[1] 周树荃. 有限元结构分析并行计算[M]. 科学出版社, 1994.
[2] Essink G H P. Mathematical models and their application to salt water intrusion problems[C]//TIAC’03: Coastal aquifers intrusion technology: Mediterranean countries. 2003: 57-77.
[3] Neumann B, Vafeidis A T, Zimmermann J, et al. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment[J]. PloS one, 2015, 10(3): e0118571.
[4] Verkaik J, Van Engelen J, Huizer S, et al. Distributed memory parallel computing of three-dimensional variable-density groundwater flow and salt transport[J]. Advances in Water Resources, 2021, 154: 103976.
[5] 苗新强, 金先龙, 丁峻宏. 结构静力有限元分层并行计算方法[J]. 力学学报, 2014, 46(4): 611-618.
[6] 余德浩. 大规模科学计算研究[J]. 中国基础科学, 2001年1期: 19-25.
[7] Eijkhout V. Introduction to high performance scientific computing[M]. North Carolina: Lulu Press, 2010.
[8] 张林波, 迟学斌, 莫则尧, 等. 并行计算导论[M]. 北京: 清华大学出版社, 2006.
[9] Delsman J R, Mulder T, Verastegui B R, et al. Reproducible construction of a high-resolution national variable-density groundwater salinity model for the Netherlands[J]. Environmental Modelling & Software, 2023, 164: 105683.
[10] Hwang H T, Park Y J, Sudicky E A, et al. A parallel computational framework to solve flow and transport in integrated surface–subsurface hydrologic systems[J]. Environmental Modelling & Software, 2014, 61: 39-58.
[11] Abdelaziz R, Le H H. MT3DMSP–A parallelized version of the MT3DMS code[J]. Journal of African Earth Sciences, 2014, 100: 1-6.
[12] Huang J, Christ J A, Goltz M N. An assembly model for simulation of large-scale ground water flow and transport[J]. Groundwater, 2008, 46(6): 882-892.
[13] Quarteroni A, Sacco R, Saleri F. Numerical mathematics[M]. Berlin: Springer Science & Business Media, 2006.
[14] Barlow R H, Evans D J. Parallel algorithms for the iterative solution to linear systems[J]. The Computer Journal, 1982, 25(1): 56-60.
[15] Gander W, Gander M J, Kwok F. Scientific computing-An introduction using Maple and MATLAB[M]. Berlin: Springer Science & Business Media, 2014.
[16] Saad Y, Van Der Vorst H A. Iterative solution of linear systems in the 20th century[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 1-33.
[17] Alyahya H, Mehmood R, Katib I. Parallel iterative solution of large sparse linear equation systems on the intel MIC architecture[J]. Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies, 2020: 377-407.
[18] Xiao G, Yin C, Zhou T, et al. A survey of accelerating parallel sparse linear algebra[J]. ACM Computing Surveys, 2023, 56(1): 1-38.
[19] Sun Q, Zhang C, Wu C, et al. Bandwidth reduced parallel SpMV on the SW26010 many-core platform[C]//Proceedings of the 47th International Conference on Parallel Processing. 2018: 1-10.
[20] Fei X, Zhang Y. Regu2D: Accelerating vectorization of SpMV on intel processors through 2D-partitioning and regular arrangement[C]//Proceedings of the 50th International Conference on Parallel Processing. 2021: 1-11.
[21] Sadi F, Sweeney J, Low T M, et al. Efficient spmv operation for large and highly sparse matrices using scalable multi-way merge parallelization[C]//Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 2019: 347-358.
[22] Parravicini A, Sgherzi F, Santambrogio M D. A reduced-precision streaming SpMV architecture for Personalized PageRank on FPGA[C]//Proceedings of the 26th Asia and South Pacific Design Automation Conference. 2021: 378-383.
[23] Chen Y, Xiao G, Wu F, et al. tpSpMV: A two-phase large-scale sparse matrix-vector multiplication kernel for manycore architectures[J]. Information Sciences, 2020, 523: 279-295.
[24] Xiao G, Li K, Chen Y, et al. Caspmv: A customized and accelerative spmv framework for the sunway taihulight[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 32(1): 131-146.
[25] Bienz A, Gropp W D, Olson L N. Node aware sparse matrix–vector multiplication[J]. Journal of Parallel and Distributed Computing, 2019, 130: 166-178.
[26] Niu Y, Lu Z, Dong M, et al. TileSpMV: A tiled algorithm for sparse matrix-vector multiplication on GPUs[C]//2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021: 68-78.
[27] Li K, Yang W, Li K. Performance analysis and optimization for SpMV on GPU using probabilistic modeling[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(1): 196-205.
[28] Miller C T, Dawson C N, Farthing M W, et al. Numerical simulation of water resources problems: Models, methods, and trends[J]. Advances in Water Resources, 2013, 51: 405-437.
[29] Mo Z, Zhang A, Cao X, et al. JASMIN: a parallel software infrastructure for scientific computing[J]. Frontiers of Computer Science in China, 2010, 4: 480-488.
[30] Heroux M A, Bartlett R A, Howle V E, et al. An overview of the Trilinos project[J]. ACM Transactions on Mathematical Software (TOMS), 2005, 31(3): 397-423.
[31] Balay S, Brown J, Buschelman K, et al. PETSc users manual[R]. Tech. Rep. ANL-95/11—Revision 3.3, Argonne Natl. Lab., Argonne, Ill., 2012.
[32] Zhang K, Wu Y S, Bodvarsson G S. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada[J]. Journal of Contaminant Hydrology, 2003, 62-63: 381-399.
