[1] SHI W, FANG Q, ZHU X, et al. Fiber lasers and their applications[J]. Applied optics, 2014, 53(28): 6554-6568.
[2] WANG J, WANG X, LEI J, et al. Recent advances in mode-locked fiber lasers based ontwo-dimensional materials[J]. Nanophotonics, 2020, 9(8): 2315-2340.
[3] LOU Y, GE B, CAI Y, et al. Spatiotemporal mode-locking of an all-fiber laser based on InPquantum dot saturable absorber[J]. Optics Express, 2023, 31(25): 42400-42412.
[4] MATSAS V J, NEWSON T P. Selfstarting passively mode-locked fibre ring soliton laserexploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.
[5] SONG Y, SHI X, WU C, et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 2019, 6(2): 021313.
[6] LING Y, HUANG Q, ZOU C, et al. L-band GHz femtosecond passively harmonicmode-locked Er-doped fiber laser based on nonlinear polarization rotation[J]. IEEE PhotonicsJournal, 2019, 11(4): 1-7.
[7] DENG D, ZHAN L, GU Z, et al. 55-fs pulse generation without wave-breaking from anall-fiber Erbium-doped ring laser[J]. Optics Express, 2009, 17(6): 4284-4288.
[8] HUO J, XU T, GUO Y, et al. Influence of pumping schemes on the characteristics ofself-similar pulses in a passively mode-locked fiber laser[J]. Optical Engineering, 2016, 55(5):056109-056109.
[9] KOTB H, ABDELALIM M A, ANIS H. Effect of narrow spectral filter position on thecharacteristics of active similariton mode-locked femtosecond fiber laser[J]. Optics Express, 2015, 23(23): 29660-29674.
[10] WANG Z, ZHAN L, FANG X, et al. Generation of sub-60 fs similaritons at 1.6 μm from anall-fiber Er-doped laser[J]. Journal of Lightwave Technology, 2016, 34(17): 4128-4134.
[11] WANG Z, QIAN K, FANG X, et al. Sub-90 fs dissipative-soliton Erbium-doped fiber lasersoperating at 1.6 μm band[J]. Optics Express, 2016, 24(10): 10841-10846.
[12] BOWEN P, SINGH H, RUNGE A, et al. Mode-locked femtosecond all-normal all-PMYb-doped fiber laser at 1060 nm[J]. Optics Communications, 2016, 364: 181-184.
[13] HÄNSEL W, HOOGLAND H, GIUNTA M, et al. All polarization-maintaining fiber laserarchitecture for robust femtosecond pulse generation[J]. Exploring the World with the Laser:Dedicated to Theodor Hänsch on his 75th birthday, 2018: 331-340.
[14] NISHIZAWA N, SUGA H, YAMANAKA M. Investigation of dispersion-managed, polarization-maintaining Er-doped figure-nine ultrashort-pulse fiber laser[J]. Optics Express, 2019, 27(14): 19218-19232.
[15] AGUERGARAY C, HAWKER R, RUNGE A F J, et al. 120 fs, 4.2 nJ pulses from anall-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 2013, 103(12).
[16] HE X, LIN Q, GUO H, et al. Robust 1.7-μm, all-polarization-maintaining femtosecond fiberlaser source based on standard telecom fibers[J]. Applied Physics Express, 2019, 12(7):072007.
[17] KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at1.7 μm[J]. Optics Letters, 2018, 43(5): 1127-1130.
[18] REGELSKIS K, ELUDEVIIUS, JULIJANAS, et al. Ytterbium-doped fiber ultrashort pulsegenerator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 2015, 40(22): 5255-5258.
[19] LIU Z, ZIEGLER Z M, WRIGHT L G, et al. Megawatt peak power from a Mamyshevoscillator[J]. Optica, 2017, 4(6): 649-654.
[20] LIU W, LIAO R, ZHAO J, et al. Femtosecond Mamyshev oscillator with 10-MW-level peakpower[J]. Optica, 2019, 6(2): 194-197.
[21] HAIG H, SIDORENKO P, THORNE R, et al. Megawatt pulses from an all-fiber andself-starting femtosecond oscillator[J]. Optics Letters, 2022, 47(4): 762-765.
[22] BOULANGER V, OLIVIER M, TRÉPANIER F, et al. Multi-megawatt pulses at 50 MHz froma single-pump Mamyshev oscillator gain-managed amplifier laser[J]. Optics Letters, 2023, 48(10): 2700-2703.
[23] NAZEMOSADAT E, MAFI A. Saturable Absorption in a Short Graded-Index MultimodeOptical Fiber Using Nonlinear Multimodal Interference[J]. Journal of the Optical Society ofAmerica B, 2013, 30(5):1357-1367.
[24] WANG Z, WANG D N, YANG F, et al. Er-doped mode-locked fiber laser with a hybridstructure of a step-index-graded-index multimode fiber as the saturable absorber[J]. Journal ofLightwave Technology, 2017, 35(24): 5280-5285.
[25] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[26] ZHAO C, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator basedsaturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.
[27] ZHANG H, LU S B, ZHENG J, et al. Molybdenum disulfide (MoS2) as a broadband saturableabsorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.
[28] CHEN Y, JIANG G, CHEN S, et al. Mechanically exfoliated black phosphorus as a newsaturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.
[29] JHON Y I, KOO J, ANASORI B, et al. Metallic MXene saturable absorber for femtosecondmode-locked lasers[J]. Advanced Materials, 2017, 29(40): 1702496.
[30] LI M, HAO Y, WAGEH S, et al. Preparation and pulsed fiber laser applications of emergingnanostructured materials[J]. Journal of Materials Chemistry C, 2023(11): 7538-7569.
[31] LEE Y W, CHEN C M, HUANG C W, et al. Passively Q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10):10675-10681.
[32] LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6): 7155-7162.
[33] DENG H, YU Q, ZHANG Y, et al. Recent advances in optical solitons via low-dimensionalmaterials in mode-locking fiber lasers[J]. Optics Communications, 2023: 129848.
[34] SET S Y, YAGUCHI H, TANAKA Y, et al. Mode-locked fiber lasers based on a saturableabsorber incorporating carbon nanotubes[C]//OFC 2003 Optical Fiber CommunicationsConference, 2003. IEEE, 2003: PD44-P1.
[35] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[36] ROZHIN A G, SAKAKIBARA Y, NAMIKI S, et al. Sub-200-fs pulsed erbium-doped fiberlaser using a carbon nanotube-polyvinylalcohol mode locker[J]. Applied Physics Letters, 2006, 88(5): 051118.
[37] NICHOLSON J W, WINDELER R S, DIGIOVANNI D J. Optically driven deposition ofsingle-walled carbon-nanotube saturable absorbers on optical fiber end-faces[J]. OpticsExpress, 2007, 15(15): 9176-9183.
