中文版 | English
题名

基于InP量子点可饱和吸收体的超快光纤激光器时空锁模研究

其他题名
SPATIOTEMPORAL MODELOCKING STUDY OF ULTRAFAST FIBER LASER BASED ON INP QUANTUM DOT SATURABLE ABSORBER
姓名
姓名拼音
LOU Yajun
学号
12031116
学位类型
博士
学位专业
070207 光学
学科门类/专业学位类别
07 理学
导师
张新海
导师单位
电子与电气工程系
论文答辩日期
2024-05-08
论文提交日期
2024-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
可饱和吸收体(SA)是被动锁模技术的关键光学元件,目前研究的材料
SA 都有各自的局限性,并没有在商业上可用的材料,所以寻找性能更好
SA 一直是锁模光纤激光器领域的一个重要研究方向。到目前为止,关于
SA 锁模光纤激光器的研究大都是在以单模光纤为基础的光腔中完成的。单
模光纤较小的纤芯,限制了脉冲能量的进一步提高,多模光纤激光器有望解
决这个问题。基于材料 SA 的时空锁模(STML)光纤激光器相比于其他实
STML 的方法来说操作简单,需要的光学器件少,成本低,但是目前相关
的研究报道还很少。目前,平顶光束都需要通过额外的光束整形来获得,导
致系统复杂、成本高、抗干扰能力差。此外,目前在全光纤激光器中实现的
脉冲平顶光束,由于不同模式光束非相干叠加的困难,脉冲宽度只能达到纳
秒级别。
针对以上的研究现状和存在的问题,本论文以 InP 量子点(QDs)材料
为基础,研究了其可饱和吸收特性及调控方式,并将其作为 SA 搭建了单模
光纤激光器和多模光纤激光器,实现了单模锁模超短脉冲的输出和多模
STML 超短脉冲的输出。此外,我们通过偏振控制器实现了对 STML 脉冲模
式组成的选择,发现不同的模式组成对 STML 脉冲的输出特性有显著影响,
特别是光束能量分布。基于此我们通过更深入的研究在合适的模式组成下实
现了脉冲平顶光束的输出,并通过数值模拟对不同状态的 STML 脉冲动力学
进行了研究。具体的研究内容及成果分为以下几个方面:
1)合成了具有不同带隙的高质量红绿蓝三色 InP QDs,量子效率均达到
90%以上。利用 HF 处理和壳层厚度控制实现了对 InP QDs 的缺陷浓度调节。
为后续 InP QDs 作为 SA 在光纤激光器中的应用奠定了基础。
2)搭建了单模光纤激光器,采用 InP QDs 作为 SA 实现了飞秒超短脉冲的
输出。通过调控 InP QDs 的缺陷和带隙,有效调节载流子恢复时间,进而实
现了对激光脉冲宽度等激光输出参数的调节。这一成果不仅充分验证了 InP
QDs 优异的可饱和吸收特性,还展示了其在非线性光学特性调节方面的巨大
潜力和便利性。
3)搭建了基于 InP QDs SA 的全光纤时空锁模激光器,实现了两种不同单
脉冲状态的 STML 脉冲输出。通过数值模拟对 STML 动力学进行了研究,
发现不同锁模状态的产生是因为偏振调节导致的锁定模式组成的不同,不同模式组成的 STML 脉冲具有不同的输出特性。
4)利用偏振控制器对模式的选择作用和拉锥型 SA 对高阶模式的增加作
用,首次在不需要额外光束整形的情况下实现 STML 脉冲平顶光束的输出。
避免了现有方式中不同模式光束非相干叠加的困难。数值模拟结果表明,高
能量占比的模式增加有利于光束能量分布的均匀化
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] SHI W, FANG Q, ZHU X, et al. Fiber lasers and their applications[J]. Applied optics, 2014, 53(28): 6554-6568.
[2] WANG J, WANG X, LEI J, et al. Recent advances in mode-locked fiber lasers based ontwo-dimensional materials[J]. Nanophotonics, 2020, 9(8): 2315-2340.
[3] LOU Y, GE B, CAI Y, et al. Spatiotemporal mode-locking of an all-fiber laser based on InPquantum dot saturable absorber[J]. Optics Express, 2023, 31(25): 42400-42412.
[4] MATSAS V J, NEWSON T P. Selfstarting passively mode-locked fibre ring soliton laserexploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.
[5] SONG Y, SHI X, WU C, et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 2019, 6(2): 021313.
[6] LING Y, HUANG Q, ZOU C, et al. L-band GHz femtosecond passively harmonicmode-locked Er-doped fiber laser based on nonlinear polarization rotation[J]. IEEE PhotonicsJournal, 2019, 11(4): 1-7.
[7] DENG D, ZHAN L, GU Z, et al. 55-fs pulse generation without wave-breaking from anall-fiber Erbium-doped ring laser[J]. Optics Express, 2009, 17(6): 4284-4288.
[8] HUO J, XU T, GUO Y, et al. Influence of pumping schemes on the characteristics ofself-similar pulses in a passively mode-locked fiber laser[J]. Optical Engineering, 2016, 55(5):056109-056109.
[9] KOTB H, ABDELALIM M A, ANIS H. Effect of narrow spectral filter position on thecharacteristics of active similariton mode-locked femtosecond fiber laser[J]. Optics Express, 2015, 23(23): 29660-29674.
[10] WANG Z, ZHAN L, FANG X, et al. Generation of sub-60 fs similaritons at 1.6 μm from anall-fiber Er-doped laser[J]. Journal of Lightwave Technology, 2016, 34(17): 4128-4134.
[11] WANG Z, QIAN K, FANG X, et al. Sub-90 fs dissipative-soliton Erbium-doped fiber lasersoperating at 1.6 μm band[J]. Optics Express, 2016, 24(10): 10841-10846.
[12] BOWEN P, SINGH H, RUNGE A, et al. Mode-locked femtosecond all-normal all-PMYb-doped fiber laser at 1060 nm[J]. Optics Communications, 2016, 364: 181-184.
[13] HÄNSEL W, HOOGLAND H, GIUNTA M, et al. All polarization-maintaining fiber laserarchitecture for robust femtosecond pulse generation[J]. Exploring the World with the Laser:Dedicated to Theodor Hänsch on his 75th birthday, 2018: 331-340.
[14] NISHIZAWA N, SUGA H, YAMANAKA M. Investigation of dispersion-managed, polarization-maintaining Er-doped figure-nine ultrashort-pulse fiber laser[J]. Optics Express, 2019, 27(14): 19218-19232.
[15] AGUERGARAY C, HAWKER R, RUNGE A F J, et al. 120 fs, 4.2 nJ pulses from anall-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 2013, 103(12).
[16] HE X, LIN Q, GUO H, et al. Robust 1.7-μm, all-polarization-maintaining femtosecond fiberlaser source based on standard telecom fibers[J]. Applied Physics Express, 2019, 12(7):072007.
[17] KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at1.7 μm[J]. Optics Letters, 2018, 43(5): 1127-1130.
[18] REGELSKIS K, ELUDEVIIUS, JULIJANAS, et al. Ytterbium-doped fiber ultrashort pulsegenerator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 2015, 40(22): 5255-5258.
[19] LIU Z, ZIEGLER Z M, WRIGHT L G, et al. Megawatt peak power from a Mamyshevoscillator[J]. Optica, 2017, 4(6): 649-654.