[33] White S P, Creighton A L, Bixley P E, et al. Modeling the dewatering and depressurization of the Lihir open-pit gold mine, Papua New Guinea[J]. Geothermics, 2004, 33(4): 443-456.
[34] Katz R F, Knepley M G, Smith B, et al. Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation[J]. Physics of the Earth and Planetary Interiors, 2007, 163: 52-68.
[35] White M D, Oostrom M. STOMP Subsurface Transport Over Multiple Phases, version 4.0, user's guide[R]. PNNL-15782, Pacific Northwest National Laboratory, Richland, 2006.
[36] White M D, Oostrom M, Rockhold M L, et al. Scalable modeling of carbon tetrachloride migration at the Hanford site using the STOMP simulator[J]. Vadose Zone Journal, 2008, 7(2): 654-666.
[37] Lu B, Wheeler M F. Iterative coupling reservoir simulation on high performance computers[J]. Petroleum Science, 2009, 6(1):43-50.
[38] Yamamoto H, Zhang K, Karasaki K, et al. Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow[J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 586-599.
[39] Kollet S J, Maxwell R M, Woodward C S, et al. Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources[J]. Water Resources Research, 2010, 46(4): W04201.
[40] Le P, Kumar P, Valocchi A J, et al. GPU-based high-performance computing for integrated surface–sub-surface flow modeling[J]. Environmental Modelling & Software, 2015, 73: 1-13.
[41] Sarris T S, Scott D M, Close M E. Parallel simulation in subsurface hydrology: evaluating the performance of modelling computers[J]. Groundwater, 2021, 59:109-116.
[42] Verkaik J, Hughes J D, van Walsum P E V, et al. Distributed memory parallel groundwater modeling for the Netherlands Hydrological Instrument[J]. Environmental Modelling & Software, 2021, 143: 105092.
[43] Horgue P, Renard F, Gerlero G S, et al. porousMultiphaseFoam v2107: An open-source tool for modeling saturated/unsaturated water flows and solute transfers at watershed scale[J]. Computer Physics Communications, 2022, 273:108278.
[44] Lu C, Lichtner P C. PFLOTRAN: massively parallel 3-D simulator for CO2 sequestration in geologic media[C]//Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL. 2005.
[45] Hammond G E, Lichtner P C, Mills R T. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN[J]. Water Resources Research, 2014, 50(1):208-228.
[46] Wang W, Fischer T, Zehner B, et al. A parallel finite element method for two-phase flow processes in porous media: OpenGeoSys with PETSc[J]. Environmental Earth Sciences, 2015, 73: 2269-2285.
[47] Wang W, Kolditz O, Nagel T. Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices[J]. Applied Energy, 2016, 185(pt.2):1954-1964.
[48] Su D, Mayer K U, Macquarrie K T B. Parallelization of MIN3P-THCm: A high performance computational framework for subsurface flow and reactive transport simulation[J]. Environmental Modelling and Software, 2017, 95: 271-289.
[49] Liu X, Zhang Q, Cheng T. Accelerating contaminant transport simulation in MT3DMS using JASMIN-based parallel computing[J]. Water, 2020, 12(5):1480.
[50] Boufadel M C, Suidan M T, Venosa A D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably-saturated porous media[J]. Journal of Contaminant Hydrology, 1999, 37(1-2): 1-20.
[51] Li H, Boufadel M. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches[J]. Nature Geoscience, 2010, 3: 96–99.
[52] Huyakorn P S, Pinder G F. Computational methods in subsurface flow[M]. New York: Academic Press, 1983.
[53] CRC Handbook of Chemistry and Physics[M]. 63rd ed. Florida: CRC Press, 1982: 261.
[54] Van Genuchten M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[55] Frind E O. Simulation of long-term transient density-dependent transport in groundwater[J]. Advances in Water Resources, 1982, 5: 73-88.
[56] Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26: 1483-1496.
[57] Balay S, Buschelman K, Eijkhout V, et al. PETSc: home page[EB/OL]. http://www.mcs.anl.gov/petsc.
[58] Knepley M G, Katz R F, Smith B. Developing a geodynamics simulator with PETSc[C]//Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg, 2006.
[59] Sleijpen G L G, Fokkema D R. BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum[J]. Electronic Transactions on Numerical Analysis, 1993, 1(11): 2000.
[60] Saad Y. Iterative methods for sparse linear systems[M]. Society for Industrial and Applied Mathematics, 2003.
[61] 李晓梅, 吴建平. 数值并行算法与软件[M]. 北京: 科学出版社, 2007.
[62] Stoeckl L, Houben G. Flow dynamics and age stratification of freshwater lenses: Experiments and modeling[J]. Journal of Hydrology, 2012, 458: 9-15.
[63] Stoeckl L, Walther M, Graf T. A new numerical benchmark of a freshwater lens[J]. Water Resources Research, 2016, 52(4): 2474-2489.
[64] Fulton S R, Ciesielski P E, Schubert W H. Multigrid methods for elliptic problems: A review[J]. Monthly Weather Review, 1986, 114(5): 943-959.
[65] Goswami R R, Clement T P. Laboratory‐scale investigation of saltwater intrusion dynamics[J]. Water Resources Research, 2007, 43(4): W04418.
[66] Povich T J, Dawson C N, Farthing M W, et al. Finite element methods for variable density flow and solute transport[J]. Computational Geosciences, 2013, 17: 529-549.
[67] Henry H R. Effects of dispersion on salt encroachment in coastal aquifers[J]//Seawater in Coastal Aquifers. US Geological Survey Water Supply Paper, 1964: 70-84.
[68] Segol G, Pinder G F, Gray W G. A Galerkin-finite element technique for calculating the transient position of the saltwater front[J]. Water Resources Research, 1975, 11(2): 345-346.
修改评论