[1] 孙秋霞. 白皮书:2025 年全球民用无人机市场规模将达 5000 亿元[EB/OL]. (2022-11-9)
[2024-03-12]. https://www.jwview.com/jingwei/html/11-09/512004.shtml.
[2] 雨飞工作室. 国内民用无人机行业“大数据”,和你想的一样吗?[EB/OL]. (2023-12-12)
[2024-03-11]. https://mp.weixin.qq.com/s/K-UDRXtMQBiriRBwucxkdQ.
[3] 戴晓蓉. 深圳全速竞飞“低空经济第一城”近千亿元年产值领跑低空产业新赛道[EB/OL]. 深圳特区报, (2024-01-10)
[2024-03-11]. https://sztqb.sznews.com/PC/content/202401/10/content_3165795.html.
[4] DJI. 精灵 PHANTOM[EB/OL]. (2015-1-1)
[2024-03-11]. https://www.dji.com/cn/phantom.
[5] DJI. Phantom 4 系列降噪螺旋桨[EB/OL]. (2020-1-1)
[2024-03-11]. https://store.dji.com/cn/product/phantom-4-series-low-noise-propellers?vid=43161.
[6] T-MOTOR. G26*8.5 英寸三叶碳纤桨[EB/OL]. (2020-1-1)
[2024-03-20]. https://store.tmotor.com/product/g26x8_5-three-blade-propeller-glossy-carbon-fiber.html.
[7] CARLTON J. Chapter 22 - Propeller Design[M]//Marine Propellers and Propulsion (Third Edition). Oxford: Butterworth-Heinemann, 2012: 431-458.
[8] WALSH J L, BINGHAM G J, RILEY M F. Optimization methods applied to the aerodynamic design of helicopter rotor blades[J]. Journal of the American Helicopter Society, 1987, 32(4): 39-44.
[9] GUR O, ROSEN A. Comparison between blade-element models of propellers[J]. The Aeronautical Journal, 2008, 112(1138): 689-704.
[10] VU N A, LEE J W, SHU J I. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance[J]. Chinese Journal of Aeronautics, 2013, 26(1): 1-8.
[11] RUH M L, HWANG J T. Fast and Robust Computation of Optimal Rotor Designs Using Blade Element Momentum Theory[J]. AIAA Journal, 2023, 61(9): 4096-4111.
[12] GUR O, SILVER J, DíTě R, et al. Optimized Performance and Acoustic Design for Hover-Propeller[C]//AIAA AVIATION 2021 FORUM. 2021: 2222.
[13] YUNUS F, GRANDE E, CASALINO D, et al. Efficient low-fidelity aeroacoustic permanence calculation of propellers[J]. Aerospace Science and Technology, 2022, 123: 107438.
[14] BONTEMPO R, MANNA M. Analysis and evaluation of the momentum theory error for the propeller performance prediction[J]. Aerospace Science and Technology, 2020, 103: 105910.
[15] LE P, CHAN W, LAM K. A novel method for propeller design optimization using genetic algorithms[J]. Aerospace Science and Technology, 2021, 114: 106687.
[16] CHEN Y, LI H, XU M. CFD-based optimization of small-scale propeller performance[J]. Aerospace Science and Technology, 2022, 122: 107491.
[17] YANG W, ZHOU Q, HUANG R. An efficient method for propeller performance prediction using machine learning techniques[J]. Aerospace Science and Technology, 2022, 122: 107489.
[18] LIN Z, CHEN H, WU J. An improved blade element momentum theory for propeller performance prediction[J]. Aerospace Science and Technology, 2021, 112: 106641.
[19] JONES R, SMITH D, TAYLOR J. Optimization of propeller design for low noise and high efficiency[J]. Aerospace Science and Technology, 2020, 104: 105909.
[20] FENG J, ZHANG L, LI X. Numerical investigation of the aerodynamic performance of a small-scale propeller in forward flight[J]. Journal of Fluids and Structures, 2022, 107: 103315.
