[1] 2024 年中国生态环境状况公报(摘录)[J]. 环境保护, 2024, 50(12): 61-74.
[2] VANDERVORT C L. 9 ppm NOx/CO Combustion System for “F”Class Industrial Gas Turbines[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(2): 317-321.
[3] ASAI T, MIURA K, ABE K, et al. [C]//Development of a Dry Low NOx Combustor for DualGaseous Fuels of Natural Gas and Petroleum Gas: Volume 4A: Combustion, Fuels, and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2018: V04AT04A064.
[4] DAVIS L B. [C]//Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines: Volume3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications;Cycle Innovations. Turbo Expo: Power for Land, Sea, and Air, 1996: V003T06A003.
[5] MENZIES K. Combustion Instabilities in Gas Turbine Engines: Operational Experience, FundamentalMechanisms, and Modelling(Progress in Aeronautics and Astronautics)[J]. The AeronauticalJournal, 2006, 110(1108): 394-394.
[6] RAYLEIGH L. THE EXPLANATION OF CERTAIN ACOUSTICAL PHENOMENA1[J].Nature, 1878, 18(1108): 319-321.
[7] HELMHOLTZ H L F. The Theory of Sound[J]. Nature, 1878, 19: 117-118.
[8] DOWLING A P, MORGANS A S. FEEDBACK CONTROL OF COMBUSTION OSCILLATIONS[J]. Annual Review of Fluid Mechanics, 2005, 37: 151-182.
[9] LIEUWEN T. Modeling Premixed Combustion-Acoustic Wave Interactions: A Review[J].Journal of Propulsion and Power, 2003, 19(5): 765-781.
[10] DOWLING A P, STOW S R. Acoustic Analysis of Gas Turbine Combustors[J]. Journal ofPropulsion and Power, 2003, 19(5): 751-764.
[11] MONGIA H C, HELD T J, HSIAO G C, et al. Challenges and Progress in Controlling Dynamicsin Gas Turbine Combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 822-829.
[12] BALASUBRAMANIAN K, SUJITH R. Non-normality and nonlinearity in combustionacousticinteraction in diffusion flames[J]. Journal of Fluid Mechanics, 2007, 594: 29 - 57.
[13] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedingsof the Combustion Institute, 2017, 36(1): 1-28.
[14] DUCRUIX S, SCHULLER T, DUROX D, et al. Combustion Dynamics and Instabilities: ElementaryCoupling and Driving Mechanisms[J]. Journal of Propulsion and Power, 2003, 19(5):722-734.
[15] CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings ofthe Combustion Institute, 2002, 29(1): 1-28.
[16] ARMITAGE C, BALACHANDRAN R, MASTORAKOS E, et al. Investigation of the nonlinearresponse of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion andFlame, 2006, 146(3): 419-436.
[17] NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustioninstability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008,615: 139 - 167.
[18] STREB H, PRADE B, HAHNER T, et al. [C]//Advanced Burner Development for the Vx4.3AGas Turbines: Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oiland Gas Applications; Cycle Innovations. Turbo Expo: Power for Land, Sea, and Air, 2001:V002T02A044.
[19] MORGANS A, STOW S. Model-based control of combustion instabilities in annular combustors[J]. Combustion and Flame, 2007, 150(4): 380-399.
[20] VIGNAT G, DUROX D, PRIEUR K, et al. An experimental study into the effect of injectorpressure loss on self-sustained combustion instabilities in a swirled spray burner[J]. Proceedingsof the Combustion Institute, 2019, 37(4): 5205-5213.
[21] DAWSON J R, WORTH N A. Flame dynamics and unsteady heat release rate of self-excitedazimuthal modes in an annular combustor[J]. Combustion and Flame, 2014, 161(10): 2565-2578.
[22] WORTH N A, DAWSON J R. Modal dynamics of self-excited azimuthal instabilities in anannular combustion chamber[J]. Combustion and Flame, 2013, 160(11): 2476-2489.
[23] PRIEUR K, DUROX D, SCHULLER T, et al. A hysteresis phenomenon leading to spinning orstanding azimuthal instabilities in an annular combustor[J]. Combustion and Flame, 2017, 175:283-291.
[24] WORTH N A, DAWSON J R. Effect of equivalence ratio on the modal dynamics of azimuthalcombustion instabilities[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3743-3751.
[25] MAZUR M, KWAH Y H, INDLEKOFER T, et al. Self-excited longitudinal and azimuthalmodes in a pressurised annular combustor[J]. Proceedings of the Combustion Institute, 2021,38(4): 5997-6004.
[26] ROY A, SINGH S, NAIR A, et al. Flame dynamics during intermittency and secondary bifurcationto longitudinal thermoacoustic instability in a swirl-stabilized annular combustor[J].Proceedings of the Combustion Institute, 2021, 38(4): 6221-6230.
