中文版 | English
题名

高分子基钾离子荧光传感材料的合成及其性能研究

其他题名
SYNTHESIS AND PROPERTY INVESTIGATION OF POLYMER-BASED POTASSIUM ION FLUORESCENCE SENSING MATERIALS
姓名
姓名拼音
SHEN Min
学号
12131015
学位类型
博士
学位专业
080502 材料学
学科门类/专业学位类别
08 工学
导师
田颜清
导师单位
材料科学与工程系
论文答辩日期
2024-04-29
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  钾离子是生物体维持生命活动的重要成分,在神经传导、肌肉收缩、 心脏节律以及酸碱平衡等过程中均扮演重要角色。钾离子浓度异常往往被视为疾病的潜在标志。因此,钾离子浓度检测对健康管理和疾病诊断至关重要。与传统分析方法相比,荧光法因其分析速度快、免受电磁干扰、易于小型化和非侵入性等优点,在生物领域展现出显著优势。然而,目前的荧光传感材料难以实现对细胞外钾离子浓度(3.5-5.0 mM)及其微小变化的灵敏检测,并在循环使用和多功能性方面还存在不足。因此,本研究旨在通过高分子结构设计及调控,研制出适合于细胞外钾离子便捷检测的荧光传感材料。主要研究内容和结果概述如下:
  设计并合成一种含钾离子指示剂(KS)的双亲性高分子荧光探针(CP1-KS),利用其自组装能力提高探针在水环境中的使用便捷性和检测灵敏度(10 mM 钾离子对应的荧光增幅达5.2 倍),并最终实现对药物刺激下细胞外钾离子浓度变化的高通量实时监测。其传感机理可归结于钾离子对光诱电子转移(PET)过程的抑制而引起的荧光增强。由于探针 CP1-KS以纳米胶束形式存在,难以从水溶液中分离和再利用,进一步设计了一种基于温度敏感性高分子聚(N-异丙基丙烯酰胺)的钾离子荧光传感材料(P2),利用高分子固有的亲水性实现了对水环境中钾离子的快速检测(2.2 s),并借助其温度敏感相变特性成功将探针从传感体系中分离出来,从而达到重复检测的目的。
  为进一步提升检测灵敏度和循环稳定性,引入静电纺丝技术构建了具有纳米纤维结构(150-250 nm)的聚乙烯醇传感膜(F2)。借助其比表面积大的优势实现了对钾离子的高灵敏检测,10 mM 钾离子对应的荧光增幅高达8.9 倍,变化倍率高于目前已报道的荧光探针,同时也赋予传感材料良好的循环稳定性。其响应过程不受其它离子干扰,具有良好的选择性。随后,为拓展钾离子荧光探针的应用领域,本研究借鉴梯度润湿仿生结构,通过疏水改性和等离子体刻蚀技术制备具有不对称浸润性的 Janus 基底,实现了对汗液的定向传输与可控采集,并结合 KS 对钾离子的响应行为,在智能手机与图像处理软件辅助下,完成对汗液钾离子的定量检测。这一设计集成了汗液采集与钾离子检测两种功能,提供了一种便捷的一体化监测方案。
  综上,本文从高分子设计角度出发,制备了 4 种具有优异传感性能和新功能的钾离子荧光传感材料,不仅丰富了传感材料的种类,还提高了检测灵敏度和便捷使用性,并赋予其新功能,为钾离子相关疾病诊断提供了有效分析工具。
 
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] KARDALAS E, PASCHOU S A, ANAGNOSTIS P, et al. Hypokalemia: a clinical update [J]. Endocrine Connections, 2018, 7(4): R135-R146.
[2] GREER R C, MARKLUND M, ANDERSON C A M, et al. Potassium-enriched salt substitutes as a means to lower blood pressure [J]. Hypertension, 2020, 75(2): 266-274.
[3] MUSTROPH J, MAIER L S, WAGNER S. CaMKII regulation of cardiac K channels [J]. Frontiers in Pharmacology, 2014, 5(20): 1-12.
[4] WIEëRS M L A J, MULDER J, ROTMANS J I, et al. Potassium and the kidney: a reciprocal relationship with clinical relevance [J]. Pediatric Nephrology, 2022, 37(10): 2245-2254.
[5] ZúñIGA L, CAYO A, GONZáLEZ W, et al. Potassium channels as a target for cancer therapy: Current perspectives [J]. OncoTargets and Therapy, 2022, 15: 783-797.
[6] PALMER B F, CLEGG D J. Physiology and pathophysiology of potassium homeostasis: Core curriculum 2019 [J]. American Journal of Kidney Diseases, 2019, 74(5): 682-695.
[7] CALAND L B D, SILVEIRA E L C, TUBINO M. Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography [J]. Analytica Chimica Acta, 2012, 718: 116-120.
