[1]AMERICAN DIABETES ASSOCIATION PROFESSIONAL PRACTICE COMMITTEE, AMERICAN DIABETES ASSOCIATION PROFESSIONAL PRACTICE COMMITTEE:. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022[J]. Diabetes Care, 2022, 45(Supplement_1): S17-S38.
[2]International Diabetes Federation. Diabetes Atlas [M]. 10 th ed. 2021.
[3]ADLER A, BENNNETT P, CHAIR S C, et al. Reprint of: classification of diabetes mellitus[J]. Diabetes Research and Clinical Practice, 2021: 108972.
[4]范多艳. 健康中国背景下糖尿病科普教育浅析 [J]. 甘肃医药, 2022, 41 (06): 555-557.
[5]MARCHETTI P, BARONTI W, BOGGI U, et al. Diabetes mellitus: Classification and diagnosis[M]//Transplantation of the Pancreas. Cham: Springer International Publishing, 2023: 3-12.
[6]TATTERSALL R B, MATTHEWS D R. The history of diabetes mellitus[J]. Textbook of Diabetes, 2024: 1-21.
[7]LANGERHANS P. Beitrage zur mikroskopischen anatomie der bauchspeicheldruse, inaugural disseration[J]. Gustav Lange, 1869.
[8]LAMMERT E, THORN P. The role of the islet niche on beta cell structure and function[J]. Journal of Molecular Biology, 2020, 432(5): 1407-1418.
[9]ELLIOTT P. JOSLIN, M.D. Frederick grant banting (1891-1941) codiscoverer of insulin[J]. JAMA, 1966, 198(6): 660-661.
[10]ZUELZER G. Experimentelle untersuchungen über den diabetes[J]. Berlin Klin Wochenschr, 1907, 44: 474-475.
[11]PAULESCU N C. Recherche sur le rôle du pancréas dans l'assimilation nutritive[J]. 1921.
[12]OWENS D R, ZINMAN B, BOLLI G B. Insulins today and beyond[J]. The Lancet, 2001, 358(9283): 739-746.
[13]KJELDSEN T, KURTZHALS P. A hundred years of insulin innovation: when science meets technology[J]. Diabetes, 2021, 70(9): e1-e2.
[14]ROSALES N, DE BATTISTA H, VEHÍ J, et al. Open-loop glucose control: automatic IOB-based super-bolus feature for commercial insulin pumps[J]. Computer Methods and Programs in Biomedicine, 2018, 159: 145-158.
[15]BOUGHTON C K, HOVORKA R. New closed-loop insulin systems[J]. Diabetologia, 2021, 64: 1007-1015.
[16]EL-KHATIB F. H., RUSSELL S. J., NATHAN D. M. ,et al. A bihormonal closed-loop artificial pancreas for Type 1 Diabetes [J]. Sci. Transl. Med., 2010, 2(27): 12.
[17]MARATHE P. H., GAO H. X.,CLOSE K. L. American diabetes association standards of medical care in diabetes 2017 [J]. J. Diabetes, 2017, 9(4): 320-324.
[18]SENIOR P, LAM A, FARNSWORTH K, et al. Assessment of risks and benefits of beta cell replacement versus automated insulin delivery systems for type 1 diabetes[J]. Current Diabetes Reports, 2020, 20: 1-10.
[19]SUGANDH F N U, CHANDIO M, RAVEENA F N U, et al. Advances in the management of diabetes mellitus: a focus on personalized medicine[J]. Cureus, 2023, 15(8).
[20]孙凯.用于体内血糖监测的可植入型荧光聚合物点传感器的研究[D]. 长春: 吉林大学, 2018.
[21]BOLLA A S, PRIEFER R. Blood glucose monitoring-an overview of current and future non-invasive devices[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(5): 739-751.
[22]GUILBAULT G G, LUBRANO G J. An enzyme electrode for the amperometric determination of glucose[J]. Analytica Chimica Acta, 1973, 64(3):439-455.
[23]PENG Z, XIE X, TAN Q, ET AL. Blood glucose sensors and recent advances: a review[J]. Journal of Innovative Optical Health Sciences, 2022, 15(02): 2230003.
[24]VADDIRAJU S, BURGESS D J, TOMAZOS I, et al. Technologies for continuous glucose monitoring: current problems and future promises[J]. Journal of Diabetes Science and Technology, 2010, 4(6): 1540-1562.
[25]UPDIKE S. J.,HICKS G. P. The enzyme electrode [J]. Nature, 1967, 214(5092): 986-988.
[26]CLARK L. C., JR.,LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery [J]. Annals of the New York Academy of Sciences, 1962, 102: 29-45.
[27]DEGANI Y, HELLER A. Direct electrical communication between chemically modified enzymes and metal electrodes. I. electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme[J]. Journal of Physical Chemistry, 1987, 91(6): 1285-1289.