[27] COURTINE E, SELLE L, POINSOT T. DNS of Intrinsic ThermoAcoustic modes in laminarpremixed flames[J]. Combustion and Flame, 2015, 162(11): 4331-4341.
[28] EMMERT T, BOMBERG S, POLIFKE W. Intrinsic thermoacoustic instability of premixedflames[J]. Combustion and Flame, 2015, 162(1): 75-85.
[29] HOEIJMAKERS M, KORNILOV V, Lopez Arteaga I, et al. Intrinsic instability of flameacousticcoupling[J]. Combustion and Flame, 2014, 161(11): 2860-2867.
[30] EMMERT T A, MEINDL M, JAENSCH S, et al. Linear State Space Interconnect Modeling ofAcoustic Systems[J]. Acta Acustica United With Acustica, 2016, 102: 824-833.
[31] HOEIJMAKERS M, KORNILOV V, ARTEAGA I L, et al. Flame dominated thermoacousticinstabilities in a system with high acoustic losses[J]. Combustion and Flame, 2016, 169: 209-215.
[32] HOSSEINI N, KORNILOV V, LOPEZ ARTEAGA I, et al. Intrinsic thermoacoustic modesand their interplay with acoustic modes in a Rijke burner[J]. International Journal of Spray andCombustion Dynamics, 2018, 10: 315-325.
[33] MENSAH G A, MAGRI L, ORCHINI A, et al. Effects of Asymmetry on ThermoacousticModes in Annular Combustors: A Higher-Order Perturbation Study[J]. Journal of Engineeringfor Gas Turbines and Power, 2018, 141(4): 041030.
[34] JUNIPER M P, SUJITH R. Sensitivity and Nonlinearity of Thermoacoustic Oscillations[J].Annual Review of Fluid Mechanics, 2018, 50(1): 661-689.
[35] SILVA C F, YONG K J, MAGRI L. Thermoacoustic Modes of Quasi-One-Dimensional Combustorsin the Region of Marginal Stability[J]. Journal of Engineering for Gas Turbines andPower, 2018, 141(2): 021022.
[36] ORCHINI A, SILVA C F, MENSAH G A, et al. Thermoacoustic modes of intrinsic and acousticorigin and their interplay with exceptional points[J]. Combustion and Flame, 2020, 211: 83-95.
[37] SOGARO F, SCHMID P, MORGANS A. Thermoacoustic interplay between intrinsic thermoacousticand acoustic modes: non-normality and high sensitivities[J]. Journal of Fluid Mechanics,2019, 878: 190-220.
[38] ULLRICH W C, MAHMOUDI Y, LACKHOVE K, et al. Prediction of Combustion Noise in aModel Combustor Using a Network Model and a LNSE Approach[J]. Journal of Engineeringfor Gas Turbines and Power, 2017, 140(4): 041501.
[39] STOW S R, DOWLING A P. A Time-Domain Network Model for Nonlinear ThermoacousticOscillations[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 031502.
[40] SCHUERMANS B, GUETHE F, PENNELL D, et al. Thermoacoustic Modeling of a Gas TurbineUsing Transfer Functions Measured Under Full Engine Pressure[J]. Journal of Engineeringfor Gas Turbines and Power, 2010, 132(11): 111503.
[41] CAMPOREALE S M, FORTUNATO B, CAMPA G. A Finite Element Method for Three-Dimensional Analysis of Thermo-acoustic Combustion Instability[J]. Journal of Engineeringfor Gas Turbines and Power, 2010, 133(1): 011506.
[42] POINSOT T, CANDEL S, TROUVé A. Applications of direct numerical simulation to premixedturbulent combustion[J]. Progress in Energy and Combustion Science, 1995, 21(6): 531-576.
[43] GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and CombustionScience, 1989, 15(1): 1-107.
[44] VERVISCH L, POINSOT T. DIRECT NUMERICAL SIMULATION OF NON-PREMIXEDTURBULENT FLAMES[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 655-691.
[45] GIAUQUE A, SELLE L, GICQUEL L Y M, et al. System identification of a large-scale swirledpartially premixed combustor using LES and measurements[J]. Journal of Turbulence, 2005.
[46] NICOUD F, BENOIT L, SENSIAU C, et al. Acoustic Modes in Combustors with ComplexImpedances and Multidimensional Active Flames[J]. AIAA Journal, 2007, 45(2): 426-441.
[47] MARTIN C E, BENOIT L, SOMMERER Y, et al. Large-Eddy Simulation and Acoustic Analysisof a Swirled Staged Turbulent Combustor[J]. AIAA Journal, 2006, 44(4): 741-750.
[48] SILVA C F, NICOUD F, SCHULLER T, et al. Combining a Helmholtz solver with the flamedescribing function to assess combustion instability in a premixed swirled combustor[J]. Combustionand Flame, 2013, 160(9): 1743-1754.