[38] YU Z, WANG Y, ZHANG X, et al. A 66 fs highly stable single wall carbon nanotube modelocked fiber laser[J]. Laser Physics, 2013, 24(1): 015105.
[39] SONG Y W, SET S Y, YAMASHITA S, et al. 1300-nm pulsed fiber lasers mode-locked bypurified carbon nanotubes[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1623-1625.
[40] SCARDACI V, ROZHIN A G, TAN P H, et al. Carbon nanotubes for ultrafast photonics[J]. physica status solidi (b), 2007, 244(11): 4303-4307.
[41] DAI R, MENG Y, LI Y, et al. Nanotube mode-locked, wavelength and pulse width tunablethulium fiber laser[J]. Optics Express, 2019, 27(3): 3518-3527.
[42] PAWLISZEWSKA M, TOMASZEWSKA D, SOBOŃ G, et al. Broadband metallic carbonnanotube saturable absorber for ultrashort pulse generation in the 1500-2100 nm spectralrange[J]. Applied Sciences, 2021, 11(7): 3121.
[43] MARTINEZ A, SUN Z. Nanotube and graphene saturable absorbers for fibre lasers[J]. NaturePhotonics, 2013, 7(11): 842-845.
[44] PURDIE D G, POPA D, WITTWER V J, et al. Few-cycle pulses from a graphene mode-lockedall-fiber laser[J]. Applied Physics Letters, 2015, 106(25): 253101.
[45] SOTOR J, SOBON G. 24 fs and 3 nJ pulse generation from a simple, all polarizationmaintaining Er-doped fiber laser[J]. Laser Physics Letters, 2016, 13(12): 125102.
[46] LIU W, PANG L, HAN H, et al. Tungsten disulfide saturable absorbers for 67 fs mode-lockederbium-doped fiber lasers[J]. Optics Express, 2017, 25(3): 2950-2959.
[47] SAMIKANNU S, SIVARAJ S. Dissipative soliton generation in an all-normal dispersionytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber[J]. Optical Engineering, 2016, 55(8): 081311-081311.
[48] WANG Q, KANG J, WANG P, et al. Broadband saturable absorption in germanene formode-locked Yb, Er, and Tm fiber lasers[J]. Nanophotonics, 2022, 11(13): 3127-3137.
[49] DOU Z, SONG Y, TIAN J, et al. Mode-locked ytterbium-doped fiber laser based ontopological insulator: Bi2Se3[J]. Optics Express, 2014, 22(20): 24055-24061.
[50] YIN K, JIANG T, ZHENG X, et al. Mid-infrared ultra-short mode-locked fiber laser utilizingtopological insulator Bi2Te3 nano-sheets as the saturable absorber[J]. arXiv :1505.06322, 2015.
[51] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer blackphosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434.
[52] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterizationof few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.
[53] WANG K, SZYDŁOWSKA B M, WANG G, et al. Ultrafast nonlinear excitation dynamics ofblack phosphorus nanosheets from visible to mid-infrared[J]. ACS Nano, 2016, 10(7):6923-6932.
[54] SONG H, WANG Q, ZHANG Y, et al. Mode-locked ytterbium-doped all-fiber lasers based onfew-layer black phosphorus saturable absorbers[J]. Optics Communications, 2017, 394:157-160.
[55] QIN Z, HAI T, XIE G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 2018, 26(7): 8224-8231.
[56] PANG L, ZHAO M, ZHAO Q, et al. GaSb film is a saturable absorber for dissipative solitongeneration in a fiber laser[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55971-55978.
[57] TUO M, XU C, MU H, et al. Ultrathin 2D transition metal carbides for ultrafast pulsed fiberlasers[J]. Acs Photonics, 2018, 5(5): 1808-1816.
[58] MANIKANDAN A, CHEN Y Z, SHEN C C, et al. A critical review on two-dimensionalquantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics[J]. Progress in Quantum Electronics, 2019, 68: 100226.
[59] BARUAH J M, NARAYAN J. Development of greener methodology for the synthesis of CdSequantum dots and characterization of their thin films[J]. Journal of Optics, 2018, 47: 202-207.
[60] KAUR H, BHATTI H S, SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journalof Materials Science: Materials in Electronics, 2019, 30: 2246-2264.
[61] MUSSELMAN K P, IBRAHIM K H, YAVUZ M. Research Update: Beyondgraphene-Synthesis of functionalized quantum dots of 2D materials and their applications[J]. APL Materials, 2018, 6(12): 120701.
[62] LONG H, TAO L, CHIU C P, et al. The WS2 quantum dot: preparation, characterization and itsoptical limiting effect in polymethylmethacrylate[J]. Nanotechnology, 2016, 27(41): 414005.
[63] LONG H, TAO L, TANG C Y, et al. Tuning nonlinear optical absorption properties of WS2nanosheets[J]. Nanoscale, 2015, 7(42): 17771-17777.
[64] XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of blackphosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.
[65] WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95(2): 525-532.
[66] RAMASAMY P, KIM N, KANG Y S, et al. Tunable, bright, and narrow-band luminescencefrom colloidal indium phosphide quantum dots[J]. Chemistry of Materials, 2017, 29(16):6893-6899.
[67] KAUR H, BHATTI H S, SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journal ofMaterials Science: Materials in Electronics, 2019, 30: 2246-2264.
[68] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Peptide-coated semiconductornanocrystals for biomedical applications; proceedings of the Genetically Engineered andOptical Probes for Biomedical Applications III, F, 2005[C]. International Society for Opticsand Photonics.
[69] LI M, WANG C, WANG L, et al. Colloidal semiconductor nanocrystals: synthesis, opticalnonlinearity, and related device applications[J]. Journal of Materials Chemistry C, 2021, 9(21):6686-6721.
[70] WANG G, MEI S, LIAO J, et al. Advances of nonlinear photonics in low-dimensional halideperovskites[J], Small, 2021, 17(43): 2100809.
[71] GE Y, HUANG W, YANG F, et al. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS)composite films and their applications in ultrafast photonics[J]. Nanoscale, 2019, 11(14):6828-6837.
[72] DU J, ZHANG M, GUO Z, et al. Phosphorene quantum dot saturable absorbers for ultrafastfiber lasers[J]. Scientific Reports, 2017, 7(1): 42357.
[73] RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[74] WEI K, FAN S, CHEN Q, et al. Passively mode-locked Yb fiber laser with PbSe colloidalquantum dots as saturable absorber[J]. Optics Express, 2017, 25(21): 24901-24906.
[75] YUN L, ZHANG H, CUI H, et al. Lead sulfide quantum dots mode locked, wavelength-tunable soliton fiber laser[J]. IEEE Photonics Technology Letters, 2020, 33(3):119-122.
