中文版 | English
题名

基于大涡模拟的风力机和风电场尾流特性研究

其他题名
STUDY ON WAKE CHARACTERISTICS OF WIND TURBINES AND WIND FARMS BASED ON LARGE EDDY SIMULATION
姓名
姓名拼音
LYU Chenghao
学号
12132409
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王建春
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-14
论文提交日期
2024-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
随着全球能源危机和气候挑战问题愈发严重,作为新型清洁能源之一的风能越来越被世界能源研究领域所关注。风电场的最理想选址地形是平坦开阔的地形,如陆上平原和海上,但随着风电行业的快速发展和人类对风能利用的需求,已经有越来越多的风电场建立在复杂地形上,且复杂地形会显著改变流动的湍流特性,从而对风力机的性能造成严重影响。因此,准确分析和评估平坦地形上和复杂地形上风力机和风电场的尾流特性,将为风电场的布局和选址提供依据,为提高风电场的功率提供指导。
本文使用大涡模拟方法,研究了平坦地形和二维丘陵地形对风力机和风电场的尾流特性的影响。本文基于 OpenFOAM 开源平台,使用了数字滤波法来生成大气边界层湍流入流,同时使用了致动盘模型模拟风力机的转子。本文发现,在二维丘陵背风侧形成的具有明显流动分离效应的回流区将显著影响湍流风场的平均速度和湍流特性,但其也会被位于二维丘陵山顶上的风力机的尾流所抑制。风力机在二维丘陵山顶处相比于平坦地形上可以通过二维丘陵地形的加速效应获得更高的发电量,但其亏损的尾流速度恢复较慢,其尾流中心也会向下发生偏移,从而对二维丘陵下游的风力机造成显著影响。二维丘陵地形可以对风电场,特别是风电场中位于二维丘陵下游的风力机造成强烈的影响,从而影响风电场的整体发电功率。
同时本文还探究了平坦地形和二维丘陵地形上方形排列、水平错列排布和垂直错列排布三种不同的布局设计方案对风电场的影响。结果发现,无论是在平坦地形上还是二维丘陵地形上,水平错列排布方式和垂直错列排布方式都可以有效提高风电场中下游风力机的功率,增加风电场的发电量。水平错列排布方式对提升平坦地形上风电场和二维丘陵山顶上风电场的性能最为有效,使用垂直错列排布方式时建议垂直错列高度差在 0.5 倍的风力机转子直径以上会对提升风电场的性能有明显的效果。
其他摘要
As the global energy crisis and climate challenge become more serious, wind energy, as one of the new clean energy, has been paid more attention by the international energy research field. Ideally, wind farms are situated in flat and open terrains, such as land plains and offshore areas. However, due to the rapid growth of the wind power industry and the escalating demand for wind energy utilization, an increasing number of wind farms are now being established in complex terrains. These complex terrains significantly alter the turbulence characteristics of airflows, which in turn has a severe impact on the performance of wind turbines. Therefore, accurately analyzing and evaluating the wake characteristics of wind turbines and wind farms in both flat and complex terrains is crucial for informing the layout and location selection of wind farms, ultimately guiding efforts to enhance their power generation capacity
Using the large eddy simulation method, this study explored the impact of flat terrain and two-dimensional hilly terrain on the wake characteristics of wind turbines and wind farms. Based on the OpenFOAM open-source platform, digital filter method were employed to generate turbulent inflow simulating atmospheric boundary layer conditions, while the actuator disk model was utilized to mimic the wind turbine rotors.Our findings reveal that the recirculation zone formed on the lee side of the two-dimensional hill, exhibiting significant flow separation effects, has a notable influence on the mean velocity and turbulence characteristics of the wind field. However, this effect is mitigated by the wake of wind turbines situated on the summits of two-dimensional hill. Compared to flat terrain, turbines positioned on the tops of two-dimensional hill can harness higher power generation due to the acceleration effect of the hilly terrain. However, the recovery of their wake velocity is slower, and the wake center also experiences a downward shift, significantly impacting the performance of wind turbines located downstream in the two-dimensional hill. This two-dimensional hilly terrain can have a substantial impact on wind farms, particularly turbines positioned downstream, thereby affecting the overall power generation capacity of the wind farm.
