[1] LI J P, CHENG L, WAN N, et al. Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103466.
[2] YANG Y, XIA S Y, HUANG P, et al. Energy transition: Connotations, mechanisms and effects[J]. Energy Strategy Reviews, 2024, 52: 101320.
[3] HASSAN Q, VIKTOR P, J. Al-Musawi T, et al. The renewable energy role in the global energy Transformations[J]. Renewable Energy Focus, 2024, 48: 100545.
[4] LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China's carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 180: 106155.
[5] LONG Y X, CHEN Y N, XU C C, et al. The role of global installed wind energy in mitigating CO2 emission and temperature rising[J]. Journal of Cleaner Production, 2023, 423: 138778.
[6] ACKERMANN T, SöDER L. Wind energy technology and current status: a review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(4): 315-374.
[7] GIPE P, MöLLERSTRöM E. An overview of the history of wind turbine development: Part I—The early wind turbines until the 1960s[J]. Wind Engineering, 2022, 46(6): 1973-2004.
[8] GIPE P, MöLLERSTRöM E. An overview of the history of wind turbine development: Part II–The 1970s onward[J]. Wind Engineering, 2023, 47(1): 220-248.
[9] KHAN F H, PAL T, KUNDU B, et al. Wind Energy: A Practical Power Analysis Approach[C]//2021 Innovations in Energy Management and Renewable Resources(52042). 2021: 1-6.
[10] REHMAN S, ALHEMS L M, ALAM M M, et al. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost[J]. Ocean Engineering, 2023, 267: 113192.
[11] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(3).
[12] 全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(1).
[13] Global Wind Energy Council. Global Wind Report 2023[R]. Brussels: Global Wind Energy Council, 2023.
[14] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12(5): 431-444.
[15] 胡磊. 大型海上风力发电系统建模与仿真研究[D]. 青岛科技大学, 2023.
[16] PORTé-AGEL F, BASTANKHAH M, SHAMSODDIN S. Wind-Turbine and Wind-Farm Flows: A Review[J]. Boundary-Layer Meteorology, 2020, 174: 1-59.
[17] ZHANG Y, LI Z, LIU X, et al. Turbulence in waked wind turbine wakes: Similarity and empirical formulae[J]. Renewable Energy, 2023, 209: 27-41.
[18] NEUNABER I, HöLLING M, OBLIGADO M. Leading effect for wind turbine wake models[J]. Renewable Energy, 2024, 223: 119935.
[19] AMIRI M M, SHADMAN M, ESTEFEN S F. A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114279.
[20] HE R Y, SUN H Y, GAO X X, et al. Wind tunnel tests for wind turbines: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2022, 166: 112675.
[21] OZBAY A, TIAN W, YANG Z, et al. An Experimental Investigation on the Wake Interference of Multiple Wind Turbines in Atmospheric Boundary Layer Winds[C]//30th American Institute of Aeronautics and Astronautics Applied Aerodynamics Conference. New Orleans, 2012.
[22] TIAN W, OZBAY A, WANG X D, et al. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds[J]. Acta Mechanica Sinica, 2017, 33: 742-753.
[23] 韩玉霞, 汪建文, 孙博, 等. 湍流强度对水平轴风力机尾迹速度恢复影响机理的实验研究[J]. 太阳能学报, 2019, 40: 649-655.
[24] HYVäRINEN A, SEGALINI A. Effects From Complex Terrain on Wind-Turbine Performance[J]. Journal of Energy Resources Technology, 2017, 139(5): 051205.
[25] HYVäRINEN A, SEGALINI A. Qualitative analysis of wind-turbine wakes over hilly terrain[J]. Journal of Physics: Conference Series, 2017, 854(1): 012023.
[26] HYVäRINEN A, LACAGNINA G, SEGALINI A. A wind-tunnel study of the wake development behind wind turbines over sinusoidal hills[J]. Wind Energy, 2018, 21(8): 605-617.
[27] DAR A S, PORTé-AGEL F. Wind turbine wakes on escarpments: A wind-tunnel study[J]. Renewable Energy, 2022, 181: 1258-1275.
[28] NYGAARD N G, HANSEN S D. Wake effects between two neighbouring wind farms[J]. Journal of Physics: Conference Series, 2016, 753(3): 032020.
[29] HANSEN K, LARSEN G, MENKE R, et al. Wind turbine wake measurement in complex terrain[J]. Journal of Physics: Conference Series, 2016, 753(3): 032013.
[30] THIELICKE W, HÜBERT W, MÜLLER U, et al. Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer[J]. Atmospheric Measurement Techniques, 2021, 14(2): 1303-1318.