[49] CAMPA G, CAMPOREALE S M. [C]//Influence of Flame and Burner Transfer Matrix onThermoacoustic Combustion Instability Modes and Frequencies: Volume 2: Combustion, Fuelsand Emissions, Parts A and B. Turbo Expo: Power for Land, Sea, and Air, 2010: 907-918.
[50] CAMPOREALE S M, FORTUNATO B, MASTROVITO M. A Modular Code for Real TimeDynamic Simulation of Gas Turbines in Simulink[J]. Journal of Engineering for Gas Turbinesand Power, 2002, 128(3): 506-517.
[51] PANKIEWITZ C, SATTELMAYER T. Time Domain Simulation of Combustion Instabilitiesin Annular Combustors[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):677-685.
[52] ANDREINI A, BIANCHINI C, FACCHINI B, et al. [C]//Assessment of Numerical Tools forthe Evaluation of the Acoustic Impedance of Multi-Perforated Plates: Volume 2: Combustion,Fuels and Emissions, Parts A and B. Turbo Expo: Power for Land, Sea, and Air, 2011: 1065-1077.
[53] LAHIRI C, ENGHARDT L, BAKE F, et al. Establishment of a High Quality Database for theAcoustic Modeling of Perforated Liners[J]. Journal of Engineering for Gas Turbines and Power,2011, 133(9): 091503.
[54] ZHAO D, LI X. A review of acoustic dampers applied to combustion chambers in aerospaceindustry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[55] PUTNAM A A. [C]//Combustion-Driven Oscillations in Industry. 1971.
[56] STOW S R, DOWLING A P. [C]//Modelling of Circumferential Modal Coupling Due toHelmholtz Resonators: Volume 2: Turbo Expo 2003. Turbo Expo: Power for Land, Sea, andAir, 2003: 129-137.
[57] CAMPOREALE S M, FORTE A, FORTUNATO B, et al. [C]//Numerical Simulation of theAcoustic Pressure Field in an Annular Combustion Chamber With Helmholtz Resonators: Volume1: Turbo Expo 2004. Turbo Expo: Power for Land, Sea, and Air, 2004: 713-724.
[58] GYSLING D L, COPELAND G S, MCCORMICK D C, et al. Combustion System DampingAugmentation With Helmholtz Resonators[J]. Journal of Engineering for Gas Turbines andPower, 1999, 122(2): 269-274.
[59] DUPER̀E I D J, DOWLING A P. The Use of Helmholtz Resonators in a Practical Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 268-275.
[60] SCHULZE M, KATHAN R, SATTELMAYER T. Impact of Absorber Ring Position and CavityLength on Acoustic Damping[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 917-927.
[61] BOTHIEN M, NOIRAY N, SCHUERMANS B. A Novel Damping Device for Broadband Attenuationof Low-Frequency Combustion Pulsations in Gas Turbines[J]. Journal of Engineeringfor Gas Turbines and Power, 2013, 136(4): 041504.
[62] BETZ M, ZAHN M, HIRSCH C, et al. [C]//Impact of Damper Placement on the StabilityMargin of an Annular Combustor Test Rig: Volume 4A: Combustion, Fuels, and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2019: V04AT04A011.
[63] LEPERS J, KREBS W, PRADE B, et al. [C]//Investigation of Thermoacoustic Stability Limitsof an Annular Gas Turbine Combustor Test-Rig With and Without Helmholtz-Resonators:Volume 2: Turbo Expo 2005. Turbo Expo: Power for Land, Sea, and Air, 2005: 177-189.
[64] ZAHN M, BETZ M, SCHULZE M, et al. [C]//Predicting the Influence of Damping Devices onthe Stability Margin of an Annular Combustor: Volume 4A: Combustion, Fuels and Emissions.Turbo Expo: Power for Land, Sea, and Air, 2017: V04AT04A081.
[65] MENSAH G A, MOECK J P. Acoustic Damper Placement and Tuning for Annular Combustors:An Adjoint-Based Optimization Study[J]. Journal of Engineering for Gas Turbines and Power,2017, 139(6): 061501.
[66] YANG D, SOGARO F M, MORGANS A S, et al. Optimising the acoustic damping of multipleHelmholtz resonators attached to a thin annular duct[J]. Journal of Sound and Vibration, 2019,444: 69-84.
[67] YANG D, MORGANS A S. Acoustic Models for Cooled Helmholtz Resonators[J]. AIAAJournal, 2017, 55(9): 3120-3127.
[68] NOIRAY N, BOTHIEN M, SCHUERMANS B. Investigation of azimuthal staging concepts inannular gas turbines[J]. Combustion Theory and Modelling, 2011, 15(5): 585-606.