[76] MING N, TAO S, YANG W, et al. Mode-locked Er-doped fiber laser based on PbS/CdScore/shell quantum dots as saturable absorber[J]. Optics Express, 2018, 26(7): 9017-9026.
[77] GUO Q, YAO Y, LUO Z C, et al. Universal near-infrared and mid-infrared optical modulationfor ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.
[78] MU H, LIU Z, BAO X, et al. Highly stable and repeatable femtosecond soliton pulsegeneration from saturable absorbers based on two-dimensional Cu3-xP nanocrystals[J]. Frontiers of Optoelectronics, 2020, 13: 139-148.
[79] ZHANG X, LIU S, TAN D, et al. Photochemically derived plasmonic semiconductornanocrystals as an optical switch for ultrafast photonics[J]. Chemistry of Materials, 2020, 32(7): 3180-3187.
[80] LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6): 7155-7162.
[81] XU Y, WANG W, GE Y, et al. Stabilization of black phosphorous quantum dots in PMMAnanofiber film and broadband nonlinear optics and ultrafast photonics application[J]. Advanced Functional Materials, 2017, 27(32): 1702437.
[82] XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of blackphosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.
[83] LIU M, JIANG X F, YAN Y R, et al. Black phosphorus quantum dots for femtosecond laserphotonics[J]. Optics Communications, 2018, 406(1): 85-90.
[84] AHMED S, QIAO J, CHENG P K, et al. Tin Telluride Quantum Dots as a Novel SaturableAbsorber for Q-Switching and Mode Locking in Fiber Lasers[J]. Advanced Optical Materials, 2021, 9(6): 2001821.
[85] SHI Y, LONG H, LIU S, et al. Ultrasmall 2D NbSe2 based quantum dots used for lowthreshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6(46): 12638-12642.
[86] LONG H, SHI Y, WEN Q, et al. Ultrafast laser pulse (115 fs) generation by using directbandgap ultrasmall 2D GaTe quantum dots[J]. Journal of Materials Chemistry C, 2019, 7(20):5937-5944.
[87] XU N, LI H, GAN Y, et al. Zero-dimensional MXene-based optical devices for ultrafast andultranarrow photonics applications[J]. Advanced Science, 2020, 7(22): 2002209.
[88] NAHARUDDIN N Z A, ABU BAKAR M H, SADROLHOSSEINI A R, et al. Pulsed-laser-ablated gold-nanoparticles saturable absorber for mode-locked erbium-dopedfiber lasers[J]. Optics & Laser Technology, 2022, 150: 107875.
[89] AHMAD H, RUSLAN N E, ALI Z A, et al. Ag-nanoparticle as a Q switched device for tunableC-band fiber laser[J]. Optics Communications, 2016, 381: 85-90.
[90] AHMAD H, SAMION M Z, MUHAMAD A, et al. Tunable 2.0 µm Q-switched fiber laserusing a silver nanoparticle based saturable absorber[J]. Laser Physics, 2017, 27(6): 065110.
[91] PAN H, CHU H, LI Y, et al. Bismuthene quantum dots integrated D-shaped fiber as saturableabsorber for multi-type soliton fiber lasers[J]. Journal of Materiomics, 2023, 9(1): 183-190.
[92] MICIC O I, CURTIS C J, JONES K M, et al. Synthesis and characterization of InP quantumdots[J]. The Journal of Physical Chemistry, 1994, 98(19): 4966-4969.
[93] BATTAGLIA D, PENG X. Formation of high quality InP and InAs nanocrystals in anoncoordinating solvent[J]. Nano Letters, 2002, 2(9): 1027-1030.
[94] CROS-GAGNEUX A, DELPECH F, NAYRAL C, et al. Surface chemistry of InP quantumdots: a comprehensive study[J]. Journal of the American Chemical Society, 2010, 132(51):18147-18157.
[95] KIM K, YOO D, CHOI H, et al. Halide-amine co-passivated indium phosphide colloidalquantum dots in tetrahedral shape[J]. Angewandte Chemie, 2016, 128(11): 3778-3782.
[96] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dotlight-emitting diodes[J]. Nature, 2019, 575(7784): 634-638.
[97] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific reports, 2016, 6(1): 30094.
[98] Won Y H, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dotlight-emitting diodes[J]. Nature, 2019, 575(7784): 634-638.
[99] RICHTER A F, BINDER M, BOHN B J, et al. Fast electron and slow hole relaxation inInP-based colloidal quantum dots[J]. ACS Nano, 2019, 13(12): 14408-14415.
[100]TESSIER M D, BAQUERO E A, DUPONT D, et al. Interfacial oxidation andphotoluminescence of InP-based core/shell quantum dots[J]. Chemistry of Materials, 2018, 30(19): 6877-6883.
[101]ZHANG W, TAN Y, DUAN X, et al. High Quantum Yield Blue InP/ZnS/ZnS Quantum DotsBased on Bromine Passivation for Efficient Blue Light-Emitting Diodes[J]. Advanced OpticalMaterials, 2022, 10(15): 2200685.
[102] KIM T G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-basedquantum dots through surface fluorination: mechanism and applications[J]. ACS Nano, 2018, 12(11): 11529-11540.
[103] PU Y C, FAN H C, CHANG J C, et al. Effects of Interfacial Oxidative Layer Removal onCharge Carrier Recombination Dynamics in InP/ZnSexS1-x Core/Shell Quantum Dots[J]. TheJournal of Physical Chemistry Letters, 2021, 12(30): 7194-7200.
[104] GANEEV R A, ZVYAGIN A I, SHUKLOV I A, et al. Nonlinear Optical Characterization ofInP@ZnS Core-Shell Colloidal Quantum Dots Using 532 nm, 10 ns Pulses[J]. Nanomaterials, 2021, 11(6): 1366.
[105]CAO B, GAO C, LIU K, et al. Spatiotemporal mode-locking and dissipative solitons inmultimode fiber lasers[J]. Light: Science & Applications, 2023, 12(1): 260.
[106]WRIGHT L G, CHRISTODOULIDES DN, WISE F W. Spatiotemporal mode-locking[C]. CLEO: Scienceand Innovations 2018, San Jose, Califomia United States, 2018, paper SF3K.3.
[107]WRIGHT L G, SIDORENKO P, POURBEYRAM H, et al. Mechanisms of spatiotemporalmode-locking[J]. Nature Physics, 2020, 16(5): 565-570.
[108] AUSTON D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6):420-422.
[109] SMITH P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237.
[110] CÔTÉ D, VAN DRIEL H M. Period doubling of a femtosecond Ti: sapphire laser by totalmode locking[J]. Optics letters, 1998, 23(9): 715-717.