Furthermore, this study also examined the impact of three different layout designs on wind farms: square arrangement, horizontally staggered arrangement, and vertically staggered arrangement, on both flat and two-dimensional hilly terrains. The results indicate that both horizontally and vertically staggered arrangements can effectively enhance the power output of turbines located in the downstream areas of wind farms, thereby increasing the overall electricity generation capacity, regardless of whether the turbines are situated on flat or hilly terrains.The horizontal staggered arrangement is most effective in enhancing the performance of wind farms on flat terrains and those located on the tops of two-dimensional hilly terrains. When adopting a vertical staggered arrangement, it is recommended to maintain a vertical stagger height difference of at least 0.5 times the rotor diameter of the wind turbine, as this can significantly improve the performance of the wind farm.
 
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] LI J P, CHENG L, WAN N, et al. Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103466.
[2] YANG Y, XIA S Y, HUANG P, et al. Energy transition: Connotations, mechanisms and effects[J]. Energy Strategy Reviews, 2024, 52: 101320.
[3] HASSAN Q, VIKTOR P, J. Al-Musawi T, et al. The renewable energy role in the global energy Transformations[J]. Renewable Energy Focus, 2024, 48: 100545.
[4] LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China's carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 180: 106155.
[5] LONG Y X, CHEN Y N, XU C C, et al. The role of global installed wind energy in mitigating CO2 emission and temperature rising[J]. Journal of Cleaner Production, 2023, 423: 138778.
[6] ACKERMANN T, SöDER L. Wind energy technology and current status: a review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(4): 315-374.
[7] GIPE P, MöLLERSTRöM E. An overview of the history of wind turbine development: Part I—The early wind turbines until the 1960s[J]. Wind Engineering, 2022, 46(6): 1973-2004.
[8] GIPE P, MöLLERSTRöM E. An overview of the history of wind turbine development: Part II–The 1970s onward[J]. Wind Engineering, 2023, 47(1): 220-248.
[9] KHAN F H, PAL T, KUNDU B, et al. Wind Energy: A Practical Power Analysis Approach[C]//2021 Innovations in Energy Management and Renewable Resources(52042). 2021: 1-6.
[10] REHMAN S, ALHEMS L M, ALAM M M, et al. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost[J]. Ocean Engineering, 2023, 267: 113192.
[11] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(3).
[12] 全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(1).
[13] Global Wind Energy Council. Global Wind Report 2023[R]. Brussels: Global Wind Energy Council, 2023.
[14] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12(5): 431-444.
[15] 胡磊. 大型海上风力发电系统建模与仿真研究[D]. 青岛科技大学, 2023.
[16] PORTé-AGEL F, BASTANKHAH M, SHAMSODDIN S. Wind-Turbine and Wind-Farm Flows: A Review[J]. Boundary-Layer Meteorology, 2020, 174: 1-59.
[17] ZHANG Y, LI Z, LIU X, et al. Turbulence in waked wind turbine wakes: Similarity and empirical formulae[J]. Renewable Energy, 2023, 209: 27-41.
[18] NEUNABER I, HöLLING M, OBLIGADO M. Leading effect for wind turbine wake models[J]. Renewable Energy, 2024, 223: 119935.
[19] AMIRI M M, SHADMAN M, ESTEFEN S F. A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes[J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114279.
[20] HE R Y, SUN H Y, GAO X X, et al. Wind tunnel tests for wind turbines: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2022, 166: 112675.
[21] OZBAY A, TIAN W, YANG Z, et al. An Experimental Investigation on the Wake Interference of Multiple Wind Turbines in Atmospheric Boundary Layer Winds[C]//30th American Institute of Aeronautics and Astronautics Applied Aerodynamics Conference. New Orleans, 2012.