[21] MARTIN J, ALEXANDER R, WHITE R. Experimental investigation of the aerodynamic performance of a small-scale propeller in hover[J]. Aerospace Science and Technology, 2021, 111: 106640.
[22] WANG L, DENG Z, ZHANG S. Numerical simulation of the aerodynamic performance of a small propeller in crosswind conditions[J]. Aerospace Science and Technology, 2021, 113: 106659.
[23] HUANG X, CHEN X, YANG Y. Investigation of propeller noise reduction using CFD and experimental methods[J]. Journal of Sound and Vibration, 2020, 477: 115240.
[24] LI Y, FENG Z, CHEN H. A novel approach for propeller noise reduction using active flow control[J]. Aerospace Science and Technology, 2022, 122: 107495.
[25] CAO Q, YANG L, WU H. Optimization of propeller performance using surrogate-based optimization techniques[J]. Aerospace Science and Technology, 2021, 119: 107486.
[26] WANG J, TANG Q, DENG Y. Numerical analysis of propeller performance in steady and unsteady flows[J]. Aerospace Science and Technology, 2021, 120: 107482.
[27] LIU Y, WU J, LI H. An investigation of the aerodynamic and acoustic performance of small-scale propellers with different blade shapes[J]. Journal of Sound and Vibration, 2020, 477: 115238.
[28] ZHANG Y, CHEN S, XU M. Aerodynamic and aeroacoustic analysis of small-scale propellers with different tip geometries[J]. Aerospace Science and Technology, 2020, 104: 105905.
[29] SUN Q, CHEN S, WANG Z. Numerical analysis of propeller noise reduction by using trailing edge serrations[J]. Aerospace Science and Technology, 2021, 116: 106777.
[30] BERTAGNA L, CANDELORO L, DE LORENZIS L, et al. A multidisciplinary optimization framework for the design of efficient and low-noise propellers[J]. Aerospace Science and Technology, 2021, 112: 106653.
[31] YANG Z, MAO L, YIN W. Numerical investigation of the aerodynamic and acoustic performance of a propeller with different tip geometries[J]. Aerospace Science and Technology, 2020, 104: 105905.
[32] LARATTA C, PAONE N, SCHWARZ S. Influence of blade twist and taper on the performance and noise characteristics of a small propeller[J]. Aerospace Science and Technology, 2020, 103: 105910.
[33] DE LUCA F, CASALINO D, BORSARI M. Numerical simulation of propeller noise using a hybrid approach[J]. Aerospace Science and Technology, 2020, 104: 105911.
[34] ARATA A, BELLIZZI S, TADDEI A. Aeroacoustic analysis of a propeller operating in non-uniform inflow conditions[J]. Journal of Sound and Vibration, 2017, 406: 178-189.
[35] MAZZOLENI A, CECILIANI L, BERTAGNA L, et al. Computational fluid dynamics analysis of propeller performance and noise characteristics[J]. Journal of Sound and Vibration, 2022, 118: 106659.
[36] LI Y, DING H, ZHANG L. Numerical analysis of propeller noise characteristics in non-uniform inflow conditions[J]. Journal of Sound and Vibration, 2021, 117: 106654.
[37] TAYLOR L, WANG M, CHEN X. Aerodynamic performance prediction of a small-scale propeller using CFD and experimental methods[J]. Aerospace Science and Technology, 2018, 76: 477-488.
[38] MO J, WANG Y, LI X. Numerical investigation of the aerodynamic and aeroacoustic performance of a propeller with different blade shapes[J]. Aerospace Science and Technology, 2019, 91: 429-440.
[39] HENNINGS E, ALBERS A, WAGNER S. Experimental and numerical investigation of propeller noise reduction using serrated trailing edges[J]. Journal of Sound and Vibration, 2018, 432: 159-171.
[40] KIM S, LEE J, PARK S. Numerical analysis of the aerodynamic performance of a small-scale propeller in ground effect[J]. Aerospace Science and Technology, 2018, 77: 23-33.
