WESSIG C, KOLTZENBURG M, REINERS K, et al. Muscle magnetic resonance imaging of denervation and reinnervation: correlation with electrophysiology and histology [J]. Exp Neurol, 2004, 185(2): 254-61.
[27] GOLDBRAIKH D, NEUFELD D, EID-MUTLAK Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation [J]. EMBO Rep, 2020, 21(4): e48791.
[28] LI Y, XIA J, JIANG N, et al. Corin protects H(2)O(2)-induced apoptosis through PI3K/AKT and NF-kappaB pathway in cardiomyocytes [J]. Biomed Pharmacother, 2018, 97: 594-9.
[29] RYU D, MOUCHIROUD L, ANDREUX P A, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents [J]. Nat Med, 2016, 22(8): 879-88.
[30] DENNISON E M, SAYER A A, COOPER C. Epidemiology of sarcopenia and insight into possible therapeutic targets [J]. Nat Rev Rheumatol, 2017, 13(6): 340-7.
[31] CONTE E, BRESCIANI E, RIZZI L, et al. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies [J]. Int J Mol Sci, 2020, 21(4).
[32] BARACOS V E, ARRIBAS L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy [J]. Annals of Oncology, 2018, 29: ii1-ii9.
[33] BOZZETTI F. Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy [J]. Ann Oncol, 2017, 28(9): 2107-18.
[34] SAYER A A, CRUZ-JENTOFT A. Sarcopenia definition, diagnosis and treatment: consensus is growing [J]. Age Ageing, 2022, 51(10).
[35] NISHIKAWA H, ASAI A, FUKUNISHI S, et al. Metabolic Syndrome and Sarcopenia [J]. Nutrients, 2021, 13(10).
[36] PASCUAL-FERNANDEZ J, FERNANDEZ-MONTERO A, CORDOVA-MARTINEZ A, et al. Sarcopenia: Molecular Pathways and Potential Targets for Intervention [J]. Int J Mol Sci, 2020, 21(22).
[37] WIEDMER P, JUNG T, CASTRO J P, et al. Sarcopenia - Molecular mechanisms and open questions [J]. Ageing Res Rev, 2021, 65: 101200.
[38] HONG Y, LEE J H, JEONG K W, et al. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy [J]. J Cachexia Sarcopenia Muscle, 2019, 10(4): 903-18.
[39] KILIC-ERKEK O, CANER V, ABBAN-METE G, et al. Determination of the pathways of potential muscle damage and regeneration in response to acute and long-term swimming exercise in mice [J]. Life Sci, 2021, 272: 119265.
[40] RODGERS B D, WARD C W. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs [J]. Endocr Rev, 2022, 43(2): 329-65.
[41] LEE S J. Myostatin: A Skeletal Muscle Chalone [J]. Annu Rev Physiol, 2023, 85: 269-91.
[42] CLARKE B A, DRUJAN D, WILLIS M S, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle [J]. Cell Metab, 2007, 6(5): 376-85.
[43] ATTAIX D, VENTADOUR S, CODRAN A, et al. The ubiquitin-proteasome system and skeletal muscle wasting [J]. Essays Biochem, 2005, 41: 173-86.
[44] COYNE E S, BEDARD N, WYKES L, et al. Knockout of USP19 Deubiquitinating Enzyme Prevents Muscle Wasting by Modulating Insulin and Glucocorticoid Signaling [J]. Endocrinology, 2018, 159(8): 2966-77.
[45] LEVINE S, NGUYEN T, TAYLOR N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans [J]. N Engl J Med, 2008, 358(13): 1327-35.
[46] SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. Cell, 2017, 168(6): 960-76.
[47] CHAN M C, ARANY Z. The many roles of PGC-1alpha in muscle--recent developments [J]. Metabolism, 2014, 63(4): 441-51.
[48] SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy [J]. FEBS J, 2013, 280(17): 4294-314.
[49] CHEN Z, LI L, WU W, et al. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis [J]. Theranostics, 2020, 10(14): 6448-66.
[50] BALCH W E, MORIMOTO R I, DILLIN A, et al. Adapting proteostasis for disease intervention [J]. Science, 2008, 319(5865): 916-9.
[51] HOCHSTRASSER M. Protein degradation or regulation: Ub the judge [J]. Cell, 1996, 84(6): 813-5.