[31] LI Z N, PU O, PAN Y Y, et al. A study on measuring wind turbine wake based on UAV anemometry system[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102537.
[32] GAO X X, CHEN Y, XU S N, et al. Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements[J]. Applied Energy, 2022, 307: 118182.
[33] CAÑADILLAS B, BECKENBAUER M, TRUJILLO J J, et al. Offshore wind farm cluster wakes as observed by long-range-scanning wind lidar measurements and mesoscale modeling[J]. Wind Energy Science, 2022, 7(3): 1241-1262.
[34] GAO X X, LI Y, ZHAO F, et al. Comparisons of the accuracy of different wake models in wind farm layout optimization[J]. Energy Exploration & Exploitation, 2020, 38(5): 1725-1741.
[35] MITTAL P, MITRA K. In search of flexible and robust wind farm layouts considering wind state uncertainty[J]. Journal of Cleaner Production, 2020, 248: 119195.
[36] YANG K. Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms[J]. Energies, 2020, 13: 739.
[37] SUN H Y, QIU C Y, LU L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied Energy, 2020, 280: 115880.
[38] 陈默, 张璇, 郑文涛, 等. 风电场齐位排列方式下尾流干涉效应研究[J]. 科技创新与应用, 2023, 13: 77-80.
[39] 穆延非. 基于尾流模型的海上风电场群布局优化研究[D]. 浙江大学, 2023.
[40] JENSEN N. A note on wind generator interaction[M]. Risø National Laboratory, 1983.
[41] KATIC I, HØJSTRUP J, JENSEN N. A Simple Model for Cluster Efficiency[C]//PALZ W, SESTO E. EWEC’86. Proceedings. Vol. 1. A. Raguzzi, 1987: 407-410.
[42] 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京航空航天大学, 2016.
[43] TIAN L L, ZHU W J, SHEN W Z, et al. Prediction of multi-wake problems using an improved Jensen wake model[J]. Renewable Energy, 2017, 102: 457-469.
[44] ANNONI J, FLEMING P, SCHOLBROCK A, et al. Analysis of control-oriented wake modeling tools using lidar field results[J]. Wind Energy Science, 2018, 3(2): 819-831.
[45] 郑建才, 万德成, 王尼娜, 等. 基于尾流叠加模型的风电场数值模拟[C]//第三十一届全国水动力学研讨会论文集 (下册). 海洋出版社, 2020: 833-847.
[46] KAYA B, OğUZ E. Investigation of layout optimization for offshore wind farms and a case study for a region in Turkey[J]. Ocean Engineering, 2022, 266: 112807.
[47] 易文武. 湍流风场及风力机尾流流场数值模拟研究[D]. 汕头大学, 2023.
[48] PUJARI K N, MIRIYALA S S, MITRA K. Jensen-ANN: A Machine Learning adaptation of Jensen Wake Model[J]. International Federation of Automatic Control-PapersOnLine, 2023, 56(2): 4651-4656.
[49] LIANG X L, FU S F, CAI F L, et al. Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model[J]. Renewable Energy, 2023, 203: 373-381.
[50] NYGAARD N G, STEEN S T, POULSEN L, et al. Modelling cluster wakes and wind farm blockage[J]. Journal of Physics: Conference Series, 2020, 1618(6): 062072.
[51] BASTANKHAH M, PORTé-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123.
[52] KEANE A, AGUIRRE P E O, FERCHLAND H, et al. An analytical model for a full wind turbine wake[J]. Journal of Physics: Conference Series, 2016, 753(3): 032039.
[53] SCHREIBER J, BALBAA A, BOTTASSO C L. Brief communication: A double-Gaussian wake model[J]. Wind Energy Science, 2020, 5(1): 237-244.
[54] SOESANTO Q M B, YOSHINAGA T, IIDA A. Anisotropic double-Gaussian analytical wake model for an isolated horizontal-axis wind turbine[J]. Energy Science & Engineering, 2022, 10(7): 2123-2145.
[55] WANG D, FENG D C, PENG H W, et al. Implications of steep hilly terrain for modeling wind-turbine wakes[J]. Journal of Cleaner Production, 2023, 398: 136614.
[56] TIAN L L, XIAO P C, SONG Y L, et al. An advanced three-dimensional analytical model for wind turbine near and far wake predictions[J]. Renewable Energy, 2024, 223: 120035.
[57] DUCOIN A, SHADLOO M, ROY S. Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades[J]. Renewable Energy, 2017, 105: 374-385.
[58] NAKHCHI M, NAUNG S W, RAHMATI M. High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers[J]. Energy, 2021, 225: 120261.