[111] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[112] NAZEMOSADAT E, MAFI A. Nonlinear multimodal interference and saturable absorptionusing a short graded-index multimode optical fiber[J]. JOSA B, 2013, 30(5): 1357-1367.
[113] CHEN G, LI W, WANG G, et al. Generation of coexisting high-energy pulses in amode-locked all-fiber laser with a nonlinear multimodal interference technique[J]. PhotonicsResearch, 2019, 7(2): 187-192.
[114] KRUPA K, TONELLO A, SHALABY B M, et al. Spatial beam self-cleaning in multimodefibres[J]. Nature Photonics, 2017, 11(4): 237-241.
[115] LIU Z, WRIGHT L G, CHRISTODOULIDES D N, et al. Kerr self-cleaning offemtosecond-pulsed beams in graded-index multimode fiber[J]. Optics Letters, 2016, 41(16):3675-3678.
[116] DELIANCOURT E, FABERT M, TONELLO A, et al. Wavefront shaping for optimizedmany-mode Kerr beam self-cleaning in graded-index multimode fiber[J]. Optics Express, 2019, 27(12): 17311-17321.
[117] GUENARD R, KRUPA K, DUPIOL R, et al. Kerr self-cleaning of pulsed beam in anytterbium doped multimode fiber[J]. Optics Express, 2017, 25(5): 4783-4792.
[118] WRIGHT L G, LIU Z, NOLAN D A, et al. Self-organized instability in graded-indexmultimode fibres[J]. Nature Photonics, 2016, 10(12): 771-776.
[119] KRUPA K, TONELLO A, BARTHÉLÉMY A, et al. Observation of geometric parametricinstability induced by the periodic spatial self-imaging of multimode waves[J]. PhysicalReview Letters, 2016, 116(18): 183901.
[120]RENNINGER W H, WISE F W. Optical solitons in graded-index multimode fibres[J]. NatureCommunications, 2013, 4(1): 1719.
[121] QIN H, XIAO X, WANG P, et al. Observation of soliton molecules in a spatiotemporalmode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.
[122] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446.
[123]LIU K, XIAO X, DING Y, et al. Buildup dynamics of multiple solitons in spatiotemporalmode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906.
[124]TEĞIN U, RAHMANI B, KAKKAVA E, et al. Single-mode output by controlling thespatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2(5): 056005-056005.
[125]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Controllable spatiotemporal nonlineareffects in multimode fibres[J]. Nature Photonics, 2015, 9(5): 306-310.
[126]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[127] QIN H, XIAO X, WANG P, et al. Observation of soliton molecules in a spatiotemporalmode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.
[128] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics express, 2019, 27(8): 11435-11446.
[129]TEĞIN U, KAKKAVA E, RAHMANI B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415.
[130]TEĞIN U, KAKKAVA E, RAHMANI B, et al. Dispersion-managed soliton multimode fiberlaser[C]//2020 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2020: 1-2.
[131]TEĞIN U, RAHMANI B, KAKKAVA E, et al. Single-mode output by controlling thespatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2(5): 056005-056005.
[132]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[133]WU H, LIN W, TAN YJ, et al. Pulses with switchable wavelengths and hysteresis in anall-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13(2): 022008.
[134]LONG J, GAO Y, LIN W, et al. Switchable and spacing tunable dual-wavelengthspatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591.
[135] MA Z, LONG J, LIN W, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473.
[136] DAI C, DONG Z, LIN J, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-lockedlaser based on graded-index multimode fiber[J]. Optik-International Journal for Light andElectron Optics, 2021, 243: 167487.
[137]LIN X B, GAO Y X, LONG J G, et al. All few-mode fiber spatiotemporal mode-lockedfigure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616.
[138]WU J W, LIU G X, GAO Y X, et al. Switchable femtosecond and picosecond spatiotemporalmode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414.
[139] HAIG H, SIDORENKO P, DHAR A, et al. Multimode Mamyshev oscillator[J]. Optics Letters, 2022, 47(1): 46-49.
[140] XIE S, JIN L, ZHANG H, et al. All-fiber high-power spatiotemporal mode-locked laser basedon multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917.
[141]WRIGHT L G, ZIEGLER Z M, LUSHNIKOV P M, et al. Multimode nonlinear fiber optics:massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topicsin Quantum Electronics, 2017, 24(3): 1-16.
[142] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[143] DING Y, XIAO X, LIU K, et al. Spatiotemporal Mode-Locking in Lasers with Large ModalDispersion[J]. Physical Review Letters, 2021, 126(9): 1-6.
[144] GAO C, CAO B, DING Y, et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 2023, 10(3): 356-363.
[145]ZHANG H, LU J, PENG J, et al. Investigation of High-Power Spatiotemporal Mode‐Lockingwith High Beam Quality[J]. Laser & Photonics Reviews, 2023, 17(9): 2300017.
[146]RUAN Q, XIAO X, ZOU J, et al. Visible-Wavelength Spatiotemporal Mode-Locked FiberLaser Delivering 9 ps, 4 nJ Pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16(7):2100678.
[147]ZENG Q, TANG Z, OUYANG D, et al. Wavelength-tunable spatiotemporal mode-locking in alarge-mode-area Er:ZBLAN fiber laser at 2.8 µm[J], Optics Letters, 2024, 49(5): 1117-1120.
[148] GLOGE D, MARCATILI E A J. Multimode theory of graded core fibers[J]. Bell LabsTechnical Journal, 1973, 52(9):1563-1578.
[149] FRANCESCO, POLETTI, PETER, et al. Description of ultrashort pulse propagation inmultimode optical fibers[J]. Journal of the Optical Society of America B, 2008, 25(10):1645-1654.
[150]REGELSKIS K, ŽELUDEVIČIUS J, VISKONTAS K, et al. Ytterbium-doped fiber ultrashortpulse generator based on self-phase modulation and alternating spectral filtering[J]. OpticsLetters, 2015, 40(22): 5255-5258.
[151] HORAK P, POLETTI F. Multimode nonlinear fibre optics: theory and applications[M]. 2012.
[152] GUSAROV A V, GRIGORIEV S N, VOLOSOVA M A, et al. On productivity of laser additivemanufacturing[J]. Journal of Materials Processing Technology, 2018, 261: 213-232.
[153] KARNAKIS D, FIERET J, RUMSBY P T, et al. Microhole drilling using reshaped pulsedGaussian laser beams[C]//Laser Beam Shaping II. SPIE, 2001, 4443: 150-158.
[154]Laser beam shaping: theory and techniques[M]. CRC press, 2018.
[155]BOLLANTI S, DI LAZZARO P, MURRA D, et al. Edge steepness and plateau uniformity of anearly flat-top-shaped laser beam[J]. Applied Physics B, 2004, 78(2): 195-198.