[20] LIU W, LIAO R, ZHAO J, et al. Femtosecond Mamyshev oscillator with 10-MW-level peakpower[J]. Optica, 2019, 6(2): 194-197.
[21] HAIG H, SIDORENKO P, THORNE R, et al. Megawatt pulses from an all-fiber andself-starting femtosecond oscillator[J]. Optics Letters, 2022, 47(4): 762-765.
[22] BOULANGER V, OLIVIER M, TRÉPANIER F, et al. Multi-megawatt pulses at 50 MHz froma single-pump Mamyshev oscillator gain-managed amplifier laser[J]. Optics Letters, 2023, 48(10): 2700-2703.
[23] NAZEMOSADAT E, MAFI A. Saturable Absorption in a Short Graded-Index MultimodeOptical Fiber Using Nonlinear Multimodal Interference[J]. Journal of the Optical Society ofAmerica B, 2013, 30(5):1357-1367.
[24] WANG Z, WANG D N, YANG F, et al. Er-doped mode-locked fiber laser with a hybridstructure of a step-index-graded-index multimode fiber as the saturable absorber[J]. Journal ofLightwave Technology, 2017, 35(24): 5280-5285.
[25] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[26] ZHAO C, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator basedsaturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.
[27] ZHANG H, LU S B, ZHENG J, et al. Molybdenum disulfide (MoS2) as a broadband saturableabsorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.
[28] CHEN Y, JIANG G, CHEN S, et al. Mechanically exfoliated black phosphorus as a newsaturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.
[29] JHON Y I, KOO J, ANASORI B, et al. Metallic MXene saturable absorber for femtosecondmode-locked lasers[J]. Advanced Materials, 2017, 29(40): 1702496.
[30] LI M, HAO Y, WAGEH S, et al. Preparation and pulsed fiber laser applications of emergingnanostructured materials[J]. Journal of Materials Chemistry C, 2023(11): 7538-7569.
[31] LEE Y W, CHEN C M, HUANG C W, et al. Passively Q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10):10675-10681.
[32] LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6): 7155-7162.
[33] DENG H, YU Q, ZHANG Y, et al. Recent advances in optical solitons via low-dimensionalmaterials in mode-locking fiber lasers[J]. Optics Communications, 2023: 129848.
[34] SET S Y, YAGUCHI H, TANAKA Y, et al. Mode-locked fiber lasers based on a saturableabsorber incorporating carbon nanotubes[C]//OFC 2003 Optical Fiber CommunicationsConference, 2003. IEEE, 2003: PD44-P1.
[35] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[36] ROZHIN A G, SAKAKIBARA Y, NAMIKI S, et al. Sub-200-fs pulsed erbium-doped fiberlaser using a carbon nanotube-polyvinylalcohol mode locker[J]. Applied Physics Letters, 2006, 88(5): 051118.
[37] NICHOLSON J W, WINDELER R S, DIGIOVANNI D J. Optically driven deposition ofsingle-walled carbon-nanotube saturable absorbers on optical fiber end-faces[J]. OpticsExpress, 2007, 15(15): 9176-9183.
[38] YU Z, WANG Y, ZHANG X, et al. A 66 fs highly stable single wall carbon nanotube modelocked fiber laser[J]. Laser Physics, 2013, 24(1): 015105.
[39] SONG Y W, SET S Y, YAMASHITA S, et al. 1300-nm pulsed fiber lasers mode-locked bypurified carbon nanotubes[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1623-1625.
[40] SCARDACI V, ROZHIN A G, TAN P H, et al. Carbon nanotubes for ultrafast photonics[J]. physica status solidi (b), 2007, 244(11): 4303-4307.
[41] DAI R, MENG Y, LI Y, et al. Nanotube mode-locked, wavelength and pulse width tunablethulium fiber laser[J]. Optics Express, 2019, 27(3): 3518-3527.
[42] PAWLISZEWSKA M, TOMASZEWSKA D, SOBOŃ G, et al. Broadband metallic carbonnanotube saturable absorber for ultrashort pulse generation in the 1500-2100 nm spectralrange[J]. Applied Sciences, 2021, 11(7): 3121.
[43] MARTINEZ A, SUN Z. Nanotube and graphene saturable absorbers for fibre lasers[J]. NaturePhotonics, 2013, 7(11): 842-845.
[44] PURDIE D G, POPA D, WITTWER V J, et al. Few-cycle pulses from a graphene mode-lockedall-fiber laser[J]. Applied Physics Letters, 2015, 106(25): 253101.
[45] SOTOR J, SOBON G. 24 fs and 3 nJ pulse generation from a simple, all polarizationmaintaining Er-doped fiber laser[J]. Laser Physics Letters, 2016, 13(12): 125102.
[46] LIU W, PANG L, HAN H, et al. Tungsten disulfide saturable absorbers for 67 fs mode-lockederbium-doped fiber lasers[J]. Optics Express, 2017, 25(3): 2950-2959.
[47] SAMIKANNU S, SIVARAJ S. Dissipative soliton generation in an all-normal dispersionytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber[J]. Optical Engineering, 2016, 55(8): 081311-081311.
[48] WANG Q, KANG J, WANG P, et al. Broadband saturable absorption in germanene formode-locked Yb, Er, and Tm fiber lasers[J]. Nanophotonics, 2022, 11(13): 3127-3137.
[49] DOU Z, SONG Y, TIAN J, et al. Mode-locked ytterbium-doped fiber laser based ontopological insulator: Bi2Se3[J]. Optics Express, 2014, 22(20): 24055-24061.
[50] YIN K, JIANG T, ZHENG X, et al. Mid-infrared ultra-short mode-locked fiber laser utilizingtopological insulator Bi2Te3 nano-sheets as the saturable absorber[J]. arXiv :1505.06322, 2015.
[51] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer blackphosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434.
[52] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterizationof few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.
[53] WANG K, SZYDŁOWSKA B M, WANG G, et al. Ultrafast nonlinear excitation dynamics ofblack phosphorus nanosheets from visible to mid-infrared[J]. ACS Nano, 2016, 10(7):6923-6932.
[54] SONG H, WANG Q, ZHANG Y, et al. Mode-locked ytterbium-doped all-fiber lasers based onfew-layer black phosphorus saturable absorbers[J]. Optics Communications, 2017, 394:157-160.
[55] QIN Z, HAI T, XIE G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 2018, 26(7): 8224-8231.
[56] PANG L, ZHAO M, ZHAO Q, et al. GaSb film is a saturable absorber for dissipative solitongeneration in a fiber laser[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55971-55978.
[57] TUO M, XU C, MU H, et al. Ultrathin 2D transition metal carbides for ultrafast pulsed fiberlasers[J]. Acs Photonics, 2018, 5(5): 1808-1816.
[58] MANIKANDAN A, CHEN Y Z, SHEN C C, et al. A critical review on two-dimensionalquantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics[J]. Progress in Quantum Electronics, 2019, 68: 100226.
[59] BARUAH J M, NARAYAN J. Development of greener methodology for the synthesis of CdSequantum dots and characterization of their thin films[J]. Journal of Optics, 2018, 47: 202-207.
[60] KAUR H, BHATTI H S, SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journalof Materials Science: Materials in Electronics, 2019, 30: 2246-2264.