[8] SINGH M, YADAV P, GARG V K, et al. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry [J]. Journal of Food Science and Technology, 2014, 52(8): 5299-5304.
[9] VáZQUEZ M, MIKHELSON K, PIEPPONEN S, et al. Determination of Na+, K+, Ca2+, and Cl− ions in wood pulp suspension using ion-selective electrodes [J]. Electroanalysis, 2001, 13(13): 1119-1124.
[10] STEVENS G, RHINE M, STRAATMANN Z, et al. Measuring soil and tissue potassium with a portable ion-specific electrode in cotton [J]. Communications in Soil Science and Plant Analysis, 2016, 47(18): 2148-2155.
[11] YANG Q, LI J, WANG X, et al. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis [J]. Biosensors and Bioelectronics, 2018, 112: 54-71.
[12] LI G, LIU Z, GAO W, et al. Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications [J]. Coordination Chemistry Reviews, 2023, 478: 214966.
[13] YAN Z, CAI Y, ZHANG J, et al. Fluorescent sensor arrays for metal ions detection: A review [J]. Measurement, 2022, 187: 110355.
[14] HE H R, MORTELLARO M A, LEINER M J P, et al. A fluorescent sensor with high selectivity and sensitivity for potassium in water [J]. Journal of the American Chemical Society, 2003, 125(6): 1468-1469.
[15] PADMAWAR P, YAO X, BLOCH O, et al. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator [J]. Nature Methods, 2005, 2(11): 825-827.
[16] KONG X, SU F, ZHANG L, et al. A highly selective mitochondria-targeting fluorescent K+ sensor [J]. Angewandte Chemie International Edition, 2015, 54(41): 12053-12057.
[17] GHADERINEZHAD F, CEYLAN KOYDEMIR H, TSENG D, et al. Sensing of electrolytes in urine using a miniaturized paper-based device [J]. Scientific Reports, 2020, 10(1): 13620-13628.
[18] WANG Z, DETOMASI T C, CHANG C J. A dual-fluorophore sensor approach for ratiometric fluorescence imaging of potassium in living cells [J]. Chemical Science, 2020, 12(5): 1720-1729.
[19] BURGSTALLER S, BISCHOF H, MATT L, et al. Assessing K+ ions and K+ channel functions in cancer cell metabolism using fluorescent biosensors [J]. Free Radical Biology and Medicine, 2022, 181: 43-51.
[20] FORBES G B. Potassium: The story of an element [J]. Perspectives in Biology and Medicine, 1995, 38(4): 554-566.
[21] DANCHIN A, NIKEL P I. Why nature chose potassium [J]. Journal of Molecular Evolution, 2019, 87(9-10): 271-288.
[22] REINHARD L, TIDOW H, CLAUSEN M J, et al. Na+,K+-ATPase as a docking station: protein-protein complexes of the Na+,K+-ATPase [J]. Cellular and Molecular Life Sciences, 2012, 70(2): 205-222.
[23] GENG L, TONG G, JIANG H, et al. Effect of salinity and alkalinity on Luciobarbus capito gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure [J]. BioMed Research International, 2016, 2016: 1-7.
[24] THIER S O. Potassium physiology [J]. American Journal of Medicine, 1986, 80(4): 3-7.
[25] FIGTREE G A, KEYVAN KARIMI G, LIU C-C, et al. Oxidative regulation of the Na+- K+ pump in the cardiovascular system [J]. Free Radical Biology and Medicine, 2012, 53(12): 2263-2268.
[26] ADDISON W L T. The use of sodium chloride, potassium chloride, sodium bromide, and potassium bromide in cases of arterial hypertension which are amenable to potassium chloride [J]. Canadian Medical Association Journal, 1928, 18: 281-285.
[27] YEUNG S M H, HOORN E J, ROTMANS J I, et al. Urinary potassium excretion, fibroblast growth factor 23, and incident hypertension in the general population-based PREVEND cohort [J]. Nutrients, 2021, 13(12): 4532-4543.
[28] KIENEKER L M, GANSEVOORT R T, MUKAMAL K J, et al. Urinary potassium excretion and risk of developing hypertension [J]. Hypertension, 2014, 64(4): 769-776.
[29] HOUSTON M C. The importance of potassium in managing hypertension [J]. Current Hypertension Reports, 2011, 13(4): 309-317.
[30] CAIRNS S P. Potassium effects on skeletal muscle contraction: are potassium￾metabolic interactions required for fatigue? [J]. European Journal of Applied Physiology, 2023, 123(11): 2341-2343.
[31] LEE Y-J, LEE M, WI Y M, et al. Potassium intake, skeletal muscle mass, and effect modification by sex: data from the 2008-2011 KNHANES [J]. Nutrition Journal, 2020, 19(1): 93-101.