[52] CLAGUE M J, URBE S, KOMANDER D. Breaking the chains: deubiquitylating enzyme specificity begets function [J]. Nat Rev Mol Cell Biol, 2019, 20(6): 338-52.
[53] MEVISSEN T E T, KOMANDER D. Mechanisms of Deubiquitinase Specificity and Regulation [J]. Annu Rev Biochem, 2017, 86: 159-92.
[54] KITAMURA H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders [J]. Int J Mol Sci, 2023, 24(4).
[55] CHEN R, ZHANG H, LI L, et al. Roles of ubiquitin-specific proteases in inflammatory diseases [J]. Front Immunol, 2024, 15: 1258740.
[56] GAO H, YIN J, JI C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application [J]. J Exp Clin Cancer Res, 2023, 42(1): 225.
[57] BAEK J H, KIM M S, JUNG H R, et al. Ablation of the deubiquitinase USP15 ameliorates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [J]. Exp Mol Med, 2023, 55(7): 1520-30.
[58] JEAN-CHARLES P Y, WU J H, ZHANG L, et al. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (Tumor Necrosis Factor)-Triggered Smooth Muscle Cell Inflammation and Attenuates Atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2018, 38(10): 2295-305.
[59] NIU Y, JIANG H, YIN H, et al. Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination [J]. Diabetes, 2022, 71(5): 921-33.
[60] WANG Q, LI G, MA X, et al. LncRNA TINCR impairs the efficacy of immunotherapy against breast cancer by recruiting DNMT1 and downregulating MiR-199a-5p via the STAT1-TINCR-USP20-PD-L1 axis [J]. Cell Death Dis, 2023, 14(2): 76.
[61] LIM K S, LI H, ROBERTS E A, et al. USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors [J]. Mol Cell, 2018, 72(6): 925-41 e4.
[62] DAI X, LU L, DENG S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer [J]. Theranostics, 2020, 10(20): 9332-47.
[63] CHUANG S J, CHENG S C, TANG H C, et al. 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2 [J]. Sci Rep, 2018, 8(1): 3102.
[64] ZHAO X, HE X, WEI W, et al. USP22 aggravated diabetic renal tubulointerstitial fibrosis progression through deubiquitinating and stabilizing Snail1 [J]. Eur J Pharmacol, 2023, 947: 175671.
[65] KITAMURA H, HASHIMOTO M. USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes [J]. Int J Mol Sci, 2021, 22(3).
[66] MOLUSKY M M, LI S, MA D, et al. Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11beta-hydroxysteroid dehydrogenase 1 [J]. Diabetes, 2012, 61(5): 1025-35.
[67] HARRIS-GAUTHIER N, SRIKANTA S B, CERMAKIAN N. Deubiquitinases: key regulators of the circadian clock [J]. Am J Physiol Cell Physiol, 2022, 323(5): C1539-C47.
[68] XIAO W, WANG J, WANG X, et al. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression [J]. Autophagy, 2022, 18(11): 2615-35.
[69] YI J, TAVANA O, LI H, et al. Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy [J]. Nat Commun, 2023, 14(1): 1941.
[70] HASHIMOTO M, KIMURA S, KANNO C, et al. Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm [J]. Cell Mol Life Sci, 2021, 78(6): 2929-48.
[71] BEDARD N, YANG Y, GREGORY M, et al. Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility [J]. Biol Reprod, 2011, 85(3): 594-604.
[72] GOPINATH P, MAHAMMED A, OHAYON S, et al. Understanding and predicting the potency of ROS-based enzyme inhibitors, exemplified by naphthoquinones and ubiquitin specific protease-2 [J]. Chem Sci, 2016, 7(12): 7079-86.
[73] OH K H, YANG S W, PARK J M, et al. Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme [J]. Cell Death Differ, 2011, 18(8): 1326-36.
[74] DANG F, BAI L, DONG J, et al. USP2 inhibition prevents infection with ACE2-dependent coronaviruses in vitro and is protective against SARS-CoV-2 in mice [J]. Sci Transl Med, 2023, 15(725): eadh7668.
[75] CHEN H, TAN H, WAN J, et al. PPAR-gamma signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets [J]. Pharmacol Ther, 2023, 245: 108391.
