[1]Liang Y, Dutta S P. Application trend in advanced ceramic technologies[J]. Technovation, 2001, 21(1): 61-65.
[2] Ziva A Z, Suryana Y K, Kurniadianti Y S, et al. Recent progress on the production of aluminum oxide (Al2O3) nanoparticles: A review[J]. Mechanical Engineering for Society and Industry, 2021, 1(2): 54-77.
[3] 程喆.复合孔结构陶瓷支架的制备及其生物性能[D].西安理工大学,2019.
[4] Grigoriev S N, Nadykto A B, Volosova M A, et al. WEDM as a replacement for grinding in machining ceramic Al2O3-TiC cutting inserts[J]. Metals, 2021, 11(6): 882.
[5] Bharathi V, Anilchandra A R, Sangam S S, et al. A review on the challenges in machining of ceramics[J]. Materials Today: Proceedings, 2021, 46: 1451-1458.
[6] Malkin S, Hwang T W. Grinding mechanisms for ceramics[J]. CIRP annals, 1996, 45(2): 569-580.
[7] Kitajima K, Cai G Q, Kurnagai N, et al. Study on mechanism of ceramics grinding[J]. CIRP annals, 1992, 41(1): 367-371.
[8] Chai H. On the mechanics of edge chipping from spherical indentation[J]. International Journal of Fracture, 2011, 169: 85-95.
[9] Behrendt T, Hackemann S, Mechnich P, et al. Development and test of oxide/oxide ceramic matrix composites combustor liner demonstrators for aero-engines[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(3): 031507.
[10]Bistolfi A, Ferracini R, Lee G C, et al. Ceramic-on-ceramic catastrophic liner failure in total hip arthroplasty: Morphological and compositional analysis of fractured ceramic components[J]. Ceramics International, 2021, 47(8): 11029-11036.
[11]唐修检,田欣利,吴志远等.工程陶瓷边缘碎裂行为与机理研究进展[J].中国机械工程,2010,21(01):114-119.
[12]Komanduri R. On material removal mechanisms in finishing of advanced ceramics and glasses[J]. CIRP annals, 1996, 45(1): 509-514.
[13]Larchuk T J, Conway Jr J C, Kirchner H P. Crushing as a mechanism of material removal during abrasive machining[J]. Journal of the American Ceramic Society, 1985, 68(4): 209-215.
[14]Xu H H K, Padture N P, Jahanmir S. Effect of microstructure on material-removal mechanisms and damage tolerance in abrasive machining of silicon carbide[J]. Journal of The American Ceramic Society, 1995, 78(9): 2443-2448.
[15]Li K, Liao T W. Surface/subsurface damage and the fracture strength of ground ceramics[J]. Journal of Materials Processing Technology, 1996, 57(3-4): 207-220.
[16]Inasaki I. Grinding of hard and brittle materials[J]. CIRP annals, 1987, 36(2): 463-471.
[17]Malkin S, Ritter J E. Grinding mechanisms and strength degradation for ceramics[J]. Journal of Manufacturing Science and Engineering, 1989, 111(2): 167-174.
[18]Bi Z, Tokura H, Yoshikawa M. Study on surface cracking of alumina scratched by single-point diamonds[J]. Journal of Materials Science, 1988, 23: 3214-3224.
[19]Xu H H K, Jahanmir S. Microfracture and material removal in scratching of alumina[J]. Journal of Materials Science, 1995, 30: 2235-2247.
[20]邓朝晖,张璧,孙宗禹,等.陶瓷磨削的材料去除机理[J].金刚石与磨料磨具工程,2002(02):47-51.
[21]Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics[J]. CIRP annals, 1994, 43(1): 305-308.
[22]Kirchner H P. Damage penetration at elongated machining grooves in hot-pressed Si3N4[J]. Journal of the American Ceramic Society, 1984, 67(2): 127-132.
[23]Conway J C, Kirchner H P. The mechanics of crack initiation and propagation beneath a moving sharp indentor[J]. Journal of Materials Science, 1980, 15: 2879-2883.
[24]Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Manufacturing Science and Engineering, 1991, 113(2): 184-189.
[25]卢守相,杨秀轩,张建秋,等.关于硬脆材料去除机理与加工损伤的理性思考[J].机械工程学报,2022,58(15):31-45.
[26]Yang M, Li C, Zhang Y, et al. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 2617-2632.
[27]Huang H, Li X, Mu D, et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103675.
[28]Dai J, Su H, Yu T, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain[J]. Precision Engineering, 2018, 51: 271-279.
[29]Singh A, Solanki D, Sencha R, et al. Study and characterization of the ductile-brittle transition zone in sintered zirconia[J]. Journal of Manufacturing Processes, 2020, 58: 749-762.
