中文版 | English
题名

基于亥姆霍兹求解器预测和抑制燃气轮机环形燃烧室热声振荡

其他题名
PREDICTION AND DAMPING OF THERMOACOUSTIC OSCILLATIONS IN ANNULAR COMBUSTORS BASED ON THE HELMHOLTZ SOLVER
姓名
姓名拼音
CHEN Hongwei
学号
12132384
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
杨东
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-21
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

现代燃气轮机和航空发动机的燃烧室通常设计为沿周向均匀排布多个燃烧器
的环形结构。根据严苛低氮氧化物要求而采用的贫燃预混燃烧使得燃烧系统更易
发生声音与释热扰动的耦合,并最终导致热声振荡现象。这可能显著增加噪音和
氮氧化物的排放,导致燃烧室出现剧烈的压力振荡,甚至对结构造成不可逆转的
损坏。为了解决这个问题,在环形燃烧室中添加亥姆霍兹共振器、波长管等被动
控制方法被广泛使用。对于共振器的周向排布来说,根据其类型、数量以及安装
位置很容易产生数百万甚至数十亿种可能的排布方案。因此,快速找到最佳的共
振器排布方案是有效抑制热声振荡的关键。本文主要通过亥姆霍兹求解器预测燃
烧室热声模态,随后通过低阶网络模型从理论上求解共振器周向排布的最佳方案,
最终在燃烧室上进行数值结果验证。
首先,本文使用COMSOL 有限元软件对有热源的一维管路、引入BTM(燃烧
器传输矩阵) 的单燃烧器以及环形燃烧室模型进行热声模态预测,并与典型案例相
对比验证本文使用的亥姆霍兹求解器可以正确捕捉并预测热声模态。
然后,基于𝑘 − 𝜀 湍流模型和预混燃烧模型对重型燃气轮机进行RANS 数值计
算,得到燃烧系统的平均温度场、密度场等信息。并使用经典火焰传递函数(𝑛 − 𝜏
模型) 对火焰增益𝑛 和时间延迟𝜏 进行二维扫描,得到燃烧系统的热声模态衍化轨
迹图。由此预测了燃烧室的振荡频率区间,且该结果与实际机组运行中的振荡区
间吻合。
随后,通过建立周向一维共振器—燃烧室低阶网络模型研究了多类型多数量
共振器沿周向任意排布的不同方案。通过分析共振器在不同排布方案下的声学模
态得到了多个共振器的最佳周向排布—这种排布通常以较小或是零模态分裂强度
为标准,并且有着良好的不稳定性抑制效果。
最后,将最佳排布方案应用于真实环形燃烧系统中,通过在COMSOL 中求解
三维亥姆霍兹方程的数值方法捕获燃烧室的热声模式。通过在两个不同的周向排
布方案下进行火焰参数的扫描,捕捉到系统的热声模态的衍化轨迹并以此来验证
最佳排布方案的正确性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] 2024 年中国生态环境状况公报(摘录)[J]. 环境保护, 2024, 50(12): 61-74.
[2] VANDERVORT C L. 9 ppm NOx/CO Combustion System for “F”Class Industrial Gas Turbines[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(2): 317-321.
[3] ASAI T, MIURA K, ABE K, et al. [C]//Development of a Dry Low NOx Combustor for DualGaseous Fuels of Natural Gas and Petroleum Gas: Volume 4A: Combustion, Fuels, and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2018: V04AT04A064.
[4] DAVIS L B. [C]//Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines: Volume3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications;Cycle Innovations. Turbo Expo: Power for Land, Sea, and Air, 1996: V003T06A003.
[5] MENZIES K. Combustion Instabilities in Gas Turbine Engines: Operational Experience, FundamentalMechanisms, and Modelling(Progress in Aeronautics and Astronautics)[J]. The AeronauticalJournal, 2006, 110(1108): 394-394.
[6] RAYLEIGH L. THE EXPLANATION OF CERTAIN ACOUSTICAL PHENOMENA1[J].Nature, 1878, 18(1108): 319-321.
[7] HELMHOLTZ H L F. The Theory of Sound[J]. Nature, 1878, 19: 117-118.
[8] DOWLING A P, MORGANS A S. FEEDBACK CONTROL OF COMBUSTION OSCILLATIONS[J]. Annual Review of Fluid Mechanics, 2005, 37: 151-182.
[9] LIEUWEN T. Modeling Premixed Combustion-Acoustic Wave Interactions: A Review[J].Journal of Propulsion and Power, 2003, 19(5): 765-781.
