中文版 | English
题名

基于金属卟啉偶联聚合物的葡萄糖传感器及血糖监测研究

其他题名
DEVELOPMENT OF METALLOPORPHYRIN- LINKED POLYMER SENSOR FOR CONTINUOUS GLUCOSE MONITORING
姓名
姓名拼音
WANG Xinyu
学号
12132650
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
吴长锋
导师单位
生物医学工程系
论文答辩日期
2024-04-25
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

糖尿病是一种由胰岛素分泌和作用异常所引起的血糖代谢紊乱疾病,严重威胁着全球四亿多人口的生命健康。精准的血糖检测是糖尿病诊断及预后管理重要的一环。目前常见的血糖检测方法包括:间隔性指尖采血的检测方法和植入式连续性血糖监测方法。其中,连续性血糖监测能够实时提供血糖数据,是目前最具应用前景的糖尿病管理手段。商用的连续性血糖监测方法大多基于电化学传感方法而开发,在组织损伤、信号漂移等方面仍面临着较大的挑战。近年来,基于光学的连续性血糖检测方法引起了研究者的广泛关注。高亮度且生物相容性优良的磷光纳米材料表现出巨大的应用潜力,基于该种材料开发的新型光学血糖传感器为解决上述问题提供了方案。然而基于磷光纳米材料的葡萄糖传感器仍存在着稳定性差、准确性低等问题。

本论文利用金属卟啉偶联聚合物制备纳米探针,进一步偶联葡萄糖氧化酶研发了具有内参比特性的葡萄糖传感器。该传感器包括氧敏感的钯卟啉偶联聚合物和共价连接聚合物的罗丹明两部分,能够实时监测活体血糖浓度的动态变化。实验结果表明,传感器的双通道(620 nm670 nm)发光强度比值与血糖浓度变化有着密切相关性,适应于构建比率型光学传感器。为了进一步提高体内血糖监测系统的长期稳定性,本研究将过氧化氢酶偶联至葡萄糖传感器的表面来产生酶级联系统,消耗血糖监测过程中所产生的毒副产物过氧化氢,降低其细胞毒性。细胞水平的结果显示,过氧化氢酶可以大幅提高传感材料的生物相容性,提高孵育细胞的存活率。14天的长期活体实验结果显示偶联过氧化氢酶的传感器的长期稳定性优于单酶传感器,与单酶传感器相比,灵敏度提升了1.3倍。综上,本研究制备了具有内参比特性的植入式光学连续性血糖传感器,能够实现活体的实时血糖检测;通过偶联过氧化氢酶进一步构建酶级联系统,延长了血糖实时监测的时效,为提升血糖传感的器长期稳定性的提供了有益参考。

其他摘要

Diabetes, characterized by abnormal insulin secretion and function, poses a threat to the health of 400 million people around the world. Accurate detection of blood glucose levels is a significant step of the diagnosis and management of diabetes. Currently, the common methods for blood glucose management mainly include intermittent fingerstick testing and invasive continuous glucose monitoring (CGM). CGM offers real-time blood glucose data and has emerged as a highly promising modality for diabetes management. While commercial continuous glucose monitoring devices predominantly rely on electrochemical sensing methods, they encounter challenges such as tissue damage and signal drift. Optical-based continuous glucose monitoring has garnered significant attention from researchers in recent years. Phosphorescent nanomaterials with the advantages of small size distribution and high biocompatibility, hold immense potential for the development of novel long-term optical blood glucose sensors. However, there are still many issues to be resolved, such as stability and accuracy that require further refinement.

Here, an optical glucose sensor with internal reference characteristics was designed and prepared by incorporating glucose oxidase (GOx) on the surface of luminescent nano-probe, which was covalent incorporation of metalloporphyrin. The sensor mainly consists of oxygen-sensitive palladium porphyrin-conjugated polymers and rhodamine which were covalently linked with polymer, and it can monitor real-time changes in blood glucose levels in vivo. Experimental results indicate that the ratio of the dual-channel (670 nm, 620 nm) luminescence intensity of the sensor is closely related to changes in blood glucose concentration, rendering it suitable for constructing a ratio-type optical sensor.