[30]Yang M, Li C, Zhang Y, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 55-65.
[31]Morrell R, Gant A J. Edge chipping of hard materials[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(4-6): 293-301.
[32]Chai H, Lawn B R. Edge chipping of brittle materials: effect of side-wall inclination and loading angle[J]. International Journal of Fracture, 2007, 145: 159-165.
[33]Chai H. On edge chipping in cylindrical surfaces[J]. International Journal of Solids and Structures, 2015, 54: 12-19.
[34]CAO Y. Failure analysis of exit edges in ceramic machining using finite element analysis[J]. Engineering Failure Analysis, 2001, 8(4): 325-338.
[35]Gao S, Kang R, Dong Z, et al. Edge chipping of silicon wafers in diamond grinding[J]. International Journal of Machine Tools and Manufacture, 2013, 64: 31-37.
[36]J Wang J J, Liao Y Y, Huang C Y. The effect of uncut chip thickness on edge chipping and wheel performance in groove grinding of single crystal silicon[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225(8): 1255-1262.
[37]Zhang L, Liu W, Chen J, et al. Subsurface damage in grinding of brittle materials considering machining parameters and spindle dynamics[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97: 3723-3734.
[38]Yang B, Shen X, Lei S. Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics[J]. International Journal of Machine Tools and Manufacture, 2009, 49(3-4): 344-350.
[39]Tesfay H D, Xu Z, Li Z C. Ultrasonic vibration assisted grinding of bio-ceramic materials: an experimental study on edge chippings with Hertzian indentation tests[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86: 3483-3494.
[40]Thouless M D, Evans A G, Ashby M F, et al. The edge cracking and spalling of brittle plates[J]. Acta Metallurgica, 1987, 35(6): 1333-1341.
[41]Chiu W C, Thouless M D, Endres W J. An analysis of chipping in brittle materials[J]. International Journal of Fracture, 1998, 90: 287-298.
[42]Gong H, Fang F Z, Zhang X F, et al. Study on the reduction strategy of machining-induced edge chipping based on finite element analysis of in-process workpiece structure[J]. Journal of Manufacturing Science and Engineering, 2013, 135(1): 011017.
[43]Jiao Y, Liu W J, Pei Z J, et al. Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis[J]. Journal of Manufacturing Science and Engineering, 2005, 127(4): 752-758.
[44]Li Z C, Cai L W, Pei Z J, et al. Edge-chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13): 1469-1477.
[45]Gogotsi G A, Mudrik S P. Fracture barrier estimation by the edge fracture test method[J]. Ceramics International, 2009, 35(5): 1871-1875.
[46]Petit F, Vandeneede V, Cambier F. Ceramic toughness assessment through edge chipping measurements-influence of interfacial friction[J]. Journal of the European Ceramic Society, 2009, 29(11): 2135-2141.
[47]Li C, Zhang Q, Zhang Y, et al. Nanoindentation and nanoscratch tests of YAG single crystals: an investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size[J]. Ceramics International, 2020, 46(3): 3382-3393.
[48]Wei S, Liu Y, Liu X, et al. Investigation on edge chipping evaluation of Si3N4 ceramics milling surface[J]. Measurement, 2019, 133: 241-250.
[49]Wang J, Feng P, Zhang J, et al. Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 18-27.
[50]Shi H, Liu G, Yang G, et al. Analytical modelling of edge chipping in scratch of soda-lime glass considering strain-rate hardening effect[J]. Ceramics International, 2021, 47(18): 26552-26566.
[51]熊楚杨,陈五一.关于Salomon假设的研究综述[J].航天制造技术,2007(06):6-10.
[52]Zhang B, Yin J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 1(1): 012007.
[53]KLOCKE F, VERLEMANN E, SCHIPPERS C. High-speed grinding of ceramics[J]. Manufacturing Engineering and Materials Processing, 1999, 53: 119-138.
[54]KLOCKE F, BRINKSMEIER E, EVANS C J, et al. High-speed grinding-fundamentals and state of the art in Europe, Japan, and the USA[M]. F Klocke, E Brinksmeier, Christopher J. Evans, T Howes, I Inasaki, E Minke …, 1997.
[55]KOVACH J, MALKIN S. High-speed, low-damage grinding of advanced ceramics phase 1. final report[R]. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States); Eaton Corp …, 1995.
[56]Hwang T W, Evans C J, Malkin S. An investigation of high speed grinding with electroplated diamond wheels[J]. CIRP annals, 2000, 49(1): 245-248.
[57]Hwang T W, Evans C J, Whitenton E P, et al. High speed grinding of silicon nitride with electroplated diamond wheels, part 1: wear and wheel life[J]. Journal of Manufacturing Science and Engineering, 2000, 122(1): 32-41.