[10] DOWLING A P, STOW S R. Acoustic Analysis of Gas Turbine Combustors[J]. Journal ofPropulsion and Power, 2003, 19(5): 751-764.
[11] MONGIA H C, HELD T J, HSIAO G C, et al. Challenges and Progress in Controlling Dynamicsin Gas Turbine Combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 822-829.
[12] BALASUBRAMANIAN K, SUJITH R. Non-normality and nonlinearity in combustionacousticinteraction in diffusion flames[J]. Journal of Fluid Mechanics, 2007, 594: 29 - 57.
[13] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedingsof the Combustion Institute, 2017, 36(1): 1-28.
[14] DUCRUIX S, SCHULLER T, DUROX D, et al. Combustion Dynamics and Instabilities: ElementaryCoupling and Driving Mechanisms[J]. Journal of Propulsion and Power, 2003, 19(5):722-734.
[15] CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings ofthe Combustion Institute, 2002, 29(1): 1-28.
[16] ARMITAGE C, BALACHANDRAN R, MASTORAKOS E, et al. Investigation of the nonlinearresponse of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion andFlame, 2006, 146(3): 419-436.
[17] NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustioninstability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008,615: 139 - 167.
[18] STREB H, PRADE B, HAHNER T, et al. [C]//Advanced Burner Development for the Vx4.3AGas Turbines: Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oiland Gas Applications; Cycle Innovations. Turbo Expo: Power for Land, Sea, and Air, 2001:V002T02A044.
[19] MORGANS A, STOW S. Model-based control of combustion instabilities in annular combustors[J]. Combustion and Flame, 2007, 150(4): 380-399.
[20] VIGNAT G, DUROX D, PRIEUR K, et al. An experimental study into the effect of injectorpressure loss on self-sustained combustion instabilities in a swirled spray burner[J]. Proceedingsof the Combustion Institute, 2019, 37(4): 5205-5213.
[21] DAWSON J R, WORTH N A. Flame dynamics and unsteady heat release rate of self-excitedazimuthal modes in an annular combustor[J]. Combustion and Flame, 2014, 161(10): 2565-2578.
[22] WORTH N A, DAWSON J R. Modal dynamics of self-excited azimuthal instabilities in anannular combustion chamber[J]. Combustion and Flame, 2013, 160(11): 2476-2489.
[23] PRIEUR K, DUROX D, SCHULLER T, et al. A hysteresis phenomenon leading to spinning orstanding azimuthal instabilities in an annular combustor[J]. Combustion and Flame, 2017, 175:283-291.
[24] WORTH N A, DAWSON J R. Effect of equivalence ratio on the modal dynamics of azimuthalcombustion instabilities[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3743-3751.
[25] MAZUR M, KWAH Y H, INDLEKOFER T, et al. Self-excited longitudinal and azimuthalmodes in a pressurised annular combustor[J]. Proceedings of the Combustion Institute, 2021,38(4): 5997-6004.
[26] ROY A, SINGH S, NAIR A, et al. Flame dynamics during intermittency and secondary bifurcationto longitudinal thermoacoustic instability in a swirl-stabilized annular combustor[J].Proceedings of the Combustion Institute, 2021, 38(4): 6221-6230.
[27] COURTINE E, SELLE L, POINSOT T. DNS of Intrinsic ThermoAcoustic modes in laminarpremixed flames[J]. Combustion and Flame, 2015, 162(11): 4331-4341.
[28] EMMERT T, BOMBERG S, POLIFKE W. Intrinsic thermoacoustic instability of premixedflames[J]. Combustion and Flame, 2015, 162(1): 75-85.
[29] HOEIJMAKERS M, KORNILOV V, Lopez Arteaga I, et al. Intrinsic instability of flameacousticcoupling[J]. Combustion and Flame, 2014, 161(11): 2860-2867.
[30] EMMERT T A, MEINDL M, JAENSCH S, et al. Linear State Space Interconnect Modeling ofAcoustic Systems[J]. Acta Acustica United With Acustica, 2016, 102: 824-833.
[31] HOEIJMAKERS M, KORNILOV V, ARTEAGA I L, et al. Flame dominated thermoacousticinstabilities in a system with high acoustic losses[J]. Combustion and Flame, 2016, 169: 209-215.
[32] HOSSEINI N, KORNILOV V, LOPEZ ARTEAGA I, et al. Intrinsic thermoacoustic modesand their interplay with acoustic modes in a Rijke burner[J]. International Journal of Spray andCombustion Dynamics, 2018, 10: 315-325.