[28]SCHLAPFER P., MINDT W.,RACINE P. Electrochemical measurement of glucose using various electron acceptors [J]. Clin. Chim. Acta., 1974, 57(3): 283-289.
[29]WANG J. Glucose biosensors: 40 years of advances and challenges[J]. Electroanalysis, 2010, 13(12): 983-988.
[30]KIRK J. K.,RHENEY C. C. Important features of blood glucose meters [J]. Journal of the American Pharmacists Association, 1998, 38(2): 210-219.
[31]YAN X, TANG J, TANNER D, et al. Direct electrochemical enzyme electron transfer on electrodes modified by self-assembled molecular monolayers[J]. Catalysts, 2020, 10(12): 1458.
[32]NEWMAN J D, TURNER A P F. Home blood glucose biosensors: a commercial perspective[J]. Biosensors and Bioelectronics, 2005, 20(12): 2435-2453.
[33]LOEW N, SCHELLER F W, WOLLENBERGER U. Characterization of self‐assembling of hlucose dehydrogenase in mono‐and multilayers on gold electrodes[J]. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2004, 16(13‐14): 1149-1154.
[34]DAS P, DAS M, CHINNADAYYALA S R, et al. Recent advances on developing 3rd generation enzyme electrode for biosensor applications[J]. Biosensors and Bioelectronics, 2016, 79: 386-397.
[35]TOI P T, TRUNG T Q, DANG T M L, et al. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10707-10717.
[36]CUI F, SUN H, YANG X, et al. Laser-induced graphene (LIG)-based Au@ CuO/V2CTx MXene non-enzymatic electrochemical sensors for the urine glucose test[J]. Chemical Engineering Journal, 2023, 457: 141303.
[37]ZHAO Y, JIANG Y, MO Y, et al. Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by single‐Atom Pt Supported on Cu@ CuO Core–Shell Nanowires[J]. Small, 2023, 19(18): 2207240.
[38]MUQADDAS S, JAVED M, NADEEM S, et al. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors[J]. ACS Omega, 2023, 8(2): 2272-2280.
[39]ADEEL M, RAHMAN M M, CALIGIURI I, et al. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions[J]. Biosensors and Bioelectronics, 2020, 165: 112331.
[40]FERCHER A F. Optical coherence tomography–development, principles, applications[J]. Zeitschrift für Medizinische Physik, 2010, 20(4): 251-276.
[41]CHEN T L, LOU Y L, LIAO C C, et al. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography[J]. Journal of Biomedical Optics, 2018, 23(4): 047001-047001.
[42]AHMADIAN N, MANICKAVASAGAN A, ALI A. Comparative assessment of blood glucose monitoring techniques: a review[J]. Journal of Medical Engineering & Technology, 2023, 47(2): 121-130.
[43]JOSHI A M, JAIN P, MOHANTY S P, et al. iGLU 2.0: A new wearable for accurate non-invasive continuous serum glucose measurement in IOMT framework[J]. IEEE Transactions on Consumer Electronics, 2020, 66(4): 327-335.
[44]ALSUNAIDI B, ALTHOBAITI M, TAMAL M, et al. A review of non-invasive optical systems for continuous blood glucose monitoring[J]. Sensors, 2021, 21(20): 6820.
[45]VILLENA GONZALES W, MOBASHSHER A T, ABBOSH A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors[J]. Sensors, 2019, 19(4): 800.
[46]SIM J Y, AHN C G, JEONG E J, et al. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products[J]. Scientific Reports, 2018, 8(1): 1059.
[47]WU J, LIU Y, YIN H, et al. A new generation of sensors for non-invasive blood glucose monitoring[J]. American Rournal of Translational Research, 2023, 15(6): 3825.
[48]VILLENA GONZALES W, MOBASHSHER A T, ABBOSH A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors[J]. Sensors, 2019, 19(4): 800.
[49]OLIVER N S, TOUMAZOU C, CASS A E G, et al. Glucose sensors: a review of current and emerging technology[J]. Diabetic Medicine, 2009, 26(3): 197-210.
[50]AHMED I, JIANG N, SHAO X, et al. Recent advances in optical sensors for continuous glucose monitoring[J]. Sensors & Diagnostics, 2022, 1(6): 1098-1125.
[51]PICKUP J C, HUSSAIN F, EVANS N D, et al. Fluorescence-based glucose sensors[J]. Biosensors and Bioelectronics, 2005, 20(12): 2555-2565.
[52]WU W. T., ZHOU T., BERLINER A. ,et al. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing [J]. Angewandte Chemie-international Edition, 2010, 49(37): 6554-6558.
[53]ELSHERIF M, HASSAN M U, YETISEN A K, et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones[J]. ACS Nano, 2018, 12(6): 5452-5462.