[32] ARNETT T R. Acid-base regulation of bone metabolism [J]. International Congress Series, 2007, 1297: 255-267.
[33] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. Journal of Physiology-London, 1952, 117(4): 500-544.
[34] GEIBEL J P. Role of potassium in acid secretion [J]. World Journal of Gastroenterology, 2005, 11(34): 5259-5265.
[35] DAHABA A A, BORNEMANN-CIMENTI H. Metabolic disorders in critically ill patients [J]. Anesthesia & Analgesia, 2018, 127(3): e43.
[36] YAMADA S, INABA M. Potassium metabolism and management in patients with CKD [J]. Nutrients, 2021, 13(6): 1751-1769.
[37] TCHOUNWOU P, UDENSI U. Potassium homeostasis, oxidative stress, and human disease [J]. International Journal of Clinical and Experimental Physiology, 2017, 4(3): 111-122.
[38] PULJKO B, STOJANOVIĆ M, ILIC K, et al. Start me up: How can surrounding gangliosides affect sodium-potassium ATPase activity and steer towards pathological ion imbalance in neurons? [J]. Biomedicines, 2022, 10(7): 1518-1532.
[39] VIVEKANANDAM V, MäNNIKKö R, MATTHEWS E, et al. Improving genetic diagnostics of skeletal muscle channelopathies [J]. Expert Review of Molecular Diagnostics, 2020, 20(7): 725-736.
[40] LEUNG Y-M. Voltage-gated K+ channel modulators as neuroprotective agents [J]. Life Sciences, 2010, 86: 775-780.
[41] COOPER L B, BENSON L, MENTZ R J, et al. Association between potassium level and outcomes in heart failure with reduced ejection fraction: a cohort study from the Swedish Heart Failure Registry [J]. European Journal of Heart Failure, 2020, 22(8): 1390-1398.
[42] ENGELHARDT L J, BALZER F, MüLLER M C, et al. Association between potassium concentrations, variability and supplementation, and in-hospital mortality in ICU patients: a retrospective analysis [J]. Annals of Intensive Care, 2019, 9(1): 100-110.
[43] SONNER Z, WILDER E, HEIKENFELD J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications [J]. Biomicrofluidics, 2015, 9(3): 031301.
[44] STANSFELD P J, SUTCLIFFE M J, MITCHESON J S. Molecular mechanisms for drug interactions with hERG that cause long QT syndrome [J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(1): 81-94.
[45] ZHENG Z Q, WU Y J, QIAN D D, et al. Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel [J]. European Journal of Pharmacology, 2021, 893: 173813.
[46] VETRI F, SAHA ROY CHOUDHURY M, SUNDIVAKKAM P, et al. BKCa channels as physiological regulators: A focused review [J]. Journal of Receptor, Ligand and Channel Research, 2014, 7: 3-13.
[47] ORLOV D S, NGUYEN T, LEHRER R I. Potassium release, a useful tool for studying antimicrobial peptides [J]. J Microbiol Methods, 2002, 49(3): 325-328.
[48] COMES N, SERRANO-ALBARRáS A, CAPERA J, et al. Involvement of potassium channels in the progression of cancer to a more malignant phenotype [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015, 1848(10): 2477-2492.
[49] HUANG X, JAN L Y. Targeting potassium channels in cancer [J]. Journal of Cell Biology, 2014, 206(2): 151-162.
[50] JIANG D, HE Z, WANG C, et al. Epigenetic silencing of ZNF132 mediated by methylation-sensitive Sp1 binding promotes cancer progression in esophageal squamous cell carcinoma [J]. Cell Death and Disease, 2018, 10(1): 1-12.
[51] MICHALSKI R, PECYNA-UTYLSKA P, KERNERT J. Ion chromatography and related techniques in carboxylic acids analysis [J]. Critical Reviews in Analytical Chemistry, 2020, 51(6): 549–564.
[52] ZHANG F, SHEN G, JI S, et al. Recent advances of stationary phases for hydrophilic interaction liquid chromatography and ion chromatography [J]. Journal of Liquid Chromatography & Related Technologies, 2014, 38(3): 349-352.
[53] LUO Y H, LUO L Y, JIANG C, et al. Determination of sodium citrate and potassium citrate chewable tablet's content and dissolution by ion chromatography [J]. Latin American Journal of Pharmacy, 2013, 32(5): 734-740.
[54] HU Q F, XU Y R, YE Y Q, et al. Determination of sodium, potassium, calcium, magnesium and ammonium in tobacco by ion chromatography [J]. Asian Journal of Chemistry, 2010, 22(5): 3729-3733.
[55] HIGUCHI K, OHKAWARA Y. Determination of potassium, magnesium, and calcium ions in lettuce by ion chromatography [J]. Bunseki Kagaku, 2015, 64(5): 337-340.
