[1] FLEMING A, BOURDENX M, FUJIMAKI M, et al. The different autophagy degradation pathways and neurodegeneration[J/OL]. Neuron, 2022, 110(6): 935-966.
[2] YANG L, YE F, LIU J, et al. Extracellular SQSTM1 exacerbates acute pancreatitis by activating autophagy-dependent ferroptosis[J/OL]. Autophagy, 2023, 19(6): 1733-1744.
[3] CUI J, YUAN Y, WANG J, et al. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes[J/OL]. Molecular Neurobiology, 2022, 59(4): 2052-2067.
[4] LIANG J R, LINGEMAN E, LUONG T, et al. A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation[J/OL]. Cell, 2020, 180(6): 1160-1177.e20.
[5] MA X, LU C, CHEN Y, et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates[J/OL]. Cell, 2022, 185(8): 1325-1345.e22.
[6] XU Y, ZHOU P, CHENG S, et al. A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy[J/OL]. Cell, 2019, 178(3): 552-566.e20.
[7] SHOEMAKER C J, HUANG T Q, WEIR N R, et al. CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor[J/OL]. PLOS Biology, 2019, 17(4): e2007044.
[8] POHL C, DIKIC I. Cellular quality control by the ubiquitin-proteasome system and autophagy[J/OL]. Science, 2019, 366(6467): 818-822.
[9] KAUR J, DEBNATH J. Autophagy at the crossroads of catabolism and anabolism[J/OL]. Nature Reviews Molecular Cell Biology, 2015, 16(8): 461-472.
[10] DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy-related pathways in cancer[J/OL]. Nature Reviews Molecular Cell Biology, 2023, 24(8): 560-575.
[11] DE DUVE C. HISTORICAL PERSPECTIVE[J]. 2005, 7(9).
[12] TSUKADA M. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS LETTERS, 1993, 333(1).
[13] DIKIC I, ELAZAR Z. Mechanism and medical implications of mammalian autophagy[J/OL]. Nature Reviews Molecular Cell Biology, 2018, 19(6): 349-364.
[14] WANG L, KLIONSKY D J, SHEN H M. The emerging mechanisms and functions of microautophagy[J/OL]. Nature Reviews Molecular Cell Biology, 2023, 24(3): 186-203.
[15] KAUSHIK S, CUERVO A M. The coming of age of chaperone-mediated autophagy[J/OL]. Nature Reviews Molecular Cell Biology, 2018, 19(6): 365-381.
[16] VARGAS J N S, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals[J/OL]. Nature Reviews Molecular Cell Biology, 2023, 24(3): 167-185.
[17] DEJESUS R, MORETTI F, MCALLISTER G, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62[J/OL]. eLife, 2016, 5: e17290.
[18] WHITE J, SUKLABAIDYA S, VO M T, et al. Multifaceted roles of TAX1BP1 in autophagy[J/OL]. Autophagy, 2023, 19(1): 44-53.
[19] KITADA M, KOYA D. Autophagy in metabolic disease and ageing[J/OL]. Nature Reviews Endocrinology, 2021, 17(11): 647-661.
[20] ITAKURA E, KISHI-ITAKURA C, MIZUSHIMA N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes[J/OL]. Cell, 2012, 151(6): 1256-1269.
[21] DIAO J, LIU R, RONG Y, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J/OL]. Nature, 2015, 520(7548): 563-566.
[22] KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1[J/OL]. Autophagy, 2021, 17(1): 1-382.
[23] BEESABATHUNI N S, PARK S, SHAH P S. Quantitative and temporal measurement of dynamic autophagy rates[J/OL]. Autophagy, 2023, 19(4): 1164-1183.
[24] MIZUSHIMA N, MURPHY L O. Autophagy Assays for Biological Discovery and Therapeutic Development[J/OL]. Trends in Biochemical Sciences, 2020, 45(12): 1080-1093.