[22] TIAN W, OZBAY A, WANG X D, et al. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds[J]. Acta Mechanica Sinica, 2017, 33: 742-753.
[23] 韩玉霞, 汪建文, 孙博, 等. 湍流强度对水平轴风力机尾迹速度恢复影响机理的实验研究[J]. 太阳能学报, 2019, 40: 649-655.
[24] HYVäRINEN A, SEGALINI A. Effects From Complex Terrain on Wind-Turbine Performance[J]. Journal of Energy Resources Technology, 2017, 139(5): 051205.
[25] HYVäRINEN A, SEGALINI A. Qualitative analysis of wind-turbine wakes over hilly terrain[J]. Journal of Physics: Conference Series, 2017, 854(1): 012023.
[26] HYVäRINEN A, LACAGNINA G, SEGALINI A. A wind-tunnel study of the wake development behind wind turbines over sinusoidal hills[J]. Wind Energy, 2018, 21(8): 605-617.
[27] DAR A S, PORTé-AGEL F. Wind turbine wakes on escarpments: A wind-tunnel study[J]. Renewable Energy, 2022, 181: 1258-1275.
[28] NYGAARD N G, HANSEN S D. Wake effects between two neighbouring wind farms[J]. Journal of Physics: Conference Series, 2016, 753(3): 032020.
[29] HANSEN K, LARSEN G, MENKE R, et al. Wind turbine wake measurement in complex terrain[J]. Journal of Physics: Conference Series, 2016, 753(3): 032013.
[30] THIELICKE W, HÜBERT W, MÜLLER U, et al. Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer[J]. Atmospheric Measurement Techniques, 2021, 14(2): 1303-1318.
[31] LI Z N, PU O, PAN Y Y, et al. A study on measuring wind turbine wake based on UAV anemometry system[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102537.
[32] GAO X X, CHEN Y, XU S N, et al. Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements[J]. Applied Energy, 2022, 307: 118182.
[33] CAÑADILLAS B, BECKENBAUER M, TRUJILLO J J, et al. Offshore wind farm cluster wakes as observed by long-range-scanning wind lidar measurements and mesoscale modeling[J]. Wind Energy Science, 2022, 7(3): 1241-1262.
[34] GAO X X, LI Y, ZHAO F, et al. Comparisons of the accuracy of different wake models in wind farm layout optimization[J]. Energy Exploration & Exploitation, 2020, 38(5): 1725-1741.
[35] MITTAL P, MITRA K. In search of flexible and robust wind farm layouts considering wind state uncertainty[J]. Journal of Cleaner Production, 2020, 248: 119195.
[36] YANG K. Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms[J]. Energies, 2020, 13: 739.
[37] SUN H Y, QIU C Y, LU L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied Energy, 2020, 280: 115880.
[38] 陈默, 张璇, 郑文涛, 等. 风电场齐位排列方式下尾流干涉效应研究[J]. 科技创新与应用, 2023, 13: 77-80.
[39] 穆延非. 基于尾流模型的海上风电场群布局优化研究[D]. 浙江大学, 2023.
[40] JENSEN N. A note on wind generator interaction[M]. Risø National Laboratory, 1983.
[41] KATIC I, HØJSTRUP J, JENSEN N. A Simple Model for Cluster Efficiency[C]//PALZ W, SESTO E. EWEC’86. Proceedings. Vol. 1. A. Raguzzi, 1987: 407-410.
[42] 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京航空航天大学, 2016.
[43] TIAN L L, ZHU W J, SHEN W Z, et al. Prediction of multi-wake problems using an improved Jensen wake model[J]. Renewable Energy, 2017, 102: 457-469.
[44] ANNONI J, FLEMING P, SCHOLBROCK A, et al. Analysis of control-oriented wake modeling tools using lidar field results[J]. Wind Energy Science, 2018, 3(2): 819-831.
[45] 郑建才, 万德成, 王尼娜, 等. 基于尾流叠加模型的风电场数值模拟[C]//第三十一届全国水动力学研讨会论文集 (下册). 海洋出版社, 2020: 833-847.