[56] WEST P W, FOLSE P, MONTGOMERY D. Application of flame spectrophotometry to water analysis [J]. Analytical Chemistry, 1950, 22(5): 667-670.
[57] FRANKENBERG B, HOSPADARUK V, NEUFELD A H. Flame spectrophotometry: II. sodium and potassium in Blood and Urine [J]. Canadian Medical Association Journal, 1951, 65(4): 388-389.
[58] ZHANG J Y, HE Q, ZHANG W. Membrane-based electrochemical detection of uranium: a review [J]. Separations, 2022, 9(12): 404-418.
[59] KONDRATYEVA Y O, TOLSTOPJATOVA E G, KIRSANOV D O, et al. Chronoamperometric and coulometric analysis with ionophore-based ion-selective electrodes: A modified theory and the potassium ion assay in serum samples [J]. Sensors and Actuators B: Chemical, 2020, 310: 127894.
[60] VAN DE VELDE L, D'ANGREMONT E, OLTHUIS W. Solid contact potassium selective electrodes for biomedical applications-a review [J]. Talanta, 2016, 160: 56-65.
[61] DAY C, SOPSTAD S, MA H, et al. Impedance-based sensor for potassium ions [J]. Analytica Chimica Acta, 2018, 1034: 39-45.
[62] XU H, YANG X X, WANG Y, et al. Disposable blood potassium sensors based on screen-printed thick film electrodes [J]. Measurement Science and Technology, 2010, 21(5): 055802.
[63] FARZBOD A, MOON H. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform [J]. Biosensors & Bioelectronics, 2018, 106: 37-42.
[64] FERREIRA S L C, BEZERRA M A, SANTOS A S, et al. Atomic absorption spectrometry-A multi element technique [J]. Trends in Analytical Chemistry, 2018, 100: 1-6.
[65] VOLYNSKII A B. Major achievements in russian science concerning atomic absorption spectrometry in 1990-2009 [J]. Journal of Analytical Chemistry, 2011, 66(11): 1049-1058.
[66] DE JESUS A, SILVA M M, VALE M G R. The use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry [J]. Talanta, 2008, 74(5): 1378-1384.
[67] IEGGLI C V S, BOHRER D, DO NASCIMENTO P C, et al. Determination of sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry [J]. Talanta, 2010, 80(3): 1282-1286.
[68] PRKIĆ A, GILJANOVIĆ J, PETRIČEVIĆ S, et al. Determination of cadmium, chromium, copper, iron, lead, magnesium, manganese, potassium, and zinc in mint tea leaves by electrothermal atomizer atomic absorption spectrometry in samples purchased at local supermarkets and marketplaces [J]. Analytical Letters, 2013, 46(2): 367-378.
[69] QIN M, LI J, SONG Y. Toward high sensitivity: Perspective on colorimetric photonic crystal sensors [J]. Analytical Chemistry, 2022, 94(27): 9497-9507.
[70] VAQUER A, BARóN E, DE LA RICA R. Dissolvable polymer valves for sweat chrono￾sampling in wearable paper-based analytical devices. [J]. ACS Sensors, 2022, 7(2): 488-494.
[71] AGUDO J, PARDO P, SáNCHEZ H, et al. A low-cost real color picker based on arduino [J]. Sensors, 2014, 14(7): 11943-11956.
[72] CHEN Z, HUANG Y, LI X, et al. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles [J]. Analytica Chimica Acta, 2013, 787: 189-192.
[73] SUN Y, WANG S, WANG F, et al. One-step rapid colorimetric detection of K+ using silver nanoparticles modified by crown ether [J]. The Analyst, 2023, 148(2): 344-353.
[74] GEROLD C T, BAKKER E, HENRY C S. Selective distance-based K+ quantification on paper-based microfluidics [J]. Analytical Chemistry, 2018, 90(7): 4894-4900.
[75] SONG G, SUN R, DU J, et al. A highly selective, colorimetric, and environment￾sensitive optical potassium ion sensor [J]. Chemical Communications, 2017, 53(41): 5602-5605.
[76] G S G. On the change of refrangibility of light [J]. Philosophical transactions of the Royal Society of London, 1852, 142: 463-562.
[77] SCHWEIZER T, KUBACH H, KOCH T. Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems [J]. Automotive and Engine Technology, 2021, 6: 275-287.
[78] LI X, GAO X, SHI W, et al. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes [J]. Chemical Reviews, 2014, 114(1): 590-659.
[79] SHI W, MA H. Spectroscopic probes with changeable π-conjugated systems [J]. Chemical Communications, 2012, 48(70): 8732-8744.
[80] WU X, SHI W, LI X, et al. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes [J]. Accounts of Chemical Research, 2019, 52(7): 1892-1904.