Furthermore, to enhance the long-term stability of the glucose monitoring system in vivo, catalase (CAT) was conjugated to the sensor surface, creating an enzymatic cascade system that effectively decomposed the toxic by-product hydrogen peroxide (H2O2) generated during glucose monitoring, thereby reducing cytotoxicity. The results of in vitro experiments demonstrated that catalase significantly improved the biocompatibility of the sensing material and increased cell viability. Subsequently, the results of long-term experiment in vivo conducted over 14 days indicated that the catalase-coupled NP-GOx-CAT exhibited superior photostability compared to the single enzyme sensor NP-GOx, improving the sensitivity up to 230%. In conclusion, this study developed an implantable optical glucose sensor with internal reference characteristics, which can achieve real-time glucose monitoring in vivo. The enzyme cascade system was further constructed by conjugating with catalase, which significantly prolonged the time of real-time blood glucose monitoring, and offered valuable insights for enhancing the long-term stability of blood glucose sensing.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]AMERICAN DIABETES ASSOCIATION PROFESSIONAL PRACTICE COMMITTEE, AMERICAN DIABETES ASSOCIATION PROFESSIONAL PRACTICE COMMITTEE:. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022[J]. Diabetes Care, 2022, 45(Supplement_1): S17-S38.
[2]International Diabetes Federation. Diabetes Atlas [M]. 10 th ed. 2021.
[3]ADLER A, BENNNETT P, CHAIR S C, et al. Reprint of: classification of diabetes mellitus[J]. Diabetes Research and Clinical Practice, 2021: 108972.
[4]范多艳. 健康中国背景下糖尿病科普教育浅析 [J]. 甘肃医药, 2022, 41 (06): 555-557.
[5]MARCHETTI P, BARONTI W, BOGGI U, et al. Diabetes mellitus: Classification and diagnosis[M]//Transplantation of the Pancreas. Cham: Springer International Publishing, 2023: 3-12.
[6]TATTERSALL R B, MATTHEWS D R. The history of diabetes mellitus[J]. Textbook of Diabetes, 2024: 1-21.
[7]LANGERHANS P. Beitrage zur mikroskopischen anatomie der bauchspeicheldruse, inaugural disseration[J]. Gustav Lange, 1869.
[8]LAMMERT E, THORN P. The role of the islet niche on beta cell structure and function[J]. Journal of Molecular Biology, 2020, 432(5): 1407-1418.
[9]ELLIOTT P. JOSLIN, M.D. Frederick grant banting (1891-1941) codiscoverer of insulin[J]. JAMA, 1966, 198(6): 660-661.
[10]ZUELZER G. Experimentelle untersuchungen über den diabetes[J]. Berlin Klin Wochenschr, 1907, 44: 474-475.
[11]PAULESCU N C. Recherche sur le rôle du pancréas dans l'assimilation nutritive[J]. 1921.
[12]OWENS D R, ZINMAN B, BOLLI G B. Insulins today and beyond[J]. The Lancet, 2001, 358(9283): 739-746.
[13]KJELDSEN T, KURTZHALS P. A hundred years of insulin innovation: when science meets technology[J]. Diabetes, 2021, 70(9): e1-e2.
[14]ROSALES N, DE BATTISTA H, VEHÍ J, et al. Open-loop glucose control: automatic IOB-based super-bolus feature for commercial insulin pumps[J]. Computer Methods and Programs in Biomedicine, 2018, 159: 145-158.
[15]BOUGHTON C K, HOVORKA R. New closed-loop insulin systems[J]. Diabetologia, 2021, 64: 1007-1015.
[16]EL-KHATIB F. H., RUSSELL S. J., NATHAN D. M. ,et al. A bihormonal closed-loop artificial pancreas for Type 1 Diabetes [J]. Sci. Transl. Med., 2010, 2(27): 12.
[17]MARATHE P. H., GAO H. X.,CLOSE K. L. American diabetes association standards of medical care in diabetes 2017 [J]. J. Diabetes, 2017, 9(4): 320-324.