[61] MUSSELMAN K P, IBRAHIM K H, YAVUZ M. Research Update: Beyondgraphene-Synthesis of functionalized quantum dots of 2D materials and their applications[J]. APL Materials, 2018, 6(12): 120701.
[62] LONG H, TAO L, CHIU C P, et al. The WS2 quantum dot: preparation, characterization and itsoptical limiting effect in polymethylmethacrylate[J]. Nanotechnology, 2016, 27(41): 414005.
[63] LONG H, TAO L, TANG C Y, et al. Tuning nonlinear optical absorption properties of WS2nanosheets[J]. Nanoscale, 2015, 7(42): 17771-17777.
[64] XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of blackphosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.
[65] WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95(2): 525-532.
[66] RAMASAMY P, KIM N, KANG Y S, et al. Tunable, bright, and narrow-band luminescencefrom colloidal indium phosphide quantum dots[J]. Chemistry of Materials, 2017, 29(16):6893-6899.
[67] KAUR H, BHATTI H S, SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journal ofMaterials Science: Materials in Electronics, 2019, 30: 2246-2264.
[68] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Peptide-coated semiconductornanocrystals for biomedical applications; proceedings of the Genetically Engineered andOptical Probes for Biomedical Applications III, F, 2005[C]. International Society for Opticsand Photonics.
[69] LI M, WANG C, WANG L, et al. Colloidal semiconductor nanocrystals: synthesis, opticalnonlinearity, and related device applications[J]. Journal of Materials Chemistry C, 2021, 9(21):6686-6721.
[70] WANG G, MEI S, LIAO J, et al. Advances of nonlinear photonics in low-dimensional halideperovskites[J], Small, 2021, 17(43): 2100809.
[71] GE Y, HUANG W, YANG F, et al. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS)composite films and their applications in ultrafast photonics[J]. Nanoscale, 2019, 11(14):6828-6837.
[72] DU J, ZHANG M, GUO Z, et al. Phosphorene quantum dot saturable absorbers for ultrafastfiber lasers[J]. Scientific Reports, 2017, 7(1): 42357.
[73] RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[74] WEI K, FAN S, CHEN Q, et al. Passively mode-locked Yb fiber laser with PbSe colloidalquantum dots as saturable absorber[J]. Optics Express, 2017, 25(21): 24901-24906.
[75] YUN L, ZHANG H, CUI H, et al. Lead sulfide quantum dots mode locked, wavelength-tunable soliton fiber laser[J]. IEEE Photonics Technology Letters, 2020, 33(3):119-122.
[76] MING N, TAO S, YANG W, et al. Mode-locked Er-doped fiber laser based on PbS/CdScore/shell quantum dots as saturable absorber[J]. Optics Express, 2018, 26(7): 9017-9026.
[77] GUO Q, YAO Y, LUO Z C, et al. Universal near-infrared and mid-infrared optical modulationfor ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.
[78] MU H, LIU Z, BAO X, et al. Highly stable and repeatable femtosecond soliton pulsegeneration from saturable absorbers based on two-dimensional Cu3-xP nanocrystals[J]. Frontiers of Optoelectronics, 2020, 13: 139-148.
[79] ZHANG X, LIU S, TAN D, et al. Photochemically derived plasmonic semiconductornanocrystals as an optical switch for ultrafast photonics[J]. Chemistry of Materials, 2020, 32(7): 3180-3187.
[80] LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6): 7155-7162.
[81] XU Y, WANG W, GE Y, et al. Stabilization of black phosphorous quantum dots in PMMAnanofiber film and broadband nonlinear optics and ultrafast photonics application[J]. Advanced Functional Materials, 2017, 27(32): 1702437.
[82] XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of blackphosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.
[83] LIU M, JIANG X F, YAN Y R, et al. Black phosphorus quantum dots for femtosecond laserphotonics[J]. Optics Communications, 2018, 406(1): 85-90.
[84] AHMED S, QIAO J, CHENG P K, et al. Tin Telluride Quantum Dots as a Novel SaturableAbsorber for Q-Switching and Mode Locking in Fiber Lasers[J]. Advanced Optical Materials, 2021, 9(6): 2001821.
[85] SHI Y, LONG H, LIU S, et al. Ultrasmall 2D NbSe2 based quantum dots used for lowthreshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6(46): 12638-12642.
[86] LONG H, SHI Y, WEN Q, et al. Ultrafast laser pulse (115 fs) generation by using directbandgap ultrasmall 2D GaTe quantum dots[J]. Journal of Materials Chemistry C, 2019, 7(20):5937-5944.
[87] XU N, LI H, GAN Y, et al. Zero-dimensional MXene-based optical devices for ultrafast andultranarrow photonics applications[J]. Advanced Science, 2020, 7(22): 2002209.
[88] NAHARUDDIN N Z A, ABU BAKAR M H, SADROLHOSSEINI A R, et al. Pulsed-laser-ablated gold-nanoparticles saturable absorber for mode-locked erbium-dopedfiber lasers[J]. Optics & Laser Technology, 2022, 150: 107875.
[89] AHMAD H, RUSLAN N E, ALI Z A, et al. Ag-nanoparticle as a Q switched device for tunableC-band fiber laser[J]. Optics Communications, 2016, 381: 85-90.
[90] AHMAD H, SAMION M Z, MUHAMAD A, et al. Tunable 2.0 µm Q-switched fiber laserusing a silver nanoparticle based saturable absorber[J]. Laser Physics, 2017, 27(6): 065110.
[91] PAN H, CHU H, LI Y, et al. Bismuthene quantum dots integrated D-shaped fiber as saturableabsorber for multi-type soliton fiber lasers[J]. Journal of Materiomics, 2023, 9(1): 183-190.
[92] MICIC O I, CURTIS C J, JONES K M, et al. Synthesis and characterization of InP quantumdots[J]. The Journal of Physical Chemistry, 1994, 98(19): 4966-4969.
[93] BATTAGLIA D, PENG X. Formation of high quality InP and InAs nanocrystals in anoncoordinating solvent[J]. Nano Letters, 2002, 2(9): 1027-1030.
[94] CROS-GAGNEUX A, DELPECH F, NAYRAL C, et al. Surface chemistry of InP quantumdots: a comprehensive study[J]. Journal of the American Chemical Society, 2010, 132(51):18147-18157.
[95] KIM K, YOO D, CHOI H, et al. Halide-amine co-passivated indium phosphide colloidalquantum dots in tetrahedral shape[J]. Angewandte Chemie, 2016, 128(11): 3778-3782.
[96] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dotlight-emitting diodes[J]. Nature, 2019, 575(7784): 634-638.
[97] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific reports, 2016, 6(1): 30094.
[98] Won Y H, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dotlight-emitting diodes[J]. Nature, 2019, 575(7784): 634-638.
[99] RICHTER A F, BINDER M, BOHN B J, et al. Fast electron and slow hole relaxation inInP-based colloidal quantum dots[J]. ACS Nano, 2019, 13(12): 14408-14415.
[100]TESSIER M D, BAQUERO E A, DUPONT D, et al. Interfacial oxidation andphotoluminescence of InP-based core/shell quantum dots[J]. Chemistry of Materials, 2018, 30(19): 6877-6883.
[101]ZHANG W, TAN Y, DUAN X, et al. High Quantum Yield Blue InP/ZnS/ZnS Quantum DotsBased on Bromine Passivation for Efficient Blue Light-Emitting Diodes[J]. Advanced OpticalMaterials, 2022, 10(15): 2200685.