[81] HAO M, CHI W, WANG C, et al. Molecular origins of photoinduced backward intramolecular charge transfer [J]. The Journal of Physical Chemistry C, 2020, 124(31): 16820-16826.
[82] BIGDELI A, GHASEMI F, ABBASI-MOAYED S, et al. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances-A review [J]. Analytica Chimica Acta, 2019, 1079: 30-58.
[83] SHIZUKA H, MAKOTO N, TOSHIFUMI M. Intramolecular fluorescence quenching of phenylalkylamines [J]. Journal of Physical Chemistry, 1979, 83(15): 2019-2024.
[84] TIAN X, MURFIN L C, WU L, et al. Fluorescent small organic probes for biosensing [J]. Chemical Science, 2021, 12(10): 3406-3426.
[85] LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chemical Communications, 2001, (18): 1740-1741.
[86] LI Y, CAI Z, LIU S, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels [J]. Nature Communications, 2020, 11(1).
[87] MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar [J]. Chemical Reviews, 2015, 115(21): 11718-11940.
[88] SCHWARZE T, RIEMER J. Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water [J]. ChemistrySelect, 2020, 5(42): 13174-13178.
[89] AHMED A, HASHMI M A, AYUB K. Permeation selectivity of alkali metal ions through crown ether based ion channels [J]. Journal of Molecular Liquids, 2020, 302: 112577.
[90] AKINE S, MIYASHITA M, NABESHIMA T. Enhancement of alkali metal ion recognition by metalation of a tris(saloph) cryptand having benzene rings at the bridgeheads [J]. Inorganic Chemistry, 2021, 60(17): 12961-12971.
[91] MINTA A, TSIEN R Y. Fluorescent indicators for cytosolic sodium [J]. Journal of Biological Chemistry, 1989, 264(32): 19449-19457.
[92] SAMBATH K, LIU X, WAN Z, et al. Potassium ion fluorescence probes: Structures, properties, and bioimaging [J]. ChemPhotoChem, 2020, 5(4): 317-325.
[93] ZHOU X, SU F, TIAN Y, et al. A new highly selective fluorescent K+ sensor [J]. Journal of the American Chemical Society, 2011, 133(46): 18530-18533.
[94] HIRATA T, TERAI T, YAMAMURA H, et al. Protein-coupled fluorescent probe to visualize potassium ion transition on cellular membranes [J]. Analytical chemistry 2016, 88(5): 2693-2700.
[95] NING J, TIAN Y. Development of a new simple mitochondria-targeted fluorescent K+sensor and the application in high-throughput monitoring K+ fluxes [J]. Sensors and Actuators B: Chemical, 2020, 307: 127659.
[96] NING J, LIU H, SUN X, et al. Rational design of a polymer-based ratiometric K+indicator for high-throughput monitoring intracellular K+ fluctuations [J]. ACS Applied Bio Materials, 2021, 4(2): 1731-1739.
[97] WANG Z, PAN T, SHEN M, et al. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection [J]. Sensors and Actuators B: Chemical, 2023, 390: 134008.
[98] LI L, ZHANG C, XU L, et al. Luminescence ratiometric nanothermometry regulated by tailoring annihilators of triplet-triplet annihilation upconversion nanomicelles [J]. Angewandte Chemie International Edition, 2021, 60(51): 26725-26733.
[99] PAN T T, SHEN M, SHI J Y, et al. Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging [J]. Sensors and Actuators B￾Chemical, 2021, 345: 130450.
[100]YETISEN A K, JIANG N, CASTANEDA GONZALEZ C M, et al. Scleral lens sensor for ocular electrolyte analysis [J]. Advanced Materials, 2020, 32(6): 1906762.
[101]SI Y, SHI S, HU J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction [J]. Nano Today, 2023, 48.
[102]HAJIKHANI M, LIN M. A review on designing nanofibers with high porous and rough surface via electrospinning technology for rapid detection of food quality and safety attributes [J]. Trends in Food Science & Technology, 2022, 128: 118-128.
[103]HALICKA K, CABAJ J. Electrospun nanofibers for sensing and biosensing applications-a review [J]. International Journal of Molecular Sciences, 2021, 22(12): 6357.
[104]ZHOU X, SU F, GAO W, et al. Triazacryptand-based fluorescent sensors for extracellular and intracellular K+ sensing [J]. Biomaterials, 2011, 32(33): 8574-8583.
[105]ATAIDE V N, PRADELA FILHO L A, GUINATI B G S, et al. Combining chemometrics and paper-based analytical devices for sensing: An overview [J]. TrAC Trends in Analytical Chemistry, 2023, 164: 117091.
[106]SHEINI A. A point-of-care testing sensor based on fluorescent nanoclusters for rapid detection of septicemia in children [J]. Sensors and Actuators B: Chemical, 2021, 328: 129029.