[156] FRIEDEN B R. Lossless conversion of a plane laser wave to a plane wave of uniformirradiance[J]. Applied Optics, 1965, 4(11): 1400-1403.
[157] GAO Y, AN Z, WANG J, et al. Automatic optimization design of Gaussian beam shapingsystem by using ZEMAX software[J]. Optik, 2011, 122(24): 2176-2180.
[158] FENG Z, HUANG L, GONG M, et al. Beam shaping system design using double freeformoptical surfaces[J]. Optics Express, 2013, 21(12): 14728-14735.
[159] MAHLAB U, SHAMIR J, CAULFIELD H J. Genetic algorithm for optical patternrecognition[J]. Optics Letters, 1991, 16(9): 648-650.
[160]ZHAN Y, HAOTONG M, SHAOJUN D. Adaptive near-field beam shaping based on simulatedannealing algorithm[J]. Acta Optica Sinica, 2011, 31(3):163-167
[161] MEZARD M, PARISI G, VIRASORO M A. Spin glass theory and beyond:an introduction tothe replica method and its applications[M]. World Scientific, 1986.
[162]陈怀新, 隋展, 陈祯培, 等. 采用液晶空间光调制器进行激光光束的空间整形[J]. ActaOptica Sinica, 2001, 21(9): 1107-1111.
[163]LI S, WANG Y, LU Z, et al. Spatial beam shaping for high-power frequency tripling lasersbased on a liquid crystal spatial light modulator[J]. Optics Communications, 2016, 367:181-185.
[164]ZHOU Q L, LU X Q, QIU J R, et al. Beam-shaping microstructure optical fiber[J]. ChineseOptics Letters, 2005, 3(12): 686-688.
[165]WANG C C, ZHANG F, LU Y C, et al. Photonic crystal fiber with a flattened fundamentalmode for the fiber lasers [J]. Optics Communications, 2009, 282(11): 2232-2235.
[166] KONG F T, GU G C, HAWKINS T W, et al. Flat-top mode from a 50 µm-core Yb-dopedleakage channel fiber[J]. Optics Express, 2013, 21(26): 32371-32376.
[167]CHEN H, ZOU S Z, YU H J, et al. Experimental study of the transmission in multimode fiberwith a single mode laser[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040602.
[168] GU X J, MOHAMMED W, QIAN L, et al. All-fiber laser beam shaping using a long-periodgrating[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1130-1132.
[169]TIAN Z B, NIX M, YAM S S H. Laser beam shaping using a single-mode fiber abrupt taper[J]. Optics Letters, 2009, 34(3): 229-231.
[170] MAYEH M, FARAHI F. Tailoring Gaussian laser beam shape through controlled etching ofsingle-mode and multimode fibers: simulation and experimental studies[J]. IEEE SensorsJournal, 2012, 12(1): 168-173.
[171] KONISHI K, KANIE T, TAKAHASHI K, et al. Development of rectangular core optical fibercable for high power laser[J]. SEI Technical Review, 2010 (71): 109-112.
[172] XU C L, YAN K, GU C, et al. All-fiber laser with flattop beam output using a few-mode fiberBragg grating[J]. Optics Letters, 2018, 43(6): 1247-1250.
[173]ZHANG Z C, WANG S, HU X W, et al. All-fiber passively Q-switched laser with flat-topbeam emissions[J]. Optics Letters, 2022, 47(3): 521-524.
[174] MA X, DAI C, LV J, et al. Mode-locked laser with flat-top beam output based on allpolarization-maintaining fiber structure[J]. Optics & Laser Technology, 2022, 156: 108496.
[175]TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystalsyntheses[J]. Chemistry of Materials, 2016, 28(8): 2491-2506.
[176]REISS P, PROTIERE M, LI L. Core/shell semiconductor nanocrystals[J]. small, 2009, 5(2):154-168.
[177] HAUBOLD S, HAASE M, KORNOWSKI A, et al. Strongly luminescent InP/ZnS core-shellnanoparticles[J]. Chem.PhysChem, 2001, 2(5): 331-334.
[178] HAHM D, CHANG J H, JEONG B G, et al. Design principle for bright, robust, and color-pureInP/ZnSexS1-x/ZnS heterostructures[J]. Chemistry of Materials, 2019, 31(9): 3476-3484.
[179] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific Reports, 2016, 6(1): 30094.
[180]ZHANG W, ZHUANG W, LIU R, et al. Double-shelled InP/ZnMnS/ZnS quantum dots forlight-emitting devices[J]. ACS Omega, 2019, 4(21): 18961-18968.
[181]BUFFARD A, DREYFUSS S, NADAL B, et al. Mechanistic insight and optimization of InPnanocrystals synthesized with aminophosphines[J]. Chemistry of Materials, 2016, 28(16):5925-5934.
[182]TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystalsyntheses[J]. Chemistry of Materials, 2016, 28(8): 2491-2506.
[183] GARCIA-RODRIGUEZ R, HENDRICKS M P, COSSAIRT B M, et al. Conversion reactionsof cadmium chalcogenide nanocrystal precursors[J]. Chemistry of Materials, 2013, 25(8):1233-1249.
[184] HAHM D, CHANG J H, JEONG B G, et al. Design principle for bright, robust, and color-pureInP/ZnSexS1-x/ZnS heterostructures[J]. Chemistry of Materials, 2019, 31(9): 3476-3484.
[185] FU H, ZUNGER A. InP quantum dots: Electronic structure, surface effects, and the redshiftedemission[J]. Physical Review B, 1997, 56(3): 1496.
[186] KIM M, SHIN W H, BANG J. Highly luminescent and stable green-emitting In (Zn, Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots[J]. Journal of Luminescence, 2019, 205: 555-559.
[187] NELLI D, FERRANDO R. Core-shell vs. multi-shell formation in nanoalloy evolution fromdisordered configurations[J]. Nanoscale, 2019, 11(27): 13040-13050.
[188]LAI C-F, TIEN Y-C, TONG H-C, et al. High-performance quantum dot light-emitting diodesusing chip-scale package structures with high reliability and wide color gamut for backlightdisplays[J]. RSC Advances, 2018, 8(63): 35966-35972.
[189]LEE K-H, HAN C-Y, KANG H-D, et al. Highly efficient, color-reproducible full-colorelectroluminescent devices based on red/green/blue quantum dot-mixed multilayer[J]. ACSNano, 2015, 9(11): 10941-10949.
[190] SONG J H, CHOI H, PHAM H T, et al. Energy level tuned indium arsenide colloidal quantumdot films for efficient photovoltaics[J]. Nature Communications, 2018, 9(1): 4267.