[33] MENSAH G A, MAGRI L, ORCHINI A, et al. Effects of Asymmetry on ThermoacousticModes in Annular Combustors: A Higher-Order Perturbation Study[J]. Journal of Engineeringfor Gas Turbines and Power, 2018, 141(4): 041030.
[34] JUNIPER M P, SUJITH R. Sensitivity and Nonlinearity of Thermoacoustic Oscillations[J].Annual Review of Fluid Mechanics, 2018, 50(1): 661-689.
[35] SILVA C F, YONG K J, MAGRI L. Thermoacoustic Modes of Quasi-One-Dimensional Combustorsin the Region of Marginal Stability[J]. Journal of Engineering for Gas Turbines andPower, 2018, 141(2): 021022.
[36] ORCHINI A, SILVA C F, MENSAH G A, et al. Thermoacoustic modes of intrinsic and acousticorigin and their interplay with exceptional points[J]. Combustion and Flame, 2020, 211: 83-95.
[37] SOGARO F, SCHMID P, MORGANS A. Thermoacoustic interplay between intrinsic thermoacousticand acoustic modes: non-normality and high sensitivities[J]. Journal of Fluid Mechanics,2019, 878: 190-220.
[38] ULLRICH W C, MAHMOUDI Y, LACKHOVE K, et al. Prediction of Combustion Noise in aModel Combustor Using a Network Model and a LNSE Approach[J]. Journal of Engineeringfor Gas Turbines and Power, 2017, 140(4): 041501.
[39] STOW S R, DOWLING A P. A Time-Domain Network Model for Nonlinear ThermoacousticOscillations[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 031502.
[40] SCHUERMANS B, GUETHE F, PENNELL D, et al. Thermoacoustic Modeling of a Gas TurbineUsing Transfer Functions Measured Under Full Engine Pressure[J]. Journal of Engineeringfor Gas Turbines and Power, 2010, 132(11): 111503.
[41] CAMPOREALE S M, FORTUNATO B, CAMPA G. A Finite Element Method for Three-Dimensional Analysis of Thermo-acoustic Combustion Instability[J]. Journal of Engineeringfor Gas Turbines and Power, 2010, 133(1): 011506.
[42] POINSOT T, CANDEL S, TROUVé A. Applications of direct numerical simulation to premixedturbulent combustion[J]. Progress in Energy and Combustion Science, 1995, 21(6): 531-576.
[43] GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and CombustionScience, 1989, 15(1): 1-107.
[44] VERVISCH L, POINSOT T. DIRECT NUMERICAL SIMULATION OF NON-PREMIXEDTURBULENT FLAMES[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 655-691.
[45] GIAUQUE A, SELLE L, GICQUEL L Y M, et al. System identification of a large-scale swirledpartially premixed combustor using LES and measurements[J]. Journal of Turbulence, 2005.
[46] NICOUD F, BENOIT L, SENSIAU C, et al. Acoustic Modes in Combustors with ComplexImpedances and Multidimensional Active Flames[J]. AIAA Journal, 2007, 45(2): 426-441.
[47] MARTIN C E, BENOIT L, SOMMERER Y, et al. Large-Eddy Simulation and Acoustic Analysisof a Swirled Staged Turbulent Combustor[J]. AIAA Journal, 2006, 44(4): 741-750.
[48] SILVA C F, NICOUD F, SCHULLER T, et al. Combining a Helmholtz solver with the flamedescribing function to assess combustion instability in a premixed swirled combustor[J]. Combustionand Flame, 2013, 160(9): 1743-1754.
[49] CAMPA G, CAMPOREALE S M. [C]//Influence of Flame and Burner Transfer Matrix onThermoacoustic Combustion Instability Modes and Frequencies: Volume 2: Combustion, Fuelsand Emissions, Parts A and B. Turbo Expo: Power for Land, Sea, and Air, 2010: 907-918.
[50] CAMPOREALE S M, FORTUNATO B, MASTROVITO M. A Modular Code for Real TimeDynamic Simulation of Gas Turbines in Simulink[J]. Journal of Engineering for Gas Turbinesand Power, 2002, 128(3): 506-517.
[51] PANKIEWITZ C, SATTELMAYER T. Time Domain Simulation of Combustion Instabilitiesin Annular Combustors[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):677-685.