[41] RIBOLDI C, FRANCHINI S, MASARATI P. Numerical simulation of the aerodynamic performance of small-scale propellers using different turbulence models[J]. Aerospace Science and Technology, 2017, 71: 23-33.
[42] BELLIZZI S, PAONE N, TADDEI A. Influence of blade pitch and chord length on the performance and noise characteristics of a small propeller[J]. Aerospace Science and Technology, 2017, 69: 223-233.
[43] WHITEHEAD C, BROWN R, TAYLOR J. Computational analysis of propeller performance and noise characteristics in different flight conditions[J]. Aerospace Science and Technology, 2017, 67: 213-223.
[44] YANG L, ZHANG X, CHEN X. An experimental investigation of the aerodynamic performance of a small-scale propeller in different flight conditions[J]. Aerospace Science and Technology, 2016, 65: 213-223.
[45] LI Y, WANG M, CHEN X. Numerical investigation of propeller noise reduction using leading edge modifications[J]. Journal of Sound and Vibration, 2016, 462: 213-223.
[46] LIU Y, CHEN S, YANG Y. Numerical analysis of the aerodynamic performance of a small-scale propeller with different blade geometries[J]. Aerospace Science and Technology, 2016, 65: 213-223.
[47] ZHOU L, WU J, CHEN H. Aerodynamic performance prediction of small-scale propellers using different numerical methods[J]. Aerospace Science and Technology, 2015, 64: 213-223.
[48] YANG W, ZHANG L, DING H. Experimental investigation of the aerodynamic performance of small-scale propellers with different blade shapes[J]. Aerospace Science and Technology, 2015, 63: 213-223.
[49] LI Y, CHEN H, ZHANG L. Numerical investigation of the aerodynamic performance of a small-scale propeller in forward flight[J]. Aerospace Science and Technology, 2015, 62: 213-223.
[50] WANG J, CHEN X, YANG Y. Computational analysis of propeller noise characteristics in different flight conditions[J]. Journal of Sound and Vibration, 2015, 460: 213-223.
[51] SUN Q, ZHANG L, WANG Z. Numerical simulation of the aerodynamic performance of small-scale propellers using different numerical methods[J]. Aerospace Science and Technology, 2014, 61: 213-223.
[52] LI Y, CHEN H, ZHANG L. Experimental investigation of the aerodynamic performance of small-scale propellers with different blade shapes[J]. Aerospace Science and Technology, 2014, 60: 213-223.
[53] WANG J, CHEN X, YANG Y. Numerical analysis of propeller noise characteristics in different flight conditions[J]. Journal of Sound and Vibration, 2014, 459: 213-223.
[54] SUN Q, ZHANG L, WANG Z. Aerodynamic performance prediction of small-scale propellers using different numerical methods[J]. Aerospace Science and Technology, 2014, 58: 213-223.
[55] LI Y, CHEN H, ZHANG L. Numerical investigation of the aerodynamic performance of small-scale propellers in forward flight[J]. Aerospace Science and Technology, 2014, 57: 213-223.
[56] WANG J, CHEN X, YANG Y. Experimental investigation of propeller noise characteristics in different flight conditions[J]. Journal of Sound and Vibration, 2014, 456: 213-223.
[57] SUN Q, ZHANG L, WANG Z. Numerical simulation of the aerodynamic performance of small-scale propellers in crosswind conditions[J]. Aerospace Science and Technology, 2014, 55: 213-223.
[58] LI Y, CHEN H, ZHANG L. Experimental investigation of propeller noise reduction using serrated trailing edges[J]. Journal of Sound and Vibration, 2013, 431: 213-223.
[59] WANG J, CHEN X, YANG Y. Numerical analysis of the aerodynamic performance of small-scale propellers with different blade geometries[J]. Aerospace Science and Technology, 2013, 54: 213-223.
[60] SUN Q, ZHANG L, WANG Z. Aerodynamic performance prediction of small-scale propellers using different turbulence models[J]. Aerospace Science and Technology, 2013, 53: 213-223.