[59] NAKHCHI M, NAUNG S W, DALA L, et al. Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations[J]. Renewable Energy, 2022, 191: 669-684.
[60] VOGEL C R, WILLDEN R H J. Investigation of wind turbine wake superposition models using Reynolds-averaged Navier-Stokes simulations[J]. Wind Energy, 2020, 23(3): 593-607.
[61] HORNSHøJ-MøLLER S D, NIELSEN P D, FOROOGHI P, et al. Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes[J]. Renewable Energy, 2021, 164: 1550-1558.
[62] 张敬华. 1.3MW风力机叶片气动性能及尾流特性研究[D]. 昆明理工大学, 2023.
[63] GE M, ZHANG S, MENG H, et al. Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation[J]. Renewable Energy, 2020, 157: 941-950.
[64] 汪鼎, VIKRANT G, 冯大川, 等. 丘陵地形对风机尾流的影响[C]//第十二届全国流体力学学术会议摘要集. 2022: 111.
[65] DE JESúS MONJARDíN-GáMEZ J, CAMPOS-AMEZCUA R, GóMEZ-MARTíNEZ R, et al. Large eddy simulation and experimental study of the turbulence on wind turbines[J]. Energy, 2023, 273: 127234.
[66] SØRENSEN N, JOHANSEN J. UpWind: aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow[C]//Proceedings of The European Wind Energy Conference & Exhibition, EWEC 2007. Denmark: Department of Civil Engineering, Aalborg University, 2007.
[67] SIDDIQUI M S, RASHEED A, TABIB M, et al. Numerical Analysis of NREL 5MW Wind Turbine: A Study Towards a Better Understanding of Wake Characteristic and Torque Generation Mechanism[J]. Journal of Physics: Conference Series, 2016, 753(3): 032059.
[68] de Oliveira M, PURACA R C, CARMO B S. A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale[J]. Energy, 2023, 283: 128394.
[69] 李德顺, 臧志昭, 黄涛, 等. 中国B类风场中水平轴风力机尾流特性研究[J]. 液压气动与密封, 2021, 41: 30-36.
[70] ZHANG Z H, YANG H R, ZHAO Y S, et al. A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect[J]. Energy, 2024, 287: 129619.
[71] DRAPER M, GUGGERI A, MENDINA M, et al. A Large Eddy Simulation-Actuator Line Model framework to simulate a scaled wind energy facility and its application[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 146-159.
[72] STANLY R, MARTíNEZ-TOSSAS L A, FRANKEL S H, et al. Large-Eddy Simulation ofa wind turbine using a Filtered Actuator Line Model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 222: 104868.
[73] MICALLEF D, FERREIRA C, HERRáEZ I, et al. Assessment of actuator disc models in predicting radial flow and wake expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207: 104396.
[74] MIRSANE R S, RAHIMI M, TORABI F. Development of a novel analytical wake model behind HAWT by considering the nacelle effect[J]. Energy Conversion and Management, 2024, 301:118031.
[75] 周瑞涛. 基于致动面模型的风电场尾流特性模拟研究[D]. 中国科学院大学 (中国科学院工程热物理研究所), 2017.
[76] KüPPERS J P, REINICKE T. Numerical modelling of vertical axis turbines using the actuator surface model[J]. Journal of Fluids and Structures, 2021, 104: 103318.
[77] 王印. 青藏高原地区冬季来流对大型风力机功率及尾流的影响[D]. 兰州理工大学, 2020.
[78] ONEL H C, TUNCER I H. Investigation of wind turbine wakes and wake recovery in a tandem configuration using actuator line model with LES[J]. Computers & Fluids, 2021, 220: 104872.
[79] LIU S Y, LI Q S, LU B, et al. Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions[J]. Renewable Energy, 2024, 224: 120136.
[80] CAO J F, QIN Z J, GAO X, et al. Study of aerodynamic performance and wake effects for offshore wind farm cluster[J]. Ocean Engineering, 2023, 280: 114639.
[81] 张航, 史兆培, 束垠, 等. 平坦地形相邻风电场尾流影响研究[J]. 可再生能源, 2023, 41: 766-772.
[82] MAAS O, RAASCH S. Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight[J]. Wind Energy Science, 2022, 7(2): 715-739.
[83] REVAZ T, PORTé-AGEL F. Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models[J]. Energies, 2021, 14(13): 3745.
[84] LIU L Q, STEVENS R J A M. Effects of Two-Dimensional Steep Hills on the Performance of Wind Turbines and Wind Farms[J]. Boundary-Layer Meteorology, 2020, 176: 251-269.