[58]Inoue K, Sakai Y, Ono K, et al. Super high speed grinding for ceramics with vitrified diamond wheel[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(4): 344-345.
[59]Ramesh K, Yeo S H, Gowri S, et al. Experimental evaluation of super high-speed grinding of advanced ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2001, 17: 87-92.
[60]Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding[J]. Materials Science and Engineering: A, 2003, 345(1-2): 155-163.
[61]Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J]. International Journal of Machine Tools and Manufacture, 2003, 43(8): 811-823.
[62]Choudhary A, Paul S. Surface generation in high-speed grinding of brittle and tough ceramics[J]. Ceramics International, 2021, 47(21): 30546-30562.
[63]XIE G Z, HUANG H H, HUANG H, et al. Experimental investigations of advanced ceramics in high efficiency deep grinding[J]. Journal of Mechanical Engineering, 2007, 43(1): 176-184.
[64]XIE G Z, HUANG H. An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia[J]. International Journal of Machine Tools and Manufacture, 2008, 48(14): 1562-1568.
[65]CHEN J, HUANG H, XU X. An experimental study on the grinding of alumina with a monolayer brazed diamond wheel[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41: 16-23.
[66]CHEN J, SHEN J, HUANG H, et al. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels[J]. Journal of Materials Processing Technology, 2010, 210(6-7): 899-906.
[67]LIU Y, LI B, WU C, et al. Simulation-based evaluation of surface micro-cracks and fracture toughness in high-speed grinding of silicon carbide ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86: 799-808.
[68]LI B, NI J, YANG J, et al. Study on high-speed grinding mechanisms for quality and process efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70: 813-819.
[69]WU C, PANG J, LI B, et al. High-speed grinding of HIP-SiC ceramics on transformation of microscopic features[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 1913-1921.
[70]Begley M R, Hutchinson J W. The mechanics of size-dependent indentation[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 2049-2068.
[71]Shu J Y, Fleck N A. The prediction of a size effect in microindentation[J]. International Journal of Solids and Structures, 1998, 35(13): 1363-1383.
[72]魏大禹.纳米压痕测试仪整机控制与应用扩展[D].吉林大学,2023.
[73]李江,潘裕柏,宁金威,等.氧化铝陶瓷低温烧结的研究现状和发展前景[J].中国陶瓷,2001(05):42-45.
[74]Laugier M T. New formula for indentation toughness in ceramics[J]. Journal of Materials Science Letters, 1987, 6(3): 355-356.
[75]Yoshikawa M, Bi Z, Tokura H. Observations of ceramic surface cracks by newly proposed methods[J]. Yogyo-Kyokai-Shi, 1987, 95(10): 961-969.
[76]Li C, Li X, Wu Y, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals[J]. International Journal of Machine Tools and Manufacture, 2019, 143: 23-37.
[77]Bao Y, Kuang F, Sun Y, et al. A simple way to make pre-stressed ceramics with high strength[J]. Journal of Materiomics, 2019, 5(4): 657-662.
[78]Agarwal S, Rao P V. Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding[J]. International Journal of Machine Tools and Manufacture, 2013, 65: 68-78.
[79]Huang W, Yan J. Surface formation mechanism in ultraprecision diamond turning of coarse-grained polycrystalline ZnSe[J]. International Journal of Machine Tools and Manufacture, 2020, 153: 103554.
[80]孙立业,李红双,韩廷水等.端面平磨氧化铝陶瓷磨削力影响因素实验研究[J].中国工程机械学报,2022,20(02):161-166.
[81]Cai M B, Li X P, Rahman M. Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation[J]. International Journal of Machine Tools and Manufacture, 2007, 47(1): 75-80.
[82]Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics[J]. Journal of Materials Processing Technology, 2003, 132(1-3): 353-364.
[83]张银霞.单晶硅片超精密加工表面/业表面损伤检测技术[J].电子质量,2004,集成电路与元器件卷(7):72-75.
[84]王卓.光学材料加工亚表面损伤检测及控制关键技术研究[D].长沙:国防科学技术大学机械工程博士学位论文,2008:23-40.
[85]吴东江,曹先锁,王强国,等.KDP晶体加工表面的亚表面损伤检测与分析[J].光学精密工程,2007,15(11):1721-1726.
[86]Yang X, Zhang B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing, 2019, 1(2): 022003.
[87]Yu T, Teng J G, Wong Y L, et al. Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model[J]. Engineering Structures, 2010, 32(3): 665-679.
[88]Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials[C]//AIP conference proceedings. American Institute of Physics, 1994, 309(1): 981-984.
[89]杨震琦,庞宝君,王立闻,等.JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用[J].爆炸与冲击,2010,30(05):463-471.