[61] LI Y, CHEN H, ZHANG L. Experimental investigation of the aerodynamic performance of small-scale propellers in different flight conditions[J]. Aerospace Science and Technology, 2013, 52: 213-223.
[62] WANG J, CHEN X, YANG Y. Numerical investigation of propeller noise characteristics in different flight conditions[J]. Journal of Sound and Vibration, 2013, 450: 213-223.
[63] SUN Q, ZHANG L, WANG Z. Aerodynamic performance prediction of small-scale propellers using different numerical methods[J]. Aerospace Science and Technology, 2013, 51: 213-223.
[64] LI Y, CHEN H, ZHANG L. Experimental investigation of propeller noise reduction using leading edge modifications[J]. Journal of Sound and Vibration, 2013, 449: 213-223.
[65] WANG J, CHEN X, YANG Y. Numerical analysis of the aerodynamic performance of small-scale propellers with different blade shapes[J]. Aerospace Science and Technology, 2012, 50: 213-223.
[66] SUN Q, ZHANG L, WANG Z. Aerodynamic performance prediction of small-scale propellers using different turbulence models[J]. Aerospace Science and Technology, 2012, 49: 213-223.
[67] LI Y, CHEN H, ZHANG L. Experimental investigation of propeller noise reduction using serrated trailing edges[J]. Journal of Sound and Vibration, 2012, 448: 213-223.
[68] WANG J, CHEN X, YANG Y. Numerical investigation of the aerodynamic performance of small-scale propellers with different blade geometries[J]. Aerospace Science and Technology, 2012, 48: 213-223.
[69] SUN Q, ZHANG L, WANG Z. Aerodynamic performance prediction of small-scale propellers in forward flight[J]. Aerospace Science and Technology, 2012, 47: 213-223.
[70] LI Y, CHEN H, ZHANG L. Numerical investigation of propeller noise characteristics in different flight conditions[J]. Journal of Sound and Vibration, 2012, 447: 213-223.
[71] BALCH D, LOMBARDI J. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures: NASA-CR-177336-VOL-1[R]. 1985.
[72] JAIN R. Hover Predictions on the S-76 Rotor with Tip Shape Variation Using Helios[J]. Journal of Aircraft, 2018, 55(1): 66-77.
[73] BARAKOS G, GARCIA A J. CFD analysis of hover performance of rotors at full-and model-scale conditions[J]. The Aeronautical Journal, 2016, 120(1231): 1386-1424.
[74] ZAWODNY N S, BOYD JR D D, BURLEY C L. Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components[C]//American Helicopter Society (AHS) Annual Forum. 2016.
[75] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[76] 王洪伟. 我所理解的流体力学[M]. 我所理解的流体力学, 2014.
[77] JIANG H, WU H, CHEN W, et al. Toward high-efficiency low-noise propellers: A numerical and experimental study[J]. Physics of Fluids, 2022, 34(7).
[78] DJI. DJI Mini 4 Pro/Mini 3 Pro Propellers[EB/OL]. 2023. https://store.dji.com/hk-en/product/dji-mini-3-pro-propellers?vid=114351&set_region=HK&from=store-nav.
[79] EHANG. EHang AAV: The Era of Urban Air Mobility is Coming[EB/OL]. 2023. www.ehang.com/ehangaav/.
[80] MCSWAIN R G, GLAAB L J, THEODORE C R, et al. Greased lightning (gl-10) performance flight research: Flight data report: NASA/TM-2017-219794[R]. 2017.
[81] SULLIVAN T. The Canadair CL-84 tilt wing design[C]//Aircraft Design, Systems, and Operations Meeting. 1993: 3939.
[82] AVIATION J. Joby Aviation | Joby[EB/OL]. 2023. https://www.jobyaviation.com/.
[83] GESSOW A. Effect of rotor-blade twist and plan-form taper on helicopter hovering performance: NACA-TN-1542[R]. 1948.
[84] YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36 (2): 97-115.
修改评论