[25] DING S, HONG Y. The fluorescence toolbox for visualizing autophagy[J/OL]. Chemical Society Reviews, 2020, 49(22): 8354-8389.
[26] DE DOMENICO I, WARD D M, KAPLAN J. Specific iron chelators determine the route of ferritin degradation[J/OL]. Blood, 2009, 114(20): 4546-4551.
[27] ZHANG C, XU C, JING Y, et al. Deferoxamine Induces Autophagy Following Traumatic Brain Injury via TREM2 on Microglia[J/OL]. Molecular Neurobiology, 2023
[2024-02-19].
[28] LACHANCE V, WANG Q, SWEET E, et al. Autophagy protein NRBF2 has reduced expression in Alzheimer’s brains and modulates memory and amyloid-beta homeostasis in mice[J/OL]. Molecular Neurodegeneration, 2019, 14(1): 43.
[29] PRASCHBERGER R, KUENEN S, SCHOOVAERTS N, et al. Neuronal identity defines α-synuclein and tau toxicity[J/OL]. Neuron, 2023, 111(10): 1577-1590.e11.
[30] WANG B, CAI Z, TAO K, et al. Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7[J/OL]. Autophagy, 2016, 12(8): 1215-1228.
[31] KRACH F, STEMICK J, BOERSTLER T, et al. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons[J/OL]. Nature Communications, 2022, 13(1): 6797.
[32] LI Z, ZHU C, DING Y, et al. ATTEC: a potential new approach to target proteinopathies[J/OL]. Autophagy, 2020, 16(1): 185-187.
[33] KAMPMANN M. CRISPR-based functional genomics for neurological disease[J/OL]. Nature Reviews Neurology, 2020, 16(9): 465-480.
[34] GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation[J/OL]. Cell, 2014, 159(3): 647-661.
[35] YAN G, YANG J, LI W, et al. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing[J/OL]. Nature Cell Biology, 2023, 25(5): 754-764.
[36] MIMURA K, SAKAMAKI J I, MORISHITA H, et al. Genome-wide CRISPR screening reveals nucleotide synthesis negatively regulates autophagy[J/OL]. Journal of Biological Chemistry, 2021, 296: 100780.
[37] LEE J H, CHANDRASEKAR S, CHUNG S, et al. Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting[J/OL]. Proceedings of the National Academy of Sciences, 2018, 115(24)
[2024-02-19].
[38] WILD K, JUAIRE K D, SONI K, et al. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions[J/OL]. Nucleic Acids Research, 2019, 47(6): 3184-3196.
[39] AKOPIAN D, SHEN K, ZHANG X, et al. Signal Recognition Particle: An Essential Protein-Targeting Machine[J/OL]. Annual Review of Biochemistry, 2013, 82(1): 693-721.
[40] KOBAYASHI K, JOMAA A, LEE J H, et al. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex[J/OL]. Science, 2018, 360(6386): 323-327.
[41] PHOOMAK C, RINIS N, BARO M, et al. Signal recognition particle receptor-β (SR-β) coordinates cotranslational N-glycosylation[J/OL]. Science Advances, 2023, 9(11): eade8079.
[42] LINDER M I, MIZOGUCHI Y, HESSE S, et al. Human genetic defects in SRP19 and SRPRA cause severe congenital neutropenia with distinctive proteome changes[J/OL]. Blood, 2023, 141(6): 645-658.
[43] GAN W, DAI X, DAI X, et al. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control[J/OL]. Nature Cell Biology, 2020, 22(2): 246-256.
[44] TIAN Y, CHANG J C, FAN E Y, et al. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy[J/OL]. Proceedings of the National Academy of Sciences, 2013, 110(42): 17071-17076.
[45] RICHARDS C M, JABS S, QIAO W, et al. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection[J/OL]. Science, 2022, 378(6615): eabn5648.
[46] PECHINCHA C, GROESSL S, KALIS R, et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins[J/OL]. Science, 2022, 378(6615): eabn5637.
修改评论