[107]YETISEN A K, JIANG N, TAMAYOL A, et al. Paper-based microfluidic system for tear electrolyte analysis [J]. Lab Chip, 2017, 17(6): 1137-1148.
[108]ATABAEV T S. Doped carbon dots for sensing and bioimaging applications: A minireview [J]. Nanomaterials 2018, 8(5): 342-351.
[109]ANUSUYADEVI K, VELMATHI S. Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review [J]. Results in Chemistry, 2023, 5: 100918.
[110]ZHANG L, CHEN S, ZHAO Q, et al. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells [J]. Analytica Chimica Acta, 2015, 880: 130-135.
[111]YE T, GAO H, ZHANG Q, et al. Polarity inversion sensitized G-quadruplex metal sensors with K+ tolerance [J]. Biosensors and Bioelectronics, 2019, 145: 111703.
[112]SHEN G, ZHANG H, XIANG J, et al. Direct detection of potassium and lead (II) ions based on assembly-disassembly of a chiral cyanine dye /TBA complex [J]. Talanta, 2019, 201: 490-495.
[113]CHENG Y, CHENG M, HAO J, et al. Highly selective detection of K+ based on a dimerized G-quadruplex DNAzyme [J]. Analytical Chemistry, 2021, 93(18): 6907-6912.
[114]ZHANG T, LIU J, ZHANG L, et al. Recent advances in aptamer-based biosensors for potassium detection [J]. Analyst, 2023, 148(21): 5340-5354.
[115]LU D, HE L, WANG Y, et al. Tetraphenylethene derivative modified DNA oligonucleotide for in situ potassium ion detection and imaging in living cells [J]. Talanta, 2017, 167: 550-556.
[116]LU K, VU C Q, MATSUDA T, et al. Fluorescent protein-based indicators for functional super-resolution imaging of biomolecular activities in living cells [J]. International Journal of Molecular Sciences, 2019, 20(22): 5784-5801.
[117]WU S Y, WEN Y, SERRE N B C, et al. A sensitive and specific genetically-encoded potassium ion biosensor for in vivo applications across the tree of life [J]. PLOS Biology, 2022, 20(9): e3001772.
[118]ASHRAF K U, JOSTS I, MOSBAHI K, et al. The potassium binding protein Kbp is a cytoplasmic potassium sensor [J]. Structure, 2016, 24(5): 741-749.
[119]SHEN Y, WU S Y, RANCIC V, et al. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration [J]. Communications Biology, 2019, 2(1): 18.
[120]XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale [J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-3910.
[121]RUCKH T T, SKIPWITH C G, CHANG W, et al. Ion-switchable quantum dot Förster resonance energy transfer rates in ratiometric potassium sensors [J]. ACS Nano, 2016, 10(4): 4020-4030.
[122]LI Y, CHEN Q, PAN X, et al. Development and challenge of fluorescent probes for bioimaging applications: From visualization to diagnosis [J]. Topics in Current Chemistry, 2022, 380(4): 22-63.
[123]TWINE N B, NORTON R M, BROTHERS M C, et al. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes [J]. Lab on a Chip, 2018, 18(18): 2816-2825.
[124]LIU C, XU T, WANG D, et al. The role of sampling in wearable sweat sensors [J]. Talanta, 2020, 212: 120801.
[125]KIM J, CAMPBELL A S, DE ÁVILA B E-F, et al. Wearable biosensors for healthcare monitoring [J]. Nature Biotechnology, 2019, 37(4): 389-406.
[126]LIU H, NING J, SONG G, et al. Tricolor dual sensor for ratiometrically analyzing potassium ions and dissolved oxygen [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 232: 118155.
[127]SAKKA S G. Potassium-what an intensive care specialist should know [J]. Anasthesiologie & Intensivmedizin, 2023, 64: 447-459.
[128]KRISHNA S, BORREL A, HUANG R, et al. High-throughput chemical screening and structure-based models to predict hERG inhibition [J]. Biology, 2022, 11(2): 209-234.
[129]TEBAY C, HILL A P, WINDLEY M J. Metabolic and electrolyte abnormalities as risk factors in drug-induced long QT syndrome [J]. Biophysical Reviews, 2022, 14(1): 353-367.
[130]WANG X, ZHANG J, CUI Y, et al. A ratiometric fluorescence nanoprobe for ultrafast imaging of hypochlorite in living cells and zebrafish [J]. Microchemical Journal, 2022, 183.
[131]PIñEIRO L, NOVO M, AL-SOUFI W. Fluorescence emission of pyrene in surfactant solutions [J]. Advances in Colloid and Interface Science, 2015, 215: 1-12.
[132]TRIBUSER L, BORISOV S M, KLIMANT I. Tuning the sensitivity of fluoroionophore-based K+ sensors via variation of polymer matrix: A comparative study [J]. Sensors and Actuators B: Chemical, 2020, 312: 127940.