[46] KAYA B, OğUZ E. Investigation of layout optimization for offshore wind farms and a case study for a region in Turkey[J]. Ocean Engineering, 2022, 266: 112807.
[47] 易文武. 湍流风场及风力机尾流流场数值模拟研究[D]. 汕头大学, 2023.
[48] PUJARI K N, MIRIYALA S S, MITRA K. Jensen-ANN: A Machine Learning adaptation of Jensen Wake Model[J]. International Federation of Automatic Control-PapersOnLine, 2023, 56(2): 4651-4656.
[49] LIANG X L, FU S F, CAI F L, et al. Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model[J]. Renewable Energy, 2023, 203: 373-381.
[50] NYGAARD N G, STEEN S T, POULSEN L, et al. Modelling cluster wakes and wind farm blockage[J]. Journal of Physics: Conference Series, 2020, 1618(6): 062072.
[51] BASTANKHAH M, PORTé-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123.
[52] KEANE A, AGUIRRE P E O, FERCHLAND H, et al. An analytical model for a full wind turbine wake[J]. Journal of Physics: Conference Series, 2016, 753(3): 032039.
[53] SCHREIBER J, BALBAA A, BOTTASSO C L. Brief communication: A double-Gaussian wake model[J]. Wind Energy Science, 2020, 5(1): 237-244.
[54] SOESANTO Q M B, YOSHINAGA T, IIDA A. Anisotropic double-Gaussian analytical wake model for an isolated horizontal-axis wind turbine[J]. Energy Science & Engineering, 2022, 10(7): 2123-2145.
[55] WANG D, FENG D C, PENG H W, et al. Implications of steep hilly terrain for modeling wind-turbine wakes[J]. Journal of Cleaner Production, 2023, 398: 136614.
[56] TIAN L L, XIAO P C, SONG Y L, et al. An advanced three-dimensional analytical model for wind turbine near and far wake predictions[J]. Renewable Energy, 2024, 223: 120035.
[57] DUCOIN A, SHADLOO M, ROY S. Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades[J]. Renewable Energy, 2017, 105: 374-385.
[58] NAKHCHI M, NAUNG S W, RAHMATI M. High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers[J]. Energy, 2021, 225: 120261.
[59] NAKHCHI M, NAUNG S W, DALA L, et al. Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations[J]. Renewable Energy, 2022, 191: 669-684.
[60] VOGEL C R, WILLDEN R H J. Investigation of wind turbine wake superposition models using Reynolds-averaged Navier-Stokes simulations[J]. Wind Energy, 2020, 23(3): 593-607.
[61] HORNSHøJ-MøLLER S D, NIELSEN P D, FOROOGHI P, et al. Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes[J]. Renewable Energy, 2021, 164: 1550-1558.
[62] 张敬华. 1.3MW风力机叶片气动性能及尾流特性研究[D]. 昆明理工大学, 2023.
[63] GE M, ZHANG S, MENG H, et al. Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation[J]. Renewable Energy, 2020, 157: 941-950.
[64] 汪鼎, VIKRANT G, 冯大川, 等. 丘陵地形对风机尾流的影响[C]//第十二届全国流体力学学术会议摘要集. 2022: 111.
[65] DE JESúS MONJARDíN-GáMEZ J, CAMPOS-AMEZCUA R, GóMEZ-MARTíNEZ R, et al. Large eddy simulation and experimental study of the turbulence on wind turbines[J]. Energy, 2023, 273: 127234.
[66] SØRENSEN N, JOHANSEN J. UpWind: aerodynamics and aero-elasticity Rotor aerodynamics in atmospheric shear flow[C]//Proceedings of The European Wind Energy Conference & Exhibition, EWEC 2007. Denmark: Department of Civil Engineering, Aalborg University, 2007.
[67] SIDDIQUI M S, RASHEED A, TABIB M, et al. Numerical Analysis of NREL 5MW Wind Turbine: A Study Towards a Better Understanding of Wake Characteristic and Torque Generation Mechanism[J]. Journal of Physics: Conference