[18]SENIOR P, LAM A, FARNSWORTH K, et al. Assessment of risks and benefits of beta cell replacement versus automated insulin delivery systems for type 1 diabetes[J]. Current Diabetes Reports, 2020, 20: 1-10.
[19]SUGANDH F N U, CHANDIO M, RAVEENA F N U, et al. Advances in the management of diabetes mellitus: a focus on personalized medicine[J]. Cureus, 2023, 15(8).
[20]孙凯.用于体内血糖监测的可植入型荧光聚合物点传感器的研究[D]. 长春: 吉林大学, 2018.
[21]BOLLA A S, PRIEFER R. Blood glucose monitoring-an overview of current and future non-invasive devices[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(5): 739-751.
[22]GUILBAULT G G, LUBRANO G J. An enzyme electrode for the amperometric determination of glucose[J]. Analytica Chimica Acta, 1973, 64(3):439-455.
[23]PENG Z, XIE X, TAN Q, ET AL. Blood glucose sensors and recent advances: a review[J]. Journal of Innovative Optical Health Sciences, 2022, 15(02): 2230003.
[24]VADDIRAJU S, BURGESS D J, TOMAZOS I, et al. Technologies for continuous glucose monitoring: current problems and future promises[J]. Journal of Diabetes Science and Technology, 2010, 4(6): 1540-1562.
[25]UPDIKE S. J.,HICKS G. P. The enzyme electrode [J]. Nature, 1967, 214(5092): 986-988.
[26]CLARK L. C., JR.,LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery [J]. Annals of the New York Academy of Sciences, 1962, 102: 29-45.
[27]DEGANI Y, HELLER A. Direct electrical communication between chemically modified enzymes and metal electrodes. I. electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme[J]. Journal of Physical Chemistry, 1987, 91(6): 1285-1289.
[28]SCHLAPFER P., MINDT W.,RACINE P. Electrochemical measurement of glucose using various electron acceptors [J]. Clin. Chim. Acta., 1974, 57(3): 283-289.
[29]WANG J. Glucose biosensors: 40 years of advances and challenges[J]. Electroanalysis, 2010, 13(12): 983-988.
[30]KIRK J. K.,RHENEY C. C. Important features of blood glucose meters [J]. Journal of the American Pharmacists Association, 1998, 38(2): 210-219.
[31]YAN X, TANG J, TANNER D, et al. Direct electrochemical enzyme electron transfer on electrodes modified by self-assembled molecular monolayers[J]. Catalysts, 2020, 10(12): 1458.
[32]NEWMAN J D, TURNER A P F. Home blood glucose biosensors: a commercial perspective[J]. Biosensors and Bioelectronics, 2005, 20(12): 2435-2453.
[33]LOEW N, SCHELLER F W, WOLLENBERGER U. Characterization of self‐assembling of hlucose dehydrogenase in mono‐and multilayers on gold electrodes[J]. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2004, 16(13‐14): 1149-1154.
[34]DAS P, DAS M, CHINNADAYYALA S R, et al. Recent advances on developing 3rd generation enzyme electrode for biosensor applications[J]. Biosensors and Bioelectronics, 2016, 79: 386-397.
[35]TOI P T, TRUNG T Q, DANG T M L, et al. Highly electrocatalytic, durable, and stretchable nanohybrid fiber for on-body sweat glucose detection[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10707-10717.
[36]CUI F, SUN H, YANG X, et al. Laser-induced graphene (LIG)-based Au@ CuO/V2CTx MXene non-enzymatic electrochemical sensors for the urine glucose test[J]. Chemical Engineering Journal, 2023, 457: 141303.
[37]ZHAO Y, JIANG Y, MO Y, et al. Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by single‐Atom Pt Supported on Cu@ CuO Core–Shell Nanowires[J]. Small, 2023, 19(18): 2207240.
[38]MUQADDAS S, JAVED M, NADEEM S, et al. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors[J]. ACS Omega, 2023, 8(2): 2272-2280.