[133]AST S, SCHWARZE T, MüLLER H, et al. A highly K+-selective phenylaza-
[18]crown-6-lariat-ether-based fluoroionophore and its application in the sensing of K+ ions with an optical sensor film and in cells [J]. Chemistry-A European Journal, 2013, 19(44): 14911-14917.
[134]MüLLER B J, BORISOV S M, KLIMANT I. Red-to NIR-emitting, BODIPY-based, K+-selective fluoroionophores and sensing materials [J]. Advanced Functional Materials, 2016, 26(42): 7697-7707.
[135]PALLAVICINI P, PRETI L, VITA L D, et al. Fast dissolution of silver nanoparticles at physiological pH [J]. Journal of Colloid and Interface Science, 2020, 563: 177-188.
[136]MATSUZAKI K, SUGISHITA K, HARADA M, et al. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria [J]. Biochimica Et Biophysica Acta-Biomembranes, 1997, 1327(1): 119-130.
[137]KATSU T, KOBAYASHI H, FUJITA Y. Mode of action of gramicidin S on Escherichia coli membrane [J]. Biochimica Et Biophysica Acta, 1986, 860(3): 608-619.
[138]MASSCHALCK B, MICHIELS C W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria [J]. Critical Reviews in Microbiology, 2008, 29(3): 191-214.
[139]NAMKUNG W, PADMAWAR P, MILLS A D, et al. Cell-based fluorescence screen for K+ channels and transporters using an extracellular triazacryptand-based K+ sensor [J]. Journal of the American Chemical Society, 2008, 130(25): 7794-7795.
[140]LIU J N, PAN L M, SHANG C F, et al. A highly sensitive and selective nanosensor for near-infrared potassium imaging [J]. Science Advances, 2020, 6(16): eaax9757.
[141]VANDEWALLE B, HORNEZ L, REVILLION F, et al. Effect of exracellular ATP on breast tumor cell growth, implication of intracellular calcium [J]. Cancer Letters, 1994, 85(1): 47-54.
[142]CHRISTIANE S, STEPHAN G. MaxiK channels: molecular structure, function, and tissue distribution [J]. Perspectives in drug discovery and design, 1999, 15(16): 155–165.
[143]SONG G, JIANG D, WANG L, et al. A mitochondria-targeting NIR fluorescent potassium ion sensor: real-time investigation of the mitochondrial K+ regulation of apoptosis in situ [J]. Chemical Communications, 2020, 56(40): 5405-5408.
[144]NING J, LIN X, SU F, et al. Development of a molecular K+ probe for colorimetric/fluorescent/photoacoustic detection of K+ [J]. Analytical and Bioanalytical Chemistry, 2020, 412(25): 6947-6957.
[145]LIU J, JIANG L, HE S, et al. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review [J]. Chemical Engineering Journal, 2022, 433: 133496.
[146]DENG Z, GUO Y, ZHAO X, et al. Poly(N-isopropylacrylamide) based electrically conductive hydrogels and their applications [J]. Gels, 2022, 8(5): 280-305.
[147]TANG L, WANG L, YANG X, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications [J]. Progress in Materials Science, 2021, 115: 100702.
[148]ANSARI M J, RAJENDRAN R R, MOHANTO S, et al. Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: a review of the state-of-the-art [J]. Gels, 2022, 8(7): 454-498.
[149]RANA M M, DE LA HOZ SIEGLER H. Tuning the properties of PNIPAm-based hydrogel scaffolds for cartilage tissue engineering [J]. Polymers, 2021, 13(18): 3154-3177.
[150]ZHAO C, MA Z, ZHU X X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map [J]. Progress in Polymer Science, 2019, 90: 269-291.
[151]XU X, LIU Y, FU W, et al. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications [J]. Polymers, 2020, 12(3): 580-601.
[152]PAN Y, BAO H, SAHOO N G, et al. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery [J]. Advanced Functional Materials, 2011, 21(14): 2754-2763.
[153]JOHNSON B G, GILL P M W, POPLE J A. The performance of a family of density functional methods [J]. Journal of Chemical Physics, 1993, 98(7): 5612-5626.
[154]MYSZENSKI A, HANNUM N, HUDSON M, et al. Acute physical and occupational therapy and serum potassium: when is it safe? [J]. Journal of Acute Care Physical Therapy, 2019, 10(2): 46-52.
[155]SCHWARZE T, RIEMER J, EIDNER S, et al. A highly K+‐selective two‐photon fluorescent probe [J]. Chemistry-A European Journal, 2015, 21(32): 11306-11310.
[156]BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi￾functional applications: A review [J]. Synthetic Metals, 2021, 271: 116609.
[157]LIU Q, RAMAKRISHNA S, LONG Y-Z. Electrospun flexible sensor [J]. Journal of Semiconductors, 2019, 40(11): 111603.