[102] KIM T G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-basedquantum dots through surface fluorination: mechanism and applications[J]. ACS Nano, 2018, 12(11): 11529-11540.
[103] PU Y C, FAN H C, CHANG J C, et al. Effects of Interfacial Oxidative Layer Removal onCharge Carrier Recombination Dynamics in InP/ZnSexS1-x Core/Shell Quantum Dots[J]. TheJournal of Physical Chemistry Letters, 2021, 12(30): 7194-7200.
[104] GANEEV R A, ZVYAGIN A I, SHUKLOV I A, et al. Nonlinear Optical Characterization ofInP@ZnS Core-Shell Colloidal Quantum Dots Using 532 nm, 10 ns Pulses[J]. Nanomaterials, 2021, 11(6): 1366.
[105]CAO B, GAO C, LIU K, et al. Spatiotemporal mode-locking and dissipative solitons inmultimode fiber lasers[J]. Light: Science & Applications, 2023, 12(1): 260.
[106]WRIGHT L G, CHRISTODOULIDES DN, WISE F W. Spatiotemporal mode-locking[C]. CLEO: Scienceand Innovations 2018, San Jose, Califomia United States, 2018, paper SF3K.3.
[107]WRIGHT L G, SIDORENKO P, POURBEYRAM H, et al. Mechanisms of spatiotemporalmode-locking[J]. Nature Physics, 2020, 16(5): 565-570.
[108] AUSTON D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6):420-422.
[109] SMITH P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237.
[110] CÔTÉ D, VAN DRIEL H M. Period doubling of a femtosecond Ti: sapphire laser by totalmode locking[J]. Optics letters, 1998, 23(9): 715-717.
[111] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[112] NAZEMOSADAT E, MAFI A. Nonlinear multimodal interference and saturable absorptionusing a short graded-index multimode optical fiber[J]. JOSA B, 2013, 30(5): 1357-1367.
[113] CHEN G, LI W, WANG G, et al. Generation of coexisting high-energy pulses in amode-locked all-fiber laser with a nonlinear multimodal interference technique[J]. PhotonicsResearch, 2019, 7(2): 187-192.
[114] KRUPA K, TONELLO A, SHALABY B M, et al. Spatial beam self-cleaning in multimodefibres[J]. Nature Photonics, 2017, 11(4): 237-241.
[115] LIU Z, WRIGHT L G, CHRISTODOULIDES D N, et al. Kerr self-cleaning offemtosecond-pulsed beams in graded-index multimode fiber[J]. Optics Letters, 2016, 41(16):3675-3678.
[116] DELIANCOURT E, FABERT M, TONELLO A, et al. Wavefront shaping for optimizedmany-mode Kerr beam self-cleaning in graded-index multimode fiber[J]. Optics Express, 2019, 27(12): 17311-17321.
[117] GUENARD R, KRUPA K, DUPIOL R, et al. Kerr self-cleaning of pulsed beam in anytterbium doped multimode fiber[J]. Optics Express, 2017, 25(5): 4783-4792.
[118] WRIGHT L G, LIU Z, NOLAN D A, et al. Self-organized instability in graded-indexmultimode fibres[J]. Nature Photonics, 2016, 10(12): 771-776.
[119] KRUPA K, TONELLO A, BARTHÉLÉMY A, et al. Observation of geometric parametricinstability induced by the periodic spatial self-imaging of multimode waves[J]. PhysicalReview Letters, 2016, 116(18): 183901.
[120]RENNINGER W H, WISE F W. Optical solitons in graded-index multimode fibres[J]. NatureCommunications, 2013, 4(1): 1719.
[121] QIN H, XIAO X, WANG P, et al. Observation of soliton molecules in a spatiotemporalmode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.
[122] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446.
[123]LIU K, XIAO X, DING Y, et al. Buildup dynamics of multiple solitons in spatiotemporalmode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906.
[124]TEĞIN U, RAHMANI B, KAKKAVA E, et al. Single-mode output by controlling thespatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2(5): 056005-056005.
[125]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Controllable spatiotemporal nonlineareffects in multimode fibres[J]. Nature Photonics, 2015, 9(5): 306-310.
[126]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[127] QIN H, XIAO X, WANG P, et al. Observation of soliton molecules in a spatiotemporalmode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.
[128] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics express, 2019, 27(8): 11435-11446.
[129]TEĞIN U, KAKKAVA E, RAHMANI B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415.
[130]TEĞIN U, KAKKAVA E, RAHMANI B, et al. Dispersion-managed soliton multimode fiberlaser[C]//2020 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2020: 1-2.
[131]TEĞIN U, RAHMANI B, KAKKAVA E, et al. Single-mode output by controlling thespatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2(5): 056005-056005.
[132]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[133]WU H, LIN W, TAN YJ, et al. Pulses with switchable wavelengths and hysteresis in anall-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13(2): 022008.
[134]LONG J, GAO Y, LIN W, et al. Switchable and spacing tunable dual-wavelengthspatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591.
[135] MA Z, LONG J, LIN W, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473.
[136] DAI C, DONG Z, LIN J, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-lockedlaser based on graded-index multimode fiber[J]. Optik-International Journal for Light andElectron Optics, 2021, 243: 167487.
[137]LIN X B, GAO Y X, LONG J G, et al. All few-mode fiber spatiotemporal mode-lockedfigure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616.
[138]WU J W, LIU G X, GAO Y X, et al. Switchable femtosecond and picosecond spatiotemporalmode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414.
[139] HAIG H, SIDORENKO P, DHAR A, et al. Multimode Mamyshev oscillator[J]. Optics Letters, 2022, 47(1): 46-49.
[140] XIE S, JIN L, ZHANG H, et al. All-fiber high-power spatiotemporal mode-locked laser basedon multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917.
[141]WRIGHT L G, ZIEGLER Z M, LUSHNIKOV P M, et al. Multimode nonlinear fiber optics:massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topicsin Quantum Electronics, 2017, 24(3): 1-16.
[142] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[143] DING Y, XIAO X, LIU K, et al. Spatiotemporal Mode-Locking in Lasers with Large ModalDispersion[J]. Physical Review Letters, 2021, 126(9): 1-6.
[144] GAO C, CAO B, DING Y, et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 2023, 10(3): 356-363.
[145]ZHANG H, LU J, PENG J, et al. Investigation of High-Power Spatiotemporal Mode‐Lockingwith High Beam Quality[J]. Laser & Photonics Reviews, 2023, 17(9): 2300017.
[146]RUAN Q, XIAO X, ZOU J, et al. Visible-Wavelength Spatiotemporal Mode-Locked FiberLaser Delivering 9 ps, 4 nJ Pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16(7):2100678.
[147]ZENG Q, TANG Z, OUYANG D, et al. Wavelength-tunable spatiotemporal mode-locking in alarge-mode-area Er:ZBLAN fiber laser at 2.8 µm[J], Optics Letters, 2024, 49(5): 1117-1120.
[148] GLOGE D, MARCATILI E A J. Multimode theory of graded core fibers[J]. Bell LabsTechnical Journal, 1973, 52(9):1563-1578.
[149] FRANCESCO, POLETTI, PETER, et al. Description of ultrashort pulse propagation inmultimode optical fibers[J]. Journal of the Optical Society of America B, 2008, 25(10):1645-1654.