[76] CROSSLAND H, CONSTANTIN-TEODOSIU D, GREENHAFF P L. The Regulatory Roles of PPARs in Skeletal Muscle Fuel Metabolism and Inflammation: Impact of PPAR Agonism on Muscle in Chronic Disease, Contraction and Sepsis [J]. Int J Mol Sci, 2021, 22(18).
[77] WAGNER N, WAGNER K D. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease [J]. Int J Mol Sci, 2023, 24(3).
[78] WAGNER N, WAGNER K D. The Role of PPARs in Disease [J]. Cells, 2020, 9(11).
[79] DUBOIS V, EECKHOUTE J, LEFEBVRE P, et al. Distinct but complementary contributions of PPAR isotypes to energy homeostasis [J]. J Clin Invest, 2017, 127(4): 1202-14.
[80] KAWAI M, ROSEN C J. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis [J]. Nat Rev Endocrinol, 2010, 6(11): 629-36.
[81] HERNANDEZ-QUILES M, BROEKEMA M F, KALKHOVEN E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action [J]. Front Endocrinol (Lausanne), 2021, 12: 624112.
[82] AHMADIAN M, SUH J M, HAH N, et al. PPARgamma signaling and metabolism: the good, the bad and the future [J]. Nat Med, 2013, 19(5): 557-66.
[83] NANJAN M J, MOHAMMED M, PRASHANTHA KUMAR B R, et al. Thiazolidinediones as antidiabetic agents: A critical review [J]. Bioorg Chem, 2018, 77: 548-67.
[84] LUO L, CHUA Y B, LIU T, et al. Muscle Injuries Induce a Prostacyclin-PPARgamma/PGC1a-FAO Spike That Boosts Regeneration [J]. Adv Sci (Weinh), 2023, 10(21): e2301519.
[85] BOGAN J S. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle [J]. Front Endocrinol (Lausanne), 2022, 13: 1019405.
[86] ZHU T, ZHANG W, FENG S J, et al. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARgamma-dependent pathway [J]. Int Immunopharmacol, 2016, 34: 16-24.
[87] MAO Y, HAN C Y, HAO L, et al. p21‐activated kinase 4 phosphorylates peroxisome proliferator‐activated receptor Υ and suppresses skeletal muscle regeneration [J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6): 1776-88.
[88] GUILHERME A, VIRBASIUS J V, PURI V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes [J]. Nat Rev Mol Cell Biol, 2008, 9(5): 367-77.
[89] HABTEMICHAEL E N, LI D T, CAMPOREZ J P, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake [J]. Nat Metab, 2021, 3(3): 378-93.
[90] LUO L, CHUA Y J B, LIU T, et al. Muscle Injuries Induce a Prostacyclin‐PPARγ/PGC1a‐FAO Spike That Boosts Regeneration [J]. Advanced Science, 2023, 10(21).
[91] SHEN S, LIAO Q, LIU J, et al. Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism [J]. J Cachexia Sarcopenia Muscle, 2019, 10(2): 429-44.
[92] SETO J T, ROESZLER K N, MEEHAN L R, et al. ACTN3 genotype influences skeletal muscle mass regulation and response to dexamethasone [J]. Sci Adv, 2021, 7(27).
[93] HUANG K C, CHIANG Y F, HUANG T C, et al. Capsaicin alleviates cisplatin-induced muscle loss and atrophy in vitro and in vivo [J]. J Cachexia Sarcopenia Muscle, 2023, 14(1): 182-97.
[94] LIN H C, KUAN Y, CHU H F, et al. Disulfiram and 6-Thioguanine synergistically inhibit the enzymatic activities of USP2 and USP21 [J]. Int J Biol Macromol, 2021, 176: 490-7.
[95] NAKAMURA M T, YUDELL B E, LOOR J J. Regulation of energy metabolism by long-chain fatty acids [J]. Prog Lipid Res, 2014, 53: 124-44.
[96] WEI C, ZHAO X, ZHANG H, et al. USP2 promotes cell proliferation and metastasis in choroidal melanoma via stabilizing Snail [J]. J Cancer Res Clin Oncol, 2023, 149(11): 9263-76.
[97] SANDRI M, SANDRI C, GILBERT A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy [J]. Cell, 2004, 117(3): 399-412.
[98] ROVITO D, RERRA A I, UEBERSCHLAG-PITIOT V, et al. Myod1 and GR coordinate myofiber-specific transcriptional enhancers [J]. Nucleic Acids Res, 2021, 49(8): 4472-92.
修改评论