[39]ADEEL M, RAHMAN M M, CALIGIURI I, et al. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions[J]. Biosensors and Bioelectronics, 2020, 165: 112331.
[40]FERCHER A F. Optical coherence tomography–development, principles, applications[J]. Zeitschrift für Medizinische Physik, 2010, 20(4): 251-276.
[41]CHEN T L, LOU Y L, LIAO C C, et al. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography[J]. Journal of Biomedical Optics, 2018, 23(4): 047001-047001.
[42]AHMADIAN N, MANICKAVASAGAN A, ALI A. Comparative assessment of blood glucose monitoring techniques: a review[J]. Journal of Medical Engineering & Technology, 2023, 47(2): 121-130.
[43]JOSHI A M, JAIN P, MOHANTY S P, et al. iGLU 2.0: A new wearable for accurate non-invasive continuous serum glucose measurement in IOMT framework[J]. IEEE Transactions on Consumer Electronics, 2020, 66(4): 327-335.
[44]ALSUNAIDI B, ALTHOBAITI M, TAMAL M, et al. A review of non-invasive optical systems for continuous blood glucose monitoring[J]. Sensors, 2021, 21(20): 6820.
[45]VILLENA GONZALES W, MOBASHSHER A T, ABBOSH A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors[J]. Sensors, 2019, 19(4): 800.
[46]SIM J Y, AHN C G, JEONG E J, et al. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products[J]. Scientific Reports, 2018, 8(1): 1059.
[47]WU J, LIU Y, YIN H, et al. A new generation of sensors for non-invasive blood glucose monitoring[J]. American Rournal of Translational Research, 2023, 15(6): 3825.
[48]VILLENA GONZALES W, MOBASHSHER A T, ABBOSH A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors[J]. Sensors, 2019, 19(4): 800.
[49]OLIVER N S, TOUMAZOU C, CASS A E G, et al. Glucose sensors: a review of current and emerging technology[J]. Diabetic Medicine, 2009, 26(3): 197-210.
[50]AHMED I, JIANG N, SHAO X, et al. Recent advances in optical sensors for continuous glucose monitoring[J]. Sensors & Diagnostics, 2022, 1(6): 1098-1125.
[51]PICKUP J C, HUSSAIN F, EVANS N D, et al. Fluorescence-based glucose sensors[J]. Biosensors and Bioelectronics, 2005, 20(12): 2555-2565.
[52]WU W. T., ZHOU T., BERLINER A. ,et al. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing [J]. Angewandte Chemie-international Edition, 2010, 49(37): 6554-6558.
[53]ELSHERIF M, HASSAN M U, YETISEN A K, et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones[J]. ACS Nano, 2018, 12(6): 5452-5462.
[54]WOLFBEIS O. S., OEHME I., PAPKOVSKAYA N. ,et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background [J]. Biosens. Bioelectron., 2000, 15(1-2): 69-76.
[55]SUN K, YANG Y, ZHOU H, et al. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone[J]. ACS Nano, 2018, 12(6): 5176-5184.
[56]LI X. Y., ZHOU Y. L., ZHENG Z. Z. ,et al. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase [J]. Langmuir, 2009, 25(11): 6580-6586.
[57]WANG H C, LEE A R. Recent developments in blood glucose sensors[J]. Journal of Food and Drug Analysis, 2015, 23(2): 191-200.
[58]MUEHLBAUER M J, GUILBEAU E J, TOWE B C, et al. Thermoelectric enzyme sensor for measuring blood glucose[J]. Biosensors and Bioelectronics, 1990, 5(1): 1-12.
[59]HANNA J, TAWK Y, AZAR S, et al. Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring[J]. Scientific Reports, 2022, 12(1): 14885.
[60]DESHMUKH V V, CHORAGE S S. Non-invasive determination of blood glucose level using narrowband microwave sensor[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-16.