[69] NOIRAY N, SCHUERMANS B. On the dynamic nature of azimuthal thermoacoustic modesin annular gas turbine combustion chambers[J]. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences, 2013, 469(2151): 20120535.
[70] MAZUR M, NYGåRD H T, DAWSON J, et al. [C]//Experimental Study of Damper Position onInstabilities in an Annular Combustor: Volume 4A: Combustion, Fuels, and Emissions. TurboExpo: Power for Land, Sea, and Air, 2018: V04AT04A005.
[71] HUMBERT S C, MOECK J P, PASCHEREIT C O, et al. Symmetry-breaking in thermoacoustics:Theory and experimental validation on an annular system with electroacoustic feedback[J]. Journal of Sound and Vibration, 2023, 548: 117376.
[72] KINSLER L E, FREY A R, COPPENS H B, et al. Fundamentals of Acoustics (3rd Ed.)[J].Journal of Vibration and Acoustics-transactions of The Asme, 1983, 105: 269-270.
[73] STRUTT J W, SPOTTISWOODE W. V. On the theory of resonance[J]. Philosophical Transactionsof the Royal Society of London, 1871, 161: 77-118.
[74] STRUTT J W, SPOTTISWOODE W. V. The Theory of Sound: Vol. 161[M]. 1877: 77-118.
[75] INGARD U. On the Theory and Design of Acoustic Resonators[J]. The Journal of the AcousticalSociety of America, 1953, 25(6): 1037-1061.
[76] HOWE M S. On the Absorption of Sound by Turbulence and Other Hydrodynamic Flows[J].IMA Journal of Applied Mathematics, 1984, 32(1-3): 187-209.
[77] JING X, SUN X. Experimental investigations of perforated liners with bias flow[J]. The Journalof the Acoustical Society of America, 1999, 106(5): 2436-2441.
[78] CAMPA G, CAMPOREALE S M. Prediction of the Thermoacoustic Combustion Instabilitiesin Practical Annular Combustors[J]. Journal of Engineering for Gas Turbines and Power, 2014,136(9): 091504.
[79] CAMPA G, CAMPOREALE S M, GUAUS A, et al. [C]//A Quantitative Comparison Betweena Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instabilities:Volume 2: Combustion, Fuels and Emissions, Parts A and B. Turbo Expo: Power forLand, Sea, and Air, 2011: 859-869.
[80] 和宏宾、陈明敏、刘晓佩. F 级重型燃气轮机燃烧室热声振荡分析研究[J]. 热力透平, 2020,49(3): 7.
[81] NICOLAS NOIRAY M B, SCHUERMANS B. Investigation of azimuthal staging concepts inannular gas turbines[J]. Combustion Theory and Modelling, 2011, 15(5): 585-606.
[82] GHIRARDO G, JUNIPER M P, MOECK J P. [C]//Stability Criteria for Standing and SpinningWaves in Annular Combustors. 2015.
[83] PARMENTIER J F, SALAS P, WOLF P, et al. A simple analytical model to study and controlazimuthal instabilities in annular combustion chambers[J]. Combustion and Flame, 2012, 159(7): 2374-2387.
[84] BAUERHEIM M, SALAS P, NICOUD F, et al. Symmetry breaking of azimuthal thermoacousticmodes in annular cavities: a theoretical study[J]. Journal of Fluid Mechanics, 2014,760: 431-465.
[85] SCHULLER T, DUROX D, PALIES P, et al. Acoustic decoupling of longitudinal modes ingeneric combustion systems[J]. Combustion and Flame, 2012, 159(5): 1921-1931.
[86] STAFFELBACH G, GICQUEL L, BOUDIER G, et al. Large Eddy Simulation of self excitedazimuthal modes in annular combustors[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2909-2916.
[87] WORTH N A, DAWSON J R. Self-excited circumferential instabilities in a model annular gasturbine combustor: Global flame dynamics[J]. Proceedings of the Combustion Institute, 2013,34(2): 3127-3134.
[88] YIN L, YANG D. [C]//Modal coupling and mode degeneracy in annular combustor with multipleHelmholtz resonators: a theoretical study: STC-33. ETH Zurich, Switzerland, 2023: 72.
[89] VIGNAT G, DUROX D, PRIEUR K, et al. An experimental study into the effect of injectorpressure loss on self-sustained combustion instabilities in a swirled spray burner[J]. Proceedingsof the Combustion Institute, 2019, 37(4): 5205-5213.
[90] HOWE M S, LIGHTHILL M J. On the theory of unsteady high Reynolds number flow through acircular aperture[J]. Proceedings of the Royal Society of London. A. Mathematical and PhysicalSciences, 1979, 366(1725): 205-223.
[91] 尹利铭. 亥姆霍兹共振器对环形燃烧室热声振荡的被动控制[D]. 深圳: 南方科技大学,2023.
修改评论