[150]REGELSKIS K, ŽELUDEVIČIUS J, VISKONTAS K, et al. Ytterbium-doped fiber ultrashortpulse generator based on self-phase modulation and alternating spectral filtering[J]. OpticsLetters, 2015, 40(22): 5255-5258.
[151] HORAK P, POLETTI F. Multimode nonlinear fibre optics: theory and applications[M]. 2012.
[152] GUSAROV A V, GRIGORIEV S N, VOLOSOVA M A, et al. On productivity of laser additivemanufacturing[J]. Journal of Materials Processing Technology, 2018, 261: 213-232.
[153] KARNAKIS D, FIERET J, RUMSBY P T, et al. Microhole drilling using reshaped pulsedGaussian laser beams[C]//Laser Beam Shaping II. SPIE, 2001, 4443: 150-158.
[154]Laser beam shaping: theory and techniques[M]. CRC press, 2018.
[155]BOLLANTI S, DI LAZZARO P, MURRA D, et al. Edge steepness and plateau uniformity of anearly flat-top-shaped laser beam[J]. Applied Physics B, 2004, 78(2): 195-198.
[156] FRIEDEN B R. Lossless conversion of a plane laser wave to a plane wave of uniformirradiance[J]. Applied Optics, 1965, 4(11): 1400-1403.
[157] GAO Y, AN Z, WANG J, et al. Automatic optimization design of Gaussian beam shapingsystem by using ZEMAX software[J]. Optik, 2011, 122(24): 2176-2180.
[158] FENG Z, HUANG L, GONG M, et al. Beam shaping system design using double freeformoptical surfaces[J]. Optics Express, 2013, 21(12): 14728-14735.
[159] MAHLAB U, SHAMIR J, CAULFIELD H J. Genetic algorithm for optical patternrecognition[J]. Optics Letters, 1991, 16(9): 648-650.
[160]ZHAN Y, HAOTONG M, SHAOJUN D. Adaptive near-field beam shaping based on simulatedannealing algorithm[J]. Acta Optica Sinica, 2011, 31(3):163-167
[161] MEZARD M, PARISI G, VIRASORO M A. Spin glass theory and beyond:an introduction tothe replica method and its applications[M]. World Scientific, 1986.
[162]陈怀新, 隋展, 陈祯培, 等. 采用液晶空间光调制器进行激光光束的空间整形[J]. ActaOptica Sinica, 2001, 21(9): 1107-1111.
[163]LI S, WANG Y, LU Z, et al. Spatial beam shaping for high-power frequency tripling lasersbased on a liquid crystal spatial light modulator[J]. Optics Communications, 2016, 367:181-185.
[164]ZHOU Q L, LU X Q, QIU J R, et al. Beam-shaping microstructure optical fiber[J]. ChineseOptics Letters, 2005, 3(12): 686-688.
[165]WANG C C, ZHANG F, LU Y C, et al. Photonic crystal fiber with a flattened fundamentalmode for the fiber lasers [J]. Optics Communications, 2009, 282(11): 2232-2235.
[166] KONG F T, GU G C, HAWKINS T W, et al. Flat-top mode from a 50 µm-core Yb-dopedleakage channel fiber[J]. Optics Express, 2013, 21(26): 32371-32376.
[167]CHEN H, ZOU S Z, YU H J, et al. Experimental study of the transmission in multimode fiberwith a single mode laser[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040602.
[168] GU X J, MOHAMMED W, QIAN L, et al. All-fiber laser beam shaping using a long-periodgrating[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1130-1132.
[169]TIAN Z B, NIX M, YAM S S H. Laser beam shaping using a single-mode fiber abrupt taper[J]. Optics Letters, 2009, 34(3): 229-231.
[170] MAYEH M, FARAHI F. Tailoring Gaussian laser beam shape through controlled etching ofsingle-mode and multimode fibers: simulation and experimental studies[J]. IEEE SensorsJournal, 2012, 12(1): 168-173.
[171] KONISHI K, KANIE T, TAKAHASHI K, et al. Development of rectangular core optical fibercable for high power laser[J]. SEI Technical Review, 2010 (71): 109-112.
[172] XU C L, YAN K, GU C, et al. All-fiber laser with flattop beam output using a few-mode fiberBragg grating[J]. Optics Letters, 2018, 43(6): 1247-1250.
[173]ZHANG Z C, WANG S, HU X W, et al. All-fiber passively Q-switched laser with flat-topbeam emissions[J]. Optics Letters, 2022, 47(3): 521-524.
[174] MA X, DAI C, LV J, et al. Mode-locked laser with flat-top beam output based on allpolarization-maintaining fiber structure[J]. Optics & Laser Technology, 2022, 156: 108496.
[175]TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystalsyntheses[J]. Chemistry of Materials, 2016, 28(8): 2491-2506.
[176]REISS P, PROTIERE M, LI L. Core/shell semiconductor nanocrystals[J]. small, 2009, 5(2):154-168.
[177] HAUBOLD S, HAASE M, KORNOWSKI A, et al. Strongly luminescent InP/ZnS core-shellnanoparticles[J]. Chem.PhysChem, 2001, 2(5): 331-334.
[178] HAHM D, CHANG J H, JEONG B G, et al. Design principle for bright, robust, and color-pureInP/ZnSexS1-x/ZnS heterostructures[J]. Chemistry of Materials, 2019, 31(9): 3476-3484.
[179] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific Reports, 2016, 6(1): 30094.
[180]ZHANG W, ZHUANG W, LIU R, et al. Double-shelled InP/ZnMnS/ZnS quantum dots forlight-emitting devices[J]. ACS Omega, 2019, 4(21): 18961-18968.
[181]BUFFARD A, DREYFUSS S, NADAL B, et al. Mechanistic insight and optimization of InPnanocrystals synthesized with aminophosphines[J]. Chemistry of Materials, 2016, 28(16):5925-5934.
[182]TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystalsyntheses[J]. Chemistry of Materials, 2016, 28(8): 2491-2506.
[183] GARCIA-RODRIGUEZ R, HENDRICKS M P, COSSAIRT B M, et al. Conversion reactionsof cadmium chalcogenide nanocrystal precursors[J]. Chemistry of Materials, 2013, 25(8):1233-1249.
[184] HAHM D, CHANG J H, JEONG B G, et al. Design principle for bright, robust, and color-pureInP/ZnSexS1-x/ZnS heterostructures[J]. Chemistry of Materials, 2019, 31(9): 3476-3484.
[185] FU H, ZUNGER A. InP quantum dots: Electronic structure, surface effects, and the redshiftedemission[J]. Physical Review B, 1997, 56(3): 1496.
[186] KIM M, SHIN W H, BANG J. Highly luminescent and stable green-emitting In (Zn, Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots[J]. Journal of Luminescence, 2019, 205: 555-559.
[187] NELLI D, FERRANDO R. Core-shell vs. multi-shell formation in nanoalloy evolution fromdisordered configurations[J]. Nanoscale, 2019, 11(27): 13040-13050.
[188]LAI C-F, TIEN Y-C, TONG H-C, et al. High-performance quantum dot light-emitting diodesusing chip-scale package structures with high reliability and wide color gamut for backlightdisplays[J]. RSC Advances, 2018, 8(63): 35966-35972.
[189]LEE K-H, HAN C-Y, KANG H-D, et al. Highly efficient, color-reproducible full-colorelectroluminescent devices based on red/green/blue quantum dot-mixed multilayer[J]. ACSNano, 2015, 9(11): 10941-10949.