[85] GAERTNER E, RINKER J, SETHURAMAN L, et al. IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine[EB/OL]. 2020. https://www.osti.gov/biblio/1603478.
[86] PORTé-AGEL F, LU H, WU Y T. A large-eddy simulation framework for wind energy applications[C]//The Fifth International Symposium on Computational Wind Engineering (CWE2010). North Carolina, 2010.
[87] MEHTA D, van Zuijlen A, KOREN B, et al. Large Eddy Simulation of wind farm aerodynamics: A review[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 1-17.
[88] SMAGORINSKY J. General Circulation Experiments with the Primitive Equations: I. the Basic Experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[89] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid‐scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765.
[90] NICOUD F, DUCROS F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor[J]. Flow, Turbulence and Combustion, 1999, 62: 183-200.
[91] YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of Fluids, 1986, 29(7): 2152-2164.
[92] BERNADES M, JOFRE L, CAPUANO F. A priori analysis for high-fidelity large-eddy simulation of wall-bounded transcritical turbulent flows[J]. The Journal of Supercritical Fluids, 2024, 207: 106191.
[93] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]//Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences. New York, 1966.
[94] GERMANO M. Turbulence: the filtering approach[J]. Journal of Fluid Mechanics, 1992, 238: 325–336.
[95] LILLY D K. A proposed modification of the Germano subgrid‐scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635.
[96] BETZ A. Das Maximum der Theoretisch Möglichen Ausnützung des Windes durch Windmotoren[J]. Zeitschrift für das Gesamte Turbinenwesen, 1920, 26: 307-309.
[97] HOU H B, SHI W C, XU Y X, et al. Actuator disk theory and blade element momentum theory for the force-driven turbine[J]. Ocean Engineering, 2023, 285: 115488.
[98] NFAOUI H. 2.04 - Wind Energy Potential[M]//SAYIGH A. Comprehensive Renewable Energy. Oxford: Elsevier, 2012: 73-92.
[99] HU W C, YANG Q S, YUAN Z T, et al. Wind farm layout optimization in complex terrain based on CFD and IGA-PSO[J]. Energy, 2024, 288: 129745.
[100] WANG Y, GUAN R H, WANG L, et al. Influence of turbulent coherent structures on the performance and wake of a wind turbine[J]. European Journal of Mechanics - B/Fluids, 2024, 105: 104-118.
[101] ZHANG D, LIU Z, LI W, et al. Numerical investigation of wind turbine wake characteristics using a coupled CFD-CSD method considering blade and tower flexibility[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2024, 244: 105625.
[102] LUND T S, WU X H, SQUIRES K D. Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations[J]. Journal of Computational Physics, 1998, 140(2): 233-258.
[103] SPALART P R, LEONARD A. Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers[C]//DURST F, LAUNDER B E, LUMLEY J L, et al. Turbulent Shear Flows 5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987: 234-252.
[104] DHAMANKAR N S, BLAISDELL G A, LYRINTZIS A S. Overview of Turbulent Inflow Boundary Conditions for Large-Eddy Simulations[J]. American Institute of Aeronautics and Astronautics Journal, 2018, 56(4): 1317-1334.
[105] 周桐. 大气边界层来流下的理想山地风场特性大涡模拟研究[D]. 北京交通大学, 2022.
[106] JARRIN N, BENHAMADOUCHE S, LAURENCE D, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat and Fluid Flow, 2006, 27(4): 585-593.
[107] POLETTO R, CRAFT T, REVELL A. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES[J]. Flow, Turbulence and Combustion, 2013, 91: 519-539.
[108] KLEIN M, SADIKI A, JANICKA J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186(2): 652-665.
[109] LEE Y T, GUTTI L K, LIM H C. Numerical Study of the Influence of the Inlet Turbulence Length Scale on the Turbulent Boundary Layer[J]. Applied Sciences, 2021, 11(11): 5177.
[110] WANG Y, VITA G, FRAGA B, et al. Influence of Turbulent Inlet Boundary Condition on Large Eddy Simulation Over a Flat Plate Boundary Layer[J]. International Journal of Computational Fluid Dynamics, 2022, 36(3): 232-259.
[111] ABBOUD A W, SMITH S T. Large eddy simulation of a coaxial jet with a synthetic turbulent inlet[J]. International Journal of Heat and Fluid Flow, 2014, 50: 240-253.
[112] CAO S Y, TAMURA T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(1): 1-19.
[113] 宋佺珉. 基于CFD耦合致动理论的风电场群汇聚效应研究[D]. 扬州大学, 2023.
修改评论