[52] ANDREINI A, BIANCHINI C, FACCHINI B, et al. [C]//Assessment of Numerical Tools forthe Evaluation of the Acoustic Impedance of Multi-Perforated Plates: Volume 2: Combustion,Fuels and Emissions, Parts A and B. Turbo Expo: Power for Land, Sea, and Air, 2011: 1065-1077.
[53] LAHIRI C, ENGHARDT L, BAKE F, et al. Establishment of a High Quality Database for theAcoustic Modeling of Perforated Liners[J]. Journal of Engineering for Gas Turbines and Power,2011, 133(9): 091503.
[54] ZHAO D, LI X. A review of acoustic dampers applied to combustion chambers in aerospaceindustry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[55] PUTNAM A A. [C]//Combustion-Driven Oscillations in Industry. 1971.
[56] STOW S R, DOWLING A P. [C]//Modelling of Circumferential Modal Coupling Due toHelmholtz Resonators: Volume 2: Turbo Expo 2003. Turbo Expo: Power for Land, Sea, andAir, 2003: 129-137.
[57] CAMPOREALE S M, FORTE A, FORTUNATO B, et al. [C]//Numerical Simulation of theAcoustic Pressure Field in an Annular Combustion Chamber With Helmholtz Resonators: Volume1: Turbo Expo 2004. Turbo Expo: Power for Land, Sea, and Air, 2004: 713-724.
[58] GYSLING D L, COPELAND G S, MCCORMICK D C, et al. Combustion System DampingAugmentation With Helmholtz Resonators[J]. Journal of Engineering for Gas Turbines andPower, 1999, 122(2): 269-274.
[59] DUPER̀E I D J, DOWLING A P. The Use of Helmholtz Resonators in a Practical Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 268-275.
[60] SCHULZE M, KATHAN R, SATTELMAYER T. Impact of Absorber Ring Position and CavityLength on Acoustic Damping[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 917-927.
[61] BOTHIEN M, NOIRAY N, SCHUERMANS B. A Novel Damping Device for Broadband Attenuationof Low-Frequency Combustion Pulsations in Gas Turbines[J]. Journal of Engineeringfor Gas Turbines and Power, 2013, 136(4): 041504.
[62] BETZ M, ZAHN M, HIRSCH C, et al. [C]//Impact of Damper Placement on the StabilityMargin of an Annular Combustor Test Rig: Volume 4A: Combustion, Fuels, and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2019: V04AT04A011.
[63] LEPERS J, KREBS W, PRADE B, et al. [C]//Investigation of Thermoacoustic Stability Limitsof an Annular Gas Turbine Combustor Test-Rig With and Without Helmholtz-Resonators:Volume 2: Turbo Expo 2005. Turbo Expo: Power for Land, Sea, and Air, 2005: 177-189.
[64] ZAHN M, BETZ M, SCHULZE M, et al. [C]//Predicting the Influence of Damping Devices onthe Stability Margin of an Annular Combustor: Volume 4A: Combustion, Fuels and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2017: V04AT04A081.
[65] MENSAH G A, MOECK J P. Acoustic Damper Placement and Tuning for Annular Combustors:An Adjoint-Based Optimization Study[J]. Journal of Engineering for Gas Turbines and Power,2017, 139(6): 061501.
[66] YANG D, SOGARO F M, MORGANS A S, et al. Optimising the acoustic damping of multipleHelmholtz resonators attached to a thin annular duct[J]. Journal of Sound and Vibration, 2019,444: 69-84.
[67] YANG D, MORGANS A S. Acoustic Models for Cooled Helmholtz Resonators[J]. AIAAJournal, 2017, 55(9): 3120-3127.
[68] NOIRAY N, BOTHIEN M, SCHUERMANS B. Investigation of azimuthal staging concepts inannular gas turbines[J]. Combustion Theory and Modelling, 2011, 15(5): 585-606.
[69] NOIRAY N, SCHUERMANS B. On the dynamic nature of azimuthal thermoacoustic modesin annular gas turbine combustion chambers[J]. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences, 2013, 469(2151): 20120535.
[70] MAZUR M, NYGåRD H T, DAWSON J, et al. [C]//Experimental Study of Damper Position onInstabilities in an Annular Combustor: Volume 4A: Combustion, Fuels, and Emissions. TurboExpo: Power for Land, Sea, and Air, 2018: V04AT04A005.
[71] HUMBERT S C, MOECK J P, PASCHEREIT C O, et al. Symmetry-breaking in thermoacoustics:Theory and experimental validation on an annular system with electroacoustic feedback[J]. Journal of Sound and Vibration, 2023, 548: 117376.