[190] SONG J H, CHOI H, PHAM H T, et al. Energy level tuned indium arsenide colloidal quantumdot films for efficient photovoltaics[J]. Nature Communications, 2018, 9(1): 4267.
[191] MARTYNENKO I V, LITVIN A P, PURCELL-MILTON F, et al. Application ofsemiconductor quantum dots in bioimaging and biosensing[J]. Journal of Materials ChemistryB, 2017, 5(33): 6701-6727.
[192] KAUR H, BHATTI H S.SINGH K. Dopant incorporation in ultrasmall quantum dots: A casestudy on the effect of dopant concentration on lattice and properties of SnO2 QDs[J]. Journal ofMaterials Science: Materials in Electronics, 2019, 30(3): 2246-2264.
[193] MUSSELMAN K P, IBRAHIM K H.YAVUZ M. Research update: Beyond graphene-synthesisof functionalized quantum dots of 2D materials and their applications[J]. APL Materials, 2018, 6(12): 120701.
[194]CHOU S Y, KEIMEL C.GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837.
[195] FERMANN M E.HARTL I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874.
[196] XU C.WISE F W. Recent advances in fibre lasers for nonlinear microscopy[J]. NaturePhotonics, 2013, 7(11): 875-882.
[197] MENG Y, ZHANG S, LI H, et al. Bright-dark soliton pairs in a self-mode locking fiber laser[J]. Optical Engineering, 2012, 51(6): 064302-064302
[198]WANG Z, LI C, YE J, et al. Generation of harmonic mode-locking of bound solitons in theultrafast fiber laser with Sb2Te3 saturable absorber on microfiber[J]. Laser Physics Letters, 2019, 16(2): 025103.
[199] AHMED S, QIAO J, CHENG P K, et al. Tin Telluride Quantum Dots as a Novel SaturableAbsorber for Q-Switching and Mode Locking in Fiber Lasers[J]. Advanced Optical Materials, 2021, 9(6): 2001821.
[200]CAO Y, WANG C, ZHU B.GU Y. A facile method to synthesis high-quality CdSe quantumdots for large and tunable nonlinear absorption[J]. Optical Materials, 2017, 66: 59-64.
[201] MASHFORD B S, NGUYEN T-L, WILSON G J.MULVANEY P. All-inorganic quantum-dotlight-emitting devices formed via low-cost, wet-chemical processing[J]. Journal of MaterialsChemistry, 2010, 20(1): 167-172.
[202] SVALLIGATLA S, HALDAR K K, PATRA A.DESAI N R. Nonlinear optical switching andoptical limiting in colloidal CdSe quantum dots investigated by nanosecond z-scanmeasurement[J]. Optics & Laser Technology, 2016, 84: 87-93.
[203]REISS P, PROTIèRE M.LI L. Core/shell semiconductor nanocrystals[J]. Small, 2009, 5(2):154-168.
[204]RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[205] MAHYUDDIN M B H, LATIFF A A, RUSDI M F M, et al. Quantum dot cadmium selenide asa saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiberlasers[J]. Optics Communications, 2017, 397: 147-152.
[206]LEE Y-W, CHEN C-M, HUANG C-W, et al. Passively q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10), 10675-10681.
[207]BUFFARD A, DREYFUSS S, NADAL B, et al. Mechanistic insight and optimization of inpnanocrystals synthesized with aminophosphines[J]. Chemistry of Materials, 2016, 28(16):5925-5934.
[208] XU Z, LI Y, LI J, et al. Formation of size-tunable and nearly monodisperse inp nanocrystals:Chemical reactions and controlled synthesis[J]. Chemistry of Materials, 2019, 31(14):5331-5341.
[209]LIU P, LOU Y, DING S, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dotssynthesized with aminophosphine for effective display applications[J]. Advanced FunctionalMaterials, 2021, 31(11): 2008453.
[210] GANEEV R A, ZVYAGIN A I, SHUKLOV I A, et al. Nonlinear optical characterization ofInP@ZnS core-shell colloidal quantum dots using 532 nm, 10 ns pulses[J]. Nanomaterials, 2021, 11(6): 1366.
[211] WAWRZYNCZYK D, SZEREMETA J, SAMOC M.NYK M. Optical nonlinearities ofcolloidal InP@ZnS core-shell quantum dots probed by z-scan and two-photon excitedemission[J]. APL Materials, 2015, 3(11): 116108.
[212]ZHANG X, LOU Y, HU L, et al. Surface fluorination treated indium-based quantum dots as anonlinear saturable absorber for a passive Q-switched 1.0 μm laser[J]. Materials Advances, 2022, 3(18): 7037-7042.
[213] KIM T-G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-basedquantum dots through surface fluorination: Mechanism and applications[J]. ACS Nano, 2018, 12(11): 11529-11540.
[214] PU Y-C, FAN H-C, CHANG J-C, et al. Effects of interfacial oxidative layer removal on chargecarrier recombination dynamics in InP/ZnSexS1-x core/shell quantum dots[J]. The Journal ofPhysical Chemistry Letters, 2021, 12(30): 7194-7200.
[215]WANG H, ZHANG C.RANA F. Surface recombination limited lifetimes of photoexcitedcarriers in few-layer transition metal dichalcogenide MoS2[J]. Nano Letters, 2015, 15(12):8204-8210.
[216]LIU M, ZHENG X-W, QI Y-L, et al. Microfiber-based few-layer MoS2 saturable absorber for25 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19), 22841-22846.
[217]LIU Y, LIU H, WANG J.LIU D. Defect-type-dependent carrier lifetimes in monolayer WS2films[J]. The Journal of Physical Chemistry C, 2022, 126(10): 4929-4938.
[218]LIU W, PANG L, HAN H, et al. Tungsten disulphide for ultrashort pulse generation in all-fiberlasers[J]. Nanoscale, 2017, 9(18): 5806-5811.
[219]LIU J, YANG F, LU J, et al. High output mode-locked laser empowered by defect regulation in2D Bi2O2Se saturable absorber[J]. Nature Communications, 2022, 2022, 13(1): 3855.
[220] PARK J P, LEE J-J.KIM S-W. Highly luminescent lnp/GaP/ZnS QDs emitting in the entirecolor range via a heating up process[J]. Scientific Reports, 2016, 6(1): 30094.
[221]ZHANG H, MA X, LIN Q, et al. High-brightness blue inp quantum dot-basedelectroluminescent devices: The role of shell thickness[J]. The Journal of Physical ChemistryLetters, 2020, 11(3): 960-967.
[222] KIM Y, CHANG J H, CHOI H, et al. III-V colloidal nanocrystals: Control of covalentsurfaces[J]. Chemical Science, 2020, 11(4): 913-922.
[223]ZHANG X, HUDSON M H.CASTELLANO F N. Passivation of electron trap states in InPquantum dots with benzoic acid ligands[J]. The Journal of Physical Chemistry C, 2021, 125(33): 18362-18371.
[224] YANG W, YANG Y, KALEDIN A L, et al. Surface passivation extends single and biexcitonlifetimes of lnp quantum dots[J]. Chemical Science, 2020, 11(22): 5779-5789.
[225] HUGHES K E, STEIN J L, FRIEDFELD M R, et al. Effects of surface chemistry on thephotophysics of colloidal InP nanocrystals[J]. ACS Nano, 2019, 13(12): 14198-14207.