[61]VEISEH O, TANG B C, WHITEHEAD K A, et al. Managing diabetes with nanomedicine: challenges and opportunities[J]. Nature Reviews Drug Discovery, 2015, 14(1): 45-57.
[62]WU C. F., SZYMANSKI C.,MCNEILL J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles [J]. Langmuir, 2006, 22(7): 2956-2960.
[63]CHEN L. H., MCBRANCH D. W., WANG H. L. ,et al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12287-12292.
[64]ZHAO L, ZHAO C, ZHOU J, et al. Conjugated polymer-based luminescent probes for ratiometric detection of biomolecules[J]. Journal of Materials Chemistry B, 2022, 10(37): 7309-7327.
[65]SUN K, TANG Y, LI Q, et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer[J]. ACS Nano, 2016, 10(7): 6769-6781.
[66]WANG Z, GUO H, LUO Z, et al. Low-triggering-potential electrochemiluminescence from a luminol analogue functionalized semiconducting polymer dots for imaging detection of blood glucose[J]. Analytical Chemistry, 2022, 94(14): 5615-5623.
[67]HU R, LI X, XU J, et al. Continuous preparation of semiconducting polymer nanoparticles with Varied Sizes for Online Fluorescence Sensing via a Laser-Tailored 3D microfluidic Chip[J]. Analytical Chemistry, 2023, 95(27): 10422-10429.
[68]BERNINI R, TONEZZER M, MOTTOLA F, et al. Volatile organic compounds detection using porphyrin-based metal-cladding leaky wave guides[J]. Sensors and Actuators B:Chemical, 2007, 127(1): 231-236.
[69]GAO W Y, CHRZANOWSKI M, MA S. Metal–metalloporphyrin frameworks: a resurging class of functional materials[J]. Chemical Society Reviews, 2014, 43(16): 5841-5866.
[70]臧立新. 磷光光敏剂-稀土金属卟啉发光, 光化学及氧传感性质[D]. 哈尔滨工业大学, 2018.
[71]HARTMANN P.,TRETTNAK W. Effects of polymer matrices on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes [J]. Analytical Chemistry, 1996, 68(15): 2615-2620.
[72]BARAN P S, MONACO R R, KHAN A U, et al. Synthesis and cation-mediated electronic interactions of two novel classes of porphyrin−fullerene hybrids[J]. Journal of the American Chemical Society, 1997, 119(35): 8363-8364.
[73]CHOI M M F, PANG W S H, XIAO D, et al. An optical glucose biosensor with eggshell membrane as an enzyme immobilisation platform[J]. Analyst, 2001, 126(9): 1558-1563
[74]XIANG H, ZHOU L, FENG Y, et al. Tunable fluorescent/phosphorescent platinum (II) porphyrin–fluorene copolymers for ratiometric dual emissive oxygen sensing[J]. Inorganic Chemistry, 2012, 51(9): 5208-5212.
[75]LIU S, FANG X, MI F, et al. Covalent incorporation of metalloporphyrin in luminescent polymer dot transducer for continuous glucose monitoring[J]. Journal of Luminescence, 2022, 251: 119202.
[76]SUN K, DING Z, ZHANG J, et al. Enhancing the Long‐term stability of a polymer dot glucose transducer by using an enzymatic cascade reaction system[J]. Advanced Healthcare Materials, 2021, 10(4): 2001019.
[77]FUCHS S, RIEGER V, TJELL A Ø, et al. Optical glucose sensor for microfluidic cell culture systems[J]. Biosensors and Bioelectronics, 2023: 115491.
[78]CHANG K. W., LIU Z. H., FANG X. F. ,et al. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide [J]. Nano Letters, 2017, 17(7): 4323-4329.

所在学位评定分委会
生物学
国内图书分类号
O657.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766160
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
王欣羽. 基于金属卟啉偶联聚合物的葡萄糖传感器及血糖监测研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132650-王欣羽-生物医学工程系(6765KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王欣羽]的文章
百度学术
百度学术中相似的文章
[王欣羽]的文章
必应学术
必应学术中相似的文章
[王欣羽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。