[72] KINSLER L E, FREY A R, COPPENS H B, et al. Fundamentals of Acoustics (3rd Ed.)[J].Journal of Vibration and Acoustics-transactions of The Asme, 1983, 105: 269-270.
[73] STRUTT J W, SPOTTISWOODE W. V. On the theory of resonance[J]. Philosophical Transactionsof the Royal Society of London, 1871, 161: 77-118.
[74] STRUTT J W, SPOTTISWOODE W. V. The Theory of Sound: Vol. 161[M]. 1877: 77-118.
[75] INGARD U. On the Theory and Design of Acoustic Resonators[J]. The Journal of the AcousticalSociety of America, 1953, 25(6): 1037-1061.
[76] HOWE M S. On the Absorption of Sound by Turbulence and Other Hydrodynamic Flows[J].IMA Journal of Applied Mathematics, 1984, 32(1-3): 187-209.
[77] JING X, SUN X. Experimental investigations of perforated liners with bias flow[J]. The Journalof the Acoustical Society of America, 1999, 106(5): 2436-2441.
[78] CAMPA G, CAMPOREALE S M. Prediction of the Thermoacoustic Combustion Instabilitiesin Practical Annular Combustors[J]. Journal of Engineering for Gas Turbines and Power, 2014,136(9): 091504.
[79] CAMPA G, CAMPOREALE S M, GUAUS A, et al. [C]//A Quantitative Comparison Betweena Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instabilities:Volume 2: Combustion, Fuels and Emissions, Parts A and B. Turbo Expo: Power forLand, Sea, and Air, 2011: 859-869.
[80] 和宏宾、陈明敏、刘晓佩. F 级重型燃气轮机燃烧室热声振荡分析研究[J]. 热力透平, 2020,49(3): 7.
[81] NICOLAS NOIRAY M B, SCHUERMANS B. Investigation of azimuthal staging concepts inannular gas turbines[J]. Combustion Theory and Modelling, 2011, 15(5): 585-606.
[82] GHIRARDO G, JUNIPER M P, MOECK J P. [C]//Stability Criteria for Standing and SpinningWaves in Annular Combustors. 2015.
[83] PARMENTIER J F, SALAS P, WOLF P, et al. A simple analytical model to study and controlazimuthal instabilities in annular combustion chambers[J]. Combustion and Flame, 2012, 159(7): 2374-2387.
[84] BAUERHEIM M, SALAS P, NICOUD F, et al. Symmetry breaking of azimuthal thermoacousticmodes in annular cavities: a theoretical study[J]. Journal of Fluid Mechanics, 2014,760: 431-465.
[85] SCHULLER T, DUROX D, PALIES P, et al. Acoustic decoupling of longitudinal modes ingeneric combustion systems[J]. Combustion and Flame, 2012, 159(5): 1921-1931.
[86] STAFFELBACH G, GICQUEL L, BOUDIER G, et al. Large Eddy Simulation of self excitedazimuthal modes in annular combustors[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2909-2916.
[87] WORTH N A, DAWSON J R. Self-excited circumferential instabilities in a model annular gasturbine combustor: Global flame dynamics[J]. Proceedings of the Combustion Institute, 2013,34(2): 3127-3134.
[88] YIN L, YANG D. [C]//Modal coupling and mode degeneracy in annular combustor with multipleHelmholtz resonators: a theoretical study: STC-33. ETH Zurich, Switzerland, 2023: 72.
[89] VIGNAT G, DUROX D, PRIEUR K, et al. An experimental study into the effect of injectorpressure loss on self-sustained combustion instabilities in a swirled spray burner[J]. Proceedingsof the Combustion Institute, 2019, 37(4): 5205-5213.
[90] HOWE M S, LIGHTHILL M J. On the theory of unsteady high Reynolds number flow through acircular aperture[J]. Proceedings of the Royal Society of London. A. Mathematical and PhysicalSciences, 1979, 366(1725): 205-223.
[91] 尹利铭. 亥姆霍兹共振器对环形燃烧室热声振荡的被动控制[D]. 深圳: 南方科技大学,2023.

所在学位评定分委会
力学
国内图书分类号
O351.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766155
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
陈宏伟. 基于亥姆霍兹求解器预测和抑制燃气轮机环形燃烧室热声振荡[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
基于亥姆霍兹求解器预测和抑制燃气轮机环形(28708KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈宏伟]的文章
百度学术
百度学术中相似的文章
[陈宏伟]的文章
必应学术
必应学术中相似的文章
[陈宏伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。