[191] MARTYNENKO I V, LITVIN A P, PURCELL-MILTON F, et al. Application ofsemiconductor quantum dots in bioimaging and biosensing[J]. Journal of Materials ChemistryB, 2017, 5(33): 6701-6727.
[192] KAUR H, BHATTI H S.SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journal ofMaterials Science: Materials in Electronics, 2019, 30(3): 2246-2264.
[193] MUSSELMAN K P, IBRAHIM K H.YAVUZ M. Research update: Beyond graphene-synthesisof functionalized quantum dots of 2D materials and their applications[J]. APL Materials, 2018, 6(12): 120701.
[194]CHOU S Y, KEIMEL C.GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837.
[195] FERMANN M E.HARTL I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874.
[196] XU C.WISE F W. Recent advances in fibre lasers for nonlinear microscopy[J]. NaturePhotonics, 2013, 7(11): 875-882.
[197] MENG Y, ZHANG S, LI H, et al. Bright-dark soliton pairs in a self-mode locking fiber laser[J]. Optical Engineering, 2012, 51(6): 064302-064302
[198]WANG Z, LI C, YE J, et al. Generation of harmonic mode-locking of bound solitons in theultrafast fiber laser with Sb2Te3 saturable absorber on microfiber[J]. Laser Physics Letters, 2019, 16(2): 025103.
[199] AHMED S, QIAO J, CHENG P K, et al. Tin Telluride Quantum Dots as a Novel SaturableAbsorber for Q-Switching and Mode Locking in Fiber Lasers[J]. Advanced Optical Materials, 2021, 9(6): 2001821.
[200]CAO Y, WANG C, ZHU B.GU Y. A facile method to synthesis high-quality CdSe quantumdots for large and tunable nonlinear absorption[J]. Optical Materials, 2017, 66: 59-64.
[201] MASHFORD B S, NGUYEN T-L, WILSON G J.MULVANEY P. All-inorganic quantum-dotlight-emitting devices formed via low-cost, wet-chemical processing[J]. Journal of MaterialsChemistry, 2010, 20(1): 167-172.
[202] SVALLIGATLA S, HALDAR K K, PATRA A.DESAI N R. Nonlinear optical switching andoptical limiting in colloidal CdSe quantum dots investigated by nanosecond z-scanmeasurement[J]. Optics & Laser Technology, 2016, 84: 87-93.
[203]REISS P, PROTIèRE M.LI L. Core/shell semiconductor nanocrystals[J]. Small, 2009, 5(2):154-168.
[204]RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[205] MAHYUDDIN M B H, LATIFF A A, RUSDI M F M, et al. Quantum dot cadmium selenide asa saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiberlasers[J]. Optics Communications, 2017, 397: 147-152.
[206]LEE Y-W, CHEN C-M, HUANG C-W, et al. Passively q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10), 10675-10681.
[207]BUFFARD A, DREYFUSS S, NADAL B, et al. Mechanistic insight and optimization of inpnanocrystals synthesized with aminophosphines[J]. Chemistry of Materials, 2016, 28(16):5925-5934.
[208] XU Z, LI Y, LI J, et al. Formation of size-tunable and nearly monodisperse inp nanocrystals:Chemical reactions and controlled synthesis[J]. Chemistry of Materials, 2019, 31(14):5331-5341.
[209]LIU P, LOU Y, DING S, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dotssynthesized with aminophosphine for effective display applications[J]. Advanced FunctionalMaterials, 2021, 31(11): 2008453.
[210] GANEEV R A, ZVYAGIN A I, SHUKLOV I A, et al. Nonlinear optical characterization ofInP@ZnS core-shell colloidal quantum dots using 532 nm, 10 ns pulses[J]. Nanomaterials, 2021, 11(6): 1366.
[211] WAWRZYNCZYK D, SZEREMETA J, SAMOC M.NYK M. Optical nonlinearities ofcolloidal InP@ZnS core-shell quantum dots probed by z-scan and two-photon excitedemission[J]. APL Materials, 2015, 3(11): 116108.
[212]ZHANG X, LOU Y, HU L, et al. Surface fluorination treated indium-based quantum dots as anonlinear saturable absorber for a passive Q-switched 1.0 μm laser[J]. Materials Advances, 2022, 3(18): 7037-7042.
[213] KIM T-G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-basedquantum dots through surface fluorination: Mechanism and applications[J]. ACS Nano, 2018, 12(11): 11529-11540.
[214] PU Y-C, FAN H-C, CHANG J-C, et al. Effects of interfacial oxidative layer removal on chargecarrier recombination dynamics in InP/ZnSexS1-x core/shell quantum dots[J]. The Journal ofPhysical Chemistry Letters, 2021, 12(30): 7194-7200.
[215]WANG H, ZHANG C.RANA F. Surface recombination limited lifetimes of photoexcitedcarriers in few-layer transition metal dichalcogenide MoS2[J]. Nano Letters, 2015, 15(12):8204-8210.
[216]LIU M, ZHENG X-W, QI Y-L, et al. Microfiber-based few-layer MoS2 saturable absorber for25 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19), 22841-22846.
[217]LIU Y, LIU H, WANG J.LIU D. Defect-type-dependent carrier lifetimes in monolayer WS2films[J]. The Journal of Physical Chemistry C, 2022, 126(10): 4929-4938.
[218]LIU W, PANG L, HAN H, et al. Tungsten disulphide for ultrashort pulse generation in all-fiberlasers[J]. Nanoscale, 2017, 9(18): 5806-5811.
[219]LIU J, YANG F, LU J, et al. High output mode-locked laser empowered by defect regulation in2D Bi2O2Se saturable absorber[J]. Nature Communications, 2022, 2022, 13(1): 3855.
[220] PARK J P, LEE J-J.KIM S-W. Highly luminescent lnp/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific Reports, 2016, 6(1): 30094.
[221]ZHANG H, MA X, LIN Q, et al. High-brightness blue inp quantum dot-basedelectroluminescent devices: The role of shell thickness[J]. The Journal of Physical ChemistryLetters, 2020, 11(3): 960-967.
[222] KIM Y, CHANG J H, CHOI H, et al. III-V colloidal nanocrystals: Control of covalentsurfaces[J]. Chemical Science, 2020, 11(4): 913-922.
[223]ZHANG X, HUDSON M H.CASTELLANO F N. Passivation of electron trap states in InPquantum dots with benzoic acid ligands[J]. The Journal of Physical Chemistry C, 2021, 125(33): 18362-18371.
[224] YANG W, YANG Y, KALEDIN A L, et al. Surface passivation extends single and biexcitonlifetimes of lnp quantum dots[J]. Chemical Science, 2020, 11(22): 5779-5789.