[54]WOLFBEIS O. S., OEHME I., PAPKOVSKAYA N. ,et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background [J]. Biosens. Bioelectron., 2000, 15(1-2): 69-76.
[55]SUN K, YANG Y, ZHOU H, et al. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone[J]. ACS Nano, 2018, 12(6): 5176-5184.
[56]LI X. Y., ZHOU Y. L., ZHENG Z. Z. ,et al. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase [J]. Langmuir, 2009, 25(11): 6580-6586.
[57]WANG H C, LEE A R. Recent developments in blood glucose sensors[J]. Journal of Food and Drug Analysis, 2015, 23(2): 191-200.
[58]MUEHLBAUER M J, GUILBEAU E J, TOWE B C, et al. Thermoelectric enzyme sensor for measuring blood glucose[J]. Biosensors and Bioelectronics, 1990, 5(1): 1-12.
[59]HANNA J, TAWK Y, AZAR S, et al. Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring[J]. Scientific Reports, 2022, 12(1): 14885.
[60]DESHMUKH V V, CHORAGE S S. Non-invasive determination of blood glucose level using narrowband microwave sensor[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-16.
[61]VEISEH O, TANG B C, WHITEHEAD K A, et al. Managing diabetes with nanomedicine: challenges and opportunities[J]. Nature Reviews Drug Discovery, 2015, 14(1): 45-57.
[62]WU C. F., SZYMANSKI C.,MCNEILL J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles [J]. Langmuir, 2006, 22(7): 2956-2960.
[63]CHEN L. H., MCBRANCH D. W., WANG H. L. ,et al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12287-12292.
[64]ZHAO L, ZHAO C, ZHOU J, et al. Conjugated polymer-based luminescent probes for ratiometric detection of biomolecules[J]. Journal of Materials Chemistry B, 2022, 10(37): 7309-7327.
[65]SUN K, TANG Y, LI Q, et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer[J]. ACS Nano, 2016, 10(7): 6769-6781.
[66]WANG Z, GUO H, LUO Z, et al. Low-triggering-potential electrochemiluminescence from a luminol analogue functionalized semiconducting polymer dots for imaging detection of blood glucose[J]. Analytical Chemistry, 2022, 94(14): 5615-5623.
[67]HU R, LI X, XU J, et al. Continuous preparation of semiconducting polymer nanoparticles with Varied Sizes for Online Fluorescence Sensing via a Laser-Tailored 3D microfluidic Chip[J]. Analytical Chemistry, 2023, 95(27): 10422-10429.
[68]BERNINI R, TONEZZER M, MOTTOLA F, et al. Volatile organic compounds detection using porphyrin-based metal-cladding leaky wave guides[J]. Sensors and Actuators B:Chemical, 2007, 127(1): 231-236.
[69]GAO W Y, CHRZANOWSKI M, MA S. Metal–metalloporphyrin frameworks: a resurging class of functional materials[J]. Chemical Society Reviews, 2014, 43(16): 5841-5866.
[70]臧立新. 磷光光敏剂-稀土金属卟啉发光, 光化学及氧传感性质[D]. 哈尔滨工业大学, 2018.
[71]HARTMANN P.,TRETTNAK W. Effects of polymer matrices on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes [J]. Analytical Chemistry, 1996, 68(15): 2615-2620.
[72]BARAN P S, MONACO R R, KHAN A U, et al. Synthesis and cation-mediated electronic interactions of two novel classes of porphyrin−fullerene hybrids[J]. Journal of the American Chemical Society, 1997, 119(35): 8363-8364.
[73]CHOI M M F, PANG W S H, XIAO D, et al. An optical glucose biosensor with eggshell membrane as an enzyme immobilisation platform[J]. Analyst, 2001, 126(9): 1558-1563
[74]XIANG H, ZHOU L, FENG Y, et al. Tunable fluorescent/phosphorescent platinum (II) porphyrin–fluorene copolymers for ratiometric dual emissive oxygen sensing[J]. Inorganic Chemistry, 2012, 51(9): 5208-5212.
[75]LIU S, FANG X, MI F, et al. Covalent incorporation of metalloporphyrin in luminescent polymer dot transducer for continuous glucose monitoring[J]. Journal of Luminescence, 2022, 251: 119202.
[76]SUN K, DING Z, ZHANG J, et al. Enhancing the Long‐term stability of a polymer dot glucose transducer by using an enzymatic cascade reaction system[J]. Advanced Healthcare Materials, 2021, 10(4): 2001019.
[77]FUCHS S, RIEGER V, TJELL A Ø, et al. Optical glucose sensor for microfluidic cell culture systems[J]. Biosensors and Bioelectronics, 2023: 115491.
[78]CHANG K. W., LIU Z. H., FANG X. F. ,et al. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide [J]. Nano Letters, 2017, 17(7): 4323-4329.
修改评论