[226]CUI Z, MEI S, WEN Z, et al. Synergistic effect of halogen ions and shelling temperature onanion exchange induced interfacial restructuring for highly efficient blue emissive InP/ZnSquantum dots[J]. Small, 2022, 18(15): 2108120.
[227] GRIMALDI G, GEUCHIES J J, VAN DER STAM W, et al. Spectroscopic evidence for thecontribution of holes to the bleach of Cd-chalcogenide quantum dots[J]. Nano Letters, 2019, 19(5): 3002-3010.
[228] DE C K, MANDAL S, ROY D, et al. Ultrafast dynamics and ultrasensitive single-particleintermittency in small-sized toxic metal free InP-based core/alloy-shell/shell quantum dots:Excitation wavelength dependency toward variation of PLQY[J]. The Journal of PhysicalChemistry C, 2019, 123(46): 28502-28510.
[229]BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber forultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.
[230] DAI L, HUANG Z, HUANG Q, et al. Carbon nanotube mode-locked fiber lasers: Recentprogress and perspectives[J]. Nanophotonics, 2020, 10(2): 749-775.
[231] HE J, LU H, TAO L, et al. Nonlinear optical properties of PtTe2 based saturable absorbers forultrafast photonics[J]. Journal of Materials Chemistry C, 2022, 10(13): 5124-5133.
[232]JIN X, HU G, ZHANG M, et al. 102 fs pulse generation from a long-term stable, inkjet-printedblack phosphorus-mode-locked fiber laser[J]. Optics Express, 2018, 26(10): 12506-12513.
[233]BAO Y, DAI L, JIANG J, et al. Humidity resistant carbon nanotubes-styrenemethyl-methacrylate polymer composite for ultrafast laser[J]. Advanced Optical Materials, 2022, 10(18): 2200461.
[234]WANG Z, XU Y, DHANABALAN S C, et al. Black phosphorus quantum dots as an efficientsaturable absorber for bound soliton operation in an erbium doped fiber laser[J]. IEEEPhotonics Journal, 2016, 8(5): 1-10.
[235] SHI Y, LONG H, LIU S, et al. Ultrasmall 2D NbSe2 based quantum dots used for lowthreshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6(46): 12638-12642.
[236] MING N, TAO S, YANG W, et al. Mode-locked er-doped fiber laser based on PbS/CdScore/shell quantum dots as saturable absorber[J]. Optics Express, 2018, 26(7): 9017-9026.
[237]LONG J G, GAO Y X, LIN W, et al. Switchable and spacing tunable dual-wavelengthspatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591.
[238]CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837.
[239] XU C, WISE F W. Recent advances in fibre lasers for nonlinear microscopy[J]. NaturePhotonics, 2013, 7(11): 875-882.
[240] GUO Q, YAO Y, LUO Z C, et al. Universal near-infrared and mid-infrared optical modulationfor ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.
[241]WANG S, YU H, ZHANG H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544.
[242] HU Z, HU X, HE P, et al. NbS2-nanosheet-based saturable absorber for 1.5 µm and 2 µmultrafast fiber lasers[J]. Photonics and Nanostructures-Fundamentals and Applications, 2023, 54: 101117.
[243] HUANG J, XIE Z, CHEN J, et al. Bismuth oxysulfide nanosheets as a novel saturable absorberfor Er-doped and Tm-doped ultrafast fiber lasers[J]. Journal of Luminescence, 2023, 263:120004.
[244] GUO Z, ZHANG H, LU S, et al. From black phosphorus to phosphorene: Basic solventexfoliation, evolution of raman scattering, and applications to ultrafast photonics[J]. AdvancedFunctional Materials, 2015, 25(45): 6996-7002.
[245] SCARDACI V, SUN Z, WANG F, et al. Carbon nanotube polycarbonate composites forultrafast lasers[J]. Advanced Materials, 2008, 20(21): 4040-4043.
[246]RADZI N M, LATIF A A, ISMAIL M F, et al. Q-switched fiber laser based on CdS quantumdots as a saturable absorber[J]. Results in Physics, 2020, 16: 103123.
[247]LEE Y W, CHEN C M, HUANG C W, et al. Passively Q-switched Er3+-doped fiber lasersusing colloidal PbS quantum dot saturable absorber[J]. Optics Express, 2016, 24(10):10675-10681.
[248]LIU B, GAO L, CHENG W W, et al. 1.6 μm dissipative soliton fiber laser mode-locked bycesium lead halide perovskite quantum dots[J]. Optics Express, 2018, 26(6), 7155-7162 .
[249]WRIGHT L G, CHRISTODOULIDES D N.WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[250] GAO C, CAO B, DING Y, et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 2023, 10(3), 356-363 .
[251] DING Y, XIAO X, WANG P.YANG C. Multiple-soliton in spatiotemporal mode-lockedmultimode fiber lasers[J]. Optics Express, 2019, 27(8), 11435-11446.
[252]WRIGHT L G, ZIEGLERY Z M, ZHU P, et al. Advanced examples of use of the GMMNLSEsolver[J]. Available: https://github.com/wiselabaep/gmmnlse-solver-final.
[253]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[254]ZHANG H, ZHANG Y, PENG J, et al. All-fiber spatiotemporal mode-locking lasers with largemodal dispersion[J]. Photonics Research, 2022, 10(2): 483-490.
[255]ZHAO T X, LIU G X, DAI L, et al. Narrow bandwidth spatiotemporal mode-locked Yb-dopedfiber laser[J]. Optics Letters, 2022, 47(15): 3848-3851.
[256] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831-838.
[257]RAMASAMY P, KIM N, KANG Y-S, et al. Tunable, bright, and narrow-band luminescencefrom colloidal indium phosphide quantum dots[J]. Chemistry of Materials, 2017, 29(16):6893-6899.
[258] AHMED S, QIAO J, CHENG P K, et al. Tin telluride quantum dots as a novel saturableabsorber for Q-switching and mode locking in fiber lasers[J]. Advanced Optical Materials,2021, 9(6): 2001821.
[259] QIAO J, AHMED S, CHENG P K, et al. Tin telluride quantum dots as a new saturableabsorber for a mode-locked Yb+ doped fiber laser[J]. Optics & Laser Technology, 2021, 142:107258.
[260] HE T, LIU H, LI J, et al. Comparison studies of excitonic properties and multiphotonabsorption of near-infrared-I-emitting Cu-doped InP and InP/ZnSe nanocrystals[J]. OpticsLetters, 2020, 45(6): 1350-1353.
[261] XIE S, JIN L, ZHANG H, et al. All-fiber high-power spatiotemporal mode-locked laser basedon multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917.
[262] QIAO J, AHMED S, CHENG P K, et al. Tin telluride quantum dots as a new saturableabsorber for a mode-locked Yb+ doped fiber laser[J]. Optics & Laser Technology, 2021, 142:107258.
[263] GE Y, HUANG W, YANG F, et al. Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS)composite films and their applications in ultrafast photonics[J]. Nanoscale, 2019, 11(14):6828-6837.
[264] FU S, ZHANG S, LI J, et al. Passively Q-switched Nd-doped fiber laser based on PbS/CdScore/shell quantum dots as a saturable absorber[J]. Applied Optics, 2019, 58(11): 3036-3041.