[225] HUGHES K E, STEIN J L, FRIEDFELD M R, et al. Effects of surface chemistry on thephotophysics of colloidal InP nanocrystals[J]. ACS Nano, 2019, 13(12): 14198-14207.
[226]CUI Z, MEI S, WEN Z, et al. Synergistic effect of halogen ions and shelling temperature onanion exchange induced interfacial restructuring for highly efficient blue emissive InP/ZnSquantum dots[J]. Small, 2022, 18(15): 2108120.
[227] GRIMALDI G, GEUCHIES J J, VAN DER STAM W, et al. Spectroscopic evidence for thecontribution of holes to the bleach of Cd-chalcogenide quantum dots[J]. Nano Letters, 2019, 19(5): 3002-3010.
[228] DE C K, MANDAL S, ROY D, et al. Ultrafast dynamics and ultrasensitive single-particleintermittency in small-sized toxic metal free InP-based core/alloy-shell/shell quantum dots:Excitation wavelength dependency toward variation of PLQY[J]. The Journal of PhysicalChemistry C, 2019, 123(46): 28502-28510.
[229]BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[230] DAI L, HUANG Z, HUANG Q, et al. Carbon nanotube mode-locked fiber lasers: Recentprogress and perspectives[J]. Nanophotonics, 2020, 10(2): 749-775.
[231] HE J, LU H, TAO L, et al. Nonlinear optical properties of PtTe2 based saturable absorbers forultrafast photonics[J]. Journal of Materials Chemistry C, 2022, 10(13): 5124-5133.
[232]JIN X, HU G, ZHANG M, et al. 102 fs pulse generation from a long-term stable, inkjet-printedblack phosphorus-mode-locked fiber laser[J]. Optics Express, 2018, 26(10): 12506-12513.
[233]BAO Y, DAI L, JIANG J, et al. Humidity resistant carbon nanotubes-styrenemethyl-methacrylate polymer composite for ultrafast laser[J]. Advanced Optical Materials, 2022, 10(18): 2200461.
[234]WANG Z, XU Y, DHANABALAN S C, et al. Black phosphorus quantum dots as an efficientsaturable absorber for bound soliton operation in an erbium doped fiber laser[J]. IEEEPhotonics Journal, 2016, 8(5): 1-10.
[235] SHI Y, LONG H, LIU S, et al. Ultrasmall 2D NbSe2 based quantum dots used for lowthreshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6(46): 12638-12642.
[236] MING N, TAO S, YANG W, et al. Mode-locked er-doped fiber laser based on PbS/CdScore/shell quantum dots as saturable absorber[J]. Optics Express, 2018, 26(7): 9017-9026.
[237]LONG J G, GAO Y X, LIN W, et al. Switchable and spacing tunable dual-wavelengthspatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591.
[238]CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837.
[239] XU C, WISE F W. Recent advances in fibre lasers for nonlinear microscopy[J]. NaturePhotonics, 2013, 7(11): 875-882.
[240] GUO Q, YAO Y, LUO Z C, et al. Universal near-infrared and mid-infrared optical modulationfor ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.
[241]WANG S, YU H, ZHANG H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544.
[242] HU Z, HU X, HE P, et al. NbS2-nanosheet-based saturable absorber for 1.5 µm and 2 µmultrafast fiber lasers[J]. Photonics and Nanostructures-Fundamentals and Applications, 2023, 54: 101117.
[243] HUANG J, XIE Z, CHEN J, et al. Bismuth oxysulfide nanosheets as a novel saturable absorberfor Er-doped and Tm-doped ultrafast fiber lasers[J]. Journal of Luminescence, 2023, 263:120004.
[244] GUO Z, ZHANG H, LU S, et al. From black phosphorus to phosphorene: Basic solventexfoliation, evolution of raman scattering, and applications to ultrafast photonics[J]. AdvancedFunctional Materials, 2015, 25(45): 6996-7002.
[245] SCARDACI V, SUN Z, WANG F, et al. Carbon nanotube polycarbonate composites forultrafast lasers[J]. Advanced Materials, 2008, 20(21): 4040-4043.
[246]RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[247]LEE Y W, CHEN C M, HUANG C W, et al. Passively Q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10):10675-10681.
[248]LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6), 7155-7162 .
[249]WRIGHT L G, CHRISTODOULIDES D N.WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[250] GAO C, CAO B, DING Y, et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 2023, 10(3), 356-363 .
[251] DING Y, XIAO X, WANG P.YANG C. Multiple-soliton in spatiotemporal mode-lockedmultimode fiber lasers[J]. Optics Express, 2019, 27(8), 11435-11446.
[252]WRIGHT L G, ZIEGLERY Z M, ZHU P, et al. Advanced examples of use of the GMMNLSEsolver[J]. Available: https://github.com/wiselabaep/gmmnlse-solver-final.
[253]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[254]ZHANG H, ZHANG Y, PENG J, et al. All-fiber spatiotemporal mode-locking lasers with largemodal dispersion[J]. Photonics Research, 2022, 10(2): 483-490.
[255]ZHAO T X, LIU G X, DAI L, et al. Narrow bandwidth spatiotemporal mode-locked Yb-dopedfiber laser[J]. Optics Letters, 2022, 47(15): 3848-3851.
[256] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831-838.
[257]RAMASAMY P, KIM N, KANG Y-S, et al. Tunable, bright, and narrow-band luminescencefrom colloidal indium phosphide quantum dots[J]. Chemistry of Materials, 2017, 29(16):6893-6899.
[258] AHMED S, QIAO J, CHENG P K, et al. Tin telluride quantum dots as a novel saturableabsorber for Q-switching and mode locking in fiber lasers[J]. Advanced Optical Materials,2021, 9(6): 2001821.
[259] QIAO J, AHMED S, CHENG P K, et al. Tin telluride quantum dots as a new saturableabsorber for a mode-locked Yb+ doped fiber laser[J]. Optics & Laser Technology, 2021, 142:107258.
[260] HE T, LIU H, LI J, et al. Comparison studies of excitonic properties and multiphotonabsorption of near-infrared-I-emitting Cu-doped InP and InP/ZnSe nanocrystals[J]. OpticsLetters, 2020, 45(6): 1350-1353.
[261] XIE S, JIN L, ZHANG H, et al. All-fiber high-power spatiotemporal mode-locked laser basedon multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917.
[262] QIAO J, AHMED S, CHENG P K, et al. Tin telluride quantum dots as a new saturableabsorber for a mode-locked Yb+ doped fiber laser[J]. Optics & Laser Technology, 2021, 142:107258.
[263] GE Y, HUANG W, YANG F, et al. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS)composite films and their applications in ultrafast photonics[J]. Nanoscale, 2019, 11(14):6828-6837.