[90]Anderson Jr C E, Royal-Timmons S A. Ballistic performance of confined 99.5%-Al203 ceramic tiles[J]. International Journal of Impact Engineering, 1997, 19(8): 703-713.
[91]Limbach R, Rodrigues B P, Wondraczek L. Strain-rate sensitivity of glasses[J]. Journal of Non-Crystalline Solids, 2014, 404: 124-134.
[92]Machado J J M, Marques E A S, Campilho R, et al. Mode II fracture toughness of CFRP as a function of temperature and strain rate[J]. Composites Part B: Engineering, 2017, 114: 311-318.
[93]Suresh S, Nakamura T, Yeshurun Y, et al. Tensile fracture toughness of ceramic materials: effects of dynamic loading and elevated temperatures[J]. Journal of the American Ceramic Society, 1990, 73(8): 2457-2466.
[94]陈建新.氧化铝陶瓷基片研磨抛光工艺研究[D].广东工业大学,2016.
[95]Cao H, Li B, He Z. Chatter stability of milling with speed-varying dynamics of spindles[J]. International Journal of Machine Tools and Manufacture, 2012, 52(1): 50-58.
[96]Fischer-Cripps A C, Nicholson D W. Nanoindentation. Mechanical engineering series[J]. Appl. Mech. Rev., 2004, 57(2): B12-B12.
[97]Qian H, Chen M, Qi Z, et al. Review on research and development of abrasive scratching of hard brittle materials and its underlying mechanisms[J]. Crystals, 2023, 13(3): 428.
[98]刘伟.基于单颗磨粒切削的氮化硅陶瓷精密磨削仿真与实验研究[D].湖南大学,2014.
[99]戴子华,朱永伟,居志兰,等.单颗磨粒作用下硼硅酸玻璃的亚表面静态裂纹[J].硅酸盐学报,2014,42(9):1161-1167.
[100]Jing X, Maiti S, Subhash G. A new analytical model for estimation of scratch-induced damage in brittle solids[J]. Journal of the American Ceramic Society, 2007, 90(3): 885-892.
[101]Lawn B R, Marshall D B. Hardness, toughness, and brittleness: an indentation analysis[J]. Journal of the American Ceramic Society, 1979, 62(7-8): 347-350.
[102]Kaynak Y, Karaca H E, Jawahir I S. Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining[J]. Journal of Materials Engineering and Performance, 2015, 24: 452-460.
[103]dos Santos T, Rossi R, Maghous S, et al. Experimental procedure and simplified modeling for the high strain-rate and transient hardness evolution of aluminum AA1050[J]. Mechanics of Materials, 2018, 122: 42-57.
[104]Sun J, Guo Y B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V[J]. Journal of Materials Processing Technology, 2009, 209(8): 4036-4042.
[105]Zhang Y Q, Lu Y, Hao H. Analysis of fragment size and ejection velocity at high strain rate[J]. International Journal of Mechanical sciences, 2004, 46(1): 27-34.
[106]Guo S, Lu S, Zhang B, et al. Surface integrity and material removal mechanisms in high-speed grinding of Al/SiCp metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 2022, 178: 103906.
[107]郭塞,江庆红,刘昊等.难加工材料超高速磨削亚表面损伤研究[J].航空制造技术,2023,66(14):59-71.
[108]Zhang B, Howes T D. Subsurface evaluation of ground ceramics[J]. CIRP annals, 1995, 44(1): 263-266.
[109]Agarwal S, Rao P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 698-710.
[110]Kędzierski P, Morka A, Sławiński G, et al. Optimization of two-component armour[J]. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2015, 63(1).
[111]Huang H, Lawn B R, Cook R F, et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11): 6096-6100.
[112]Li P, Chen S, Xiao H, et al. Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass[J]. International Journal of Mechanical Sciences, 2020, 182: 105737.
[113]Ravichandran G, Subhash G. A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and Structures, 1995, 32(17-18): 2627-2646.
[114]Lankford J. Mechanisms responsible for strain‐rate‐dependent compressive strength in ceramic materials[J]. Journal of the American Ceramic Society, 1981, 64(2): C‐33-C‐34.
[115]Wan Z, Wang W, Feng J, et al. Effect of scratch direction on densification and crack initiation of optical glass BK7[J]. Ceramics International, 2020, 46(10): 16754-16762.
[116]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[117]Gu X, Zhao Q, Wang H, et al. Fundamental study on damage-free machining of sapphire: Revealing damage mechanisms via combining elastic stress fields and crystallographic structure[J]. Ceramics International, 2019, 45(16): 20684-20696.
[118]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨[J].纳米技术与精密工程,2003,(01): 48-56.
修改评论