[265]WEI K, FAN S, CHEN Q, et al. Passively mode-locked Yb fiber laser with PbSe colloidalquantum dots as saturable absorber[J]. Optics Express, 2017, 25(21): 24901-24906.
[266] DONG L, HUANG W, CHU H, et al. Passively Q-switched near-infrared lasers withbismuthene quantum dots as the saturable absorber[J]. Optics & Laser Technology, 2020, 128:106219.
[267]LIU K, XIAO X.YANG C. Observation of transition between multimode Q-switching andspatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534.
[268] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 126(9): 093901.
[269]ZIEGLER Z. Numerical tools for optical pulse propagation in multimode fiber. Thesis (CornellUniversity 2017).
[270] HORAK P, POLETTI F, J R P I O F R. Multimode nonlinear fibre optics: Theory andapplications[J]. Recent progress in optical fiber research, 2012, 3.
[271]WRIGHT L G, ZIEGLER Z M, LUSHNIKOV P M, et al. Multimode nonlinear fiber optics:Massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topicsin Quantum Electronics, 2017, 24(3): 1-16.
[272] POLETTI F.HORAK P. Description of ultrashort pulse propagation in multimode opticalfibers[J]. Journal of the Optical Society of America B, 2008, 25(10): 1645-1654.
[273]WANG Y, SHI J. Developing very strong texture in a nickel-based superalloy by selective lasermelting with an ultra-high power and flat-top laser beam[J]. Materials Characterization, 2020, 165: 110372.
[274]JODI D E, KITASHIMA T, KOIZUMI Y, et al. Manufacturing single crystals of pure nickelvia selective laser melting with a flat-top laser beam[J]. Additive Manufacturing Letters, 2022, 3: 100066.
[275] PAL V, TRADONSKY C, CHRIKI R, et al. Generating flat-top beams with extended depth offocus[J]. Applied Optics, 2018, 57(16): 4583-4589.
[276] AMAROLI A, ARANY P, PASQUALE C, et al. Improving consistency of photobiomodulationtherapy: A novel flat-top beam hand-piece versus standard gaussian probes on mitochondrialactivity[J]. International Journal of Molecular Sciences, 2021, 22(15): 7788.
[277]ROMERO L A, DICKEY F M. Lossless laser beam shaping[J]. Journal of the Optical Societyof America A, 1996, 13(4): 751-760.
[278] HOFFNAGLE J A, JEFFERSON C M. Design and performance of a refractive optical systemthat converts a Gaussian to a flattop beam[J]. Applied Optics, 2000, 39(30): 5488-5499.
[279]LIU C, GUO Y. Flat-top line-shaped beam shaping and system design[J]. Sensors, 2022, 22(11): 4199.
[280] PANG H, YING C, FAB C, et al. Design diffractive optical elements for beam shaping withhybrid algorithm[J]. Acta Photonica Sin, 2010, 39: 977.
[281]WANG C, ZHANG F, LU Y, et al. Photonic crystal fiber with a flattened fundamental modefor the fiber lasers[J]. Optics Communications, 2009, 282(11): 2232-2235.
[282] KONG F, GU G, HAWKINS T W, et al. Flat-top mode from a 50 µm-core Yb-doped leakagechannel fiber[J]. Optics Express, 2013, 21(26): 32371-32376.
[283]TIAN Z, NIX M, YAM S S H. Laser beam shaping using a single-mode fiber abrupt taper[J]. Optics Letters, 2009, 34(3): 229-231.
[284]LIU K, YANG Y, CHEN X, et al. All-fiberized top-hat beam shaper by mode content controland multimode interference suppression[J]. IEEE Photonics Technology Letters, 2018, 31(3):238-241.
[285] YIN J, BAO J, TONG Y, et al. Research on rectangular flat-topped beam based ondouble-cladding fiber[C]. Proceedings of SPIE, 2021, 12073: 32-37.
[286] XU C, YAN K, GU C, et al. All-fiber laser with flattop beam output using a few-mode fiberBragg grating[J]. Optics Letters, 2018, 43(6): 1247-1250.
[287]ZHANG Z, WANG S, HU X, et al. All-fiber passively Q-switched laser with flat-top beamemissions[J]. Optics Letters, 2022, 47(3): 521-524.
[288] MA X, DAI C, LV J, et al. Mode-locked laser with flat-top beam output based on allpolarization-maintaining fiber structure[J]. Optics & Laser Technology, 2022, 156: 108496.
[289] DING Y, XIAO X, LIU K, et al. Spatiotemporal mode-locking in lasers with large modaldispersion[J]. Physical Review Letters, 2021, 126(9): 093901.
[290]TEĞIN U, RAHMANI B, KAKKAVA E, et al. All-fiber spatiotemporally mode-locked laserwith multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438.
[291]ZHANG H, ZHANG Y, PENG J, et al. All-fiber spatiotemporal mode-locking lasers with largemodal dispersion[J]. Photonics Research, 2022, 10(2): 483-490.
[292]LOU Y, GE B, CAI Y, et al. Spatiotemporal mode-locking of an all-fiber laser based on InPquantum dot saturable absorber[J]. Optics Express, 2023, 31(25): 42400-42412.
[293]BOLLANTI S, DI LAZZARO P, MURRA D, et al. Edge steepness and plateau uniformity of anearly flat-top-shaped laser beam[J]. Applied Physics B, 2004, 78(2): 195-198.
[294]WRIGHT L G, CHRISTODOULIDES D N, WISE F W. Spatiotemporal mode-locking inmultimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.
[295] GE B, LOU Y, GUO S, et al. A High-Energy Wide-Spectrum Spatiotemporal Mode-LockedFiber Laser[J]. Available at SSRN 4502658.
[296] DING Y, XIAO X, WANG P, et al. Multiple-soliton in spatiotemporal mode-locked multimodefiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446.
[297] FU G, QI T, YU W, et al. Beam self-cleaning of 1.5 μm high peak-power spatiotemporalmode-locked lasers enabled by nonlinear compression and disorder[J]. Laser & PhotonicsReviews, 2023, 17(7): 2200987.
[298]ZHU X, SCHÜLZGEN A, LI H, et al. Detailed investigation of self-imaging in largecoremultimode optical fibers for application in fiber lasers and amplifiers[J]. Optics Express, 2008, 16(21): 16632-16645.
[299]ZHU X, SCHÜLZGEN A, LI H, et al. Coherent beam transformations using multimodewaveguides[J]. Optics Express, 2010, 18(7): 7506-7520.
[300]CHEN H, ZOU S Z, YU H J, et al. Experimental study of the transmission in multimode fiberwith a single mode laser[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040602.
[301]ZHANG X, XING Y, CHU Y, et al. Research progress on beam homogenization and shapingtechnology using all-fiber structure[J]. Laser & Optoelectronics Progress, 2022, 59(15):1516021.
[302]ZHANG C, ZHANG C, LI Y, et al. Wavelength-tunable broadband lasers based onnanomaterials[J]. Nanotechnology, 2023, 24(49): 192001.

所在学位评定分委会
物理学
国内图书分类号
O437
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766166
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
娄雅君. 基于InP量子点可饱和吸收体的超快光纤激光器时空锁模研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031116-娄雅君-电子与电气工程(7007KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[娄雅君]的文章
百度学术
百度学术中相似的文章
[娄雅君]的文章
必应学术
必应学术中相似的文章
[娄雅君]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。