[264] FU S, ZHANG S, LI J, et al. Passively Q-switched Nd-doped fiber laser based on PbS/CdScore/shell quantum dots as a saturable absorber[J]. Applied Optics, 2019, 58(11): 3036-3041.
[265]WEI K, FAN S, CHEN Q, et al. Passively mode-locked Yb fiber laser with PbSe colloidalquantum dots as saturable absorber[J]. Optics Express, 2017, 25(21): 24901-24906.
[266] DONG L, HUANG W, CHU H, et al. Passively Q-switched near-infrared lasers withbismuthene quantum dots as the saturable absorber[J]. Optics & Laser Technology, 2020, 128:106219.
[267]LIU K, XIAO X.YANG C. Observation of transition between multimode Q-switching andspatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534.
[268] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 126(9): 093901.
[269]ZIEGLER Z. Numerical tools for optical pulse propagation in multimode fiber. Thesis (CornellUniversity 2017).
[270] HORAK P, POLETTI F, J R P I O F R. Multimode nonlinear fibre optics: Theory andapplications[J]. Recent progress in optical fiber research, 2012, 3.
[271]WRIGHT L G, ZIEGLER Z M, LUSHNIKOV P M, et al. Multimode nonlinear fiber optics:Massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topicsin Quantum Electronics, 2017, 24(3): 1-16.
[272] POLETTI F.HORAK P. Description of ultrashort pulse propagation in multimode opticalfibers[J]. Journal of the Optical Society of America B, 2008, 25(10): 1645-1654.
[273]WANG Y, SHI J. Developing very strong texture in a nickel-based superalloy by selective lasermelting with an ultra-high power and flat-top laser beam[J]. Materials Characterization, 2020, 165: 110372.
[274]JODI D E, KITASHIMA T, KOIZUMI Y, et al. Manufacturing single crystals of pure nickelvia selective laser melting with a flat-top laser beam[J]. Additive Manufacturing Letters, 2022, 3: 100066.
[275] PAL V, TRADONSKY C, CHRIKI R, et al. Generating flat-top beams with extended depth offocus[J]. Applied Optics, 2018, 57(16): 4583-4589.
[276] AMAROLI A, ARANY P, PASQUALE C, et al. Improving consistency of photobiomodulationtherapy: A novel flat-top beam hand-piece versus standard gaussian probes on mitochondrialactivity[J]. International Journal of Molecular Sciences, 2021, 22(15): 7788.
[277]ROMERO L A, DICKEY F M. Lossless laser beam shaping[J]. Journal of the Optical Societyof America A, 1996, 13(4): 751-760.
[278] HOFFNAGLE J A, JEFFERSON C M. Design and performance of a refractive optical systemthat converts a Gaussian to a flattop beam[J]. Applied Optics, 2000, 39(30): 5488-5499.
[279]LIU C, GUO Y. Flat-top line-shaped beam shaping and system design[J]. Sensors, 2022, 22(11): 4199.
[280] PANG H, YING C, FAB C, et al. Design diffractive optical elements for beam shaping withhybrid algorithm[J]. Acta Photonica Sin, 2010, 39: 977.
[281]WANG C, ZHANG F, LU Y, et al. Photonic crystal fiber with a flattened fundamental modefor the fiber lasers[J]. Optics Communications, 2009, 282(11): 2232-2235.
[282] KONG F, GU G, HAWKINS T W, et al. Flat-top mode from a 50 µm-core Yb-doped leakagechannel fiber[J]. Optics Express, 2013, 21(26): 32371-32376.
[283]TIAN Z, NIX M, YAM S S H. Laser beam shaping using a single-mode fiber abrupt taper[J]. Optics Letters, 2009, 34(3): 229-231.
[284]LIU K, YANG Y, CHEN X, et al. All-fiberized top-hat beam shaper by mode content controland multimode interference suppression[J]. IEEE Photonics Technology Letters, 2018, 31(3):238-241.
[285] YIN J, BAO J, TONG Y, et al. Research on rectangular flat-topped beam based ondouble-cladding fiber[C]. Proceedings of SPIE, 2021, 12073: 32-37.
[286] XU C, YAN K, GU C, et al. All-fiber laser with flattop beam output using a few-mode fiberBragg grating[J]. Optics Letters, 2018, 43(6): 1247-1250.
[287]ZHANG Z, WANG S, HU X, et al. All-fiber passively Q-switched laser with flat-top beamemissions[J]. Optics Letters, 2022, 47(3): 521-524.
[288] MA X, DAI C, LV J, et al. Mode-locked laser with flat-top beam output based on allpolarization-maintaining fiber structure[J]. Optics & Laser Technology, 2022, 156: 108496.
[289] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[290]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[291]ZHANG H, ZHANG Y, PENG J, et al. All-fiber spatiotemporal mode-locking lasers with largemodal dispersion[J]. Photonics Research, 2022, 10(2): 483-490.
[292]LOU Y, GE B, CAI Y, et al. Spatiotemporal mode-locking of an all-fiber laser based on InPquantum dot saturable absorber[J]. Optics Express, 2023, 31(25): 42400-42412.
[293]BOLLANTI S, DI LAZZARO P, MURRA D, et al. Edge steepness and plateau uniformity of anearly flat-top-shaped laser beam[J]. Applied Physics B, 2004, 78(2): 195-198.
[294]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[295] GE B, LOU Y, GUO S, et al. A High-Energy Wide-Spectrum Spatiotemporal Mode-LockedFiber Laser[J]. Available at SSRN 4502658.
[296] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446.
[297] FU G, QI T, YU W, et al. Beam self-cleaning of 1.5 μm high peak-power spatiotemporalmode-locked lasers enabled by nonlinear compression and disorder[J]. Laser & PhotonicsReviews, 2023, 17(7): 2200987.
[298]ZHU X, SCHÜLZGEN A, LI H, et al. Detailed investigation of self-imaging in largecoremultimode optical fibers for application in fiber lasers and amplifiers[J]. Optics Express, 2008, 16(21): 16632-16645.
[299]ZHU X, SCHÜLZGEN A, LI H, et al. Coherent beam transformations using multimodewaveguides[J]. Optics Express, 2010, 18(7): 7506-7520.
[300]CHEN H, ZOU S Z, YU H J, et al. Experimental study of the transmission in multimode fiberwith a single mode laser[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040602.
[301]ZHANG X, XING Y, CHU Y, et al. Research progress on beam homogenization and shapingtechnology using all-fiber structure[J]. Laser & Optoelectronics Progress, 2022, 59(15):1516021.
[302]ZHANG C, ZHANG C, LI Y, et al. Wavelength-tunable broadband lasers based onnanomaterials[J]. Nanotechnology, 2023, 24(49): 192001.
修改评论