[158]SONG J, LIN X, EE L Y, et al. A review on electrospinning as versatile supports for diverse nanofibers and their applications in environmental sensing [J]. Advanced Fiber Materials, 2022, 5(2): 429-460.
[159]LI X, ZHANG S, LI K, et al. Electrospun micro/nanofiber-based biomechanical sensors [J]. ACS Applied Polymer Materials, 2023, 5(9): 6720-6746.
[160]XU C, MA J, WANG W, et al. Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning [J]. Food Hydrocolloids, 2022, 124: 107216.
[161]ISLAM M T, LAING R M, WILSON C A, et al. Fabrication and characterization of 3-dimensional electrospun poly(vinyl alcohol)/keratin/chitosan nanofibrous scaffold [J]. Carbohydrate Polymers, 2022, 275: 118682.
[162]ALLAFCHIAN A R, KALANI S, GOLKAR P, et al. A comprehensive study on Plantago ovata/PVA biocompatible nanofibers: Fabrication, characterization, and biological assessment [J]. Journal of Applied Polymer Science, 2020, 137(47): 49560-49569.
[163]MüLLER B J, ZHDANOV A V, BORISOV S M, et al. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo [J]. Advanced Functional Materials, 2018, 28(9): 1704598.
[164]CHIBANI S, LE GUENNIC B, CHARAF-EDDIN A, et al. On the computation of adiabatic energies in aza-boron-dipyrromethene dyes [J]. Journal of Chemical Theory and Computation, 2012, 8(9): 3303-3313.
[165]BOYD M A, DAVIS A M, CHAMBERS N R, et al. Vesicle-based sensors for extracellular potassium detection [J]. Cellular and Molecular Bioengineering, 2021, 14(5): 459-469.
[166]SCHWARTZ I L, THAYSEN J H. Excretion of sodium and potassium in human sweat [J]. Journal of Clinical Investigation, 1956, 35(1): 114-120.
[167]KILDING A E, TUNSTALL H, WRAITH E, et al. Sweat rate and sweat electrolyte composition in international female soccer players during game specific training [J]. International Journal of Sports Medicine, 2009, 30(6): 443-447.
[168]XI P, HE X, FAN C, et al. Smart Janus fabrics for one-way sweat sampling and skin￾friendly colorimetric detection [J]. Talanta, 2023, 259: 124507.
[169]HE X, XU T, GU Z, et al. Flexible and superwettable bands as a platform toward sweat sampling and sensing [J]. Analytical Chemistry, 2019, 91(7): 4296-4300.
[170]LAO L, SHOU D, WU Y S, et al. "Skin-like" fabric for personal moisture management [J]. Science Advances, 2020, 6(14): eaaz0013.
[171]DAI B, LI K, SHI L, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management [J]. Advanced Materials, 2019, 31(41): 1904113.
[172]XU B, DING Y, NI J, et al. Directional sweat transport of monolayered cotton-fabrics fabricated through femtosecond-laser induced hydrophilization for personal moisture and thermal management [J]. Journal of Colloid and Interface Science, 2022, 628: 417-425.
[173]WU Z, YIN K, WU J, et al. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability [J]. Nanoscale, 2021, 13(4): 2209-2226.
[174]CHUNG C, LEE M, CHOE E. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy [J]. Carbohydrate Polymers, 2004, 58(4): 417-420.
[175]BALAMURUGAN S, NARESH N, PRAKASH I, et al. Capacity fading mechanism of Li2O loaded NiFe2O4/SiO2 aerogel anode for lithium-ion battery: Ex-situ XPS analysis [J]. Applied Surface Science, 2021, 535: 147677.
[176]JEONG S B, LEE D U, LEE B J, et al. Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters [J]. Chemical Engineering Journal, 2022, 440: 135830.
[177]GAO J, LI B, HUANG X, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring [J]. Chemical Engineering Journal, 2019, 373: 298-306.
[178]ZHANG W, ZHAO J, CAI C, et al. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing [J]. Advanced Science, 2022, 9(30): 2203428.
[179]KUMAR A, SHARMA M, VAISH R. Screen printed calcium fluoride nanoparticles embedded antibacterial cotton fabric [J]. Materials Chemistry and Physics, 2022, 288: 126449.
[180]RAMEZANZADEH B, HAERI Z, RAMEZANZADEH M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chemical Engineering Journal, 2016, 303: 511-528.

所在学位评定分委会
材料科学与工程
国内图书分类号
TP212.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766143
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
沈敏. 高分子基钾离子荧光传感材料的合成及其性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131015-沈敏-材料科学与工程系(13794KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[沈敏]的文章
百度学术
百度学术中相似的文章
[沈敏]的文章
必应学术
必应学术中相似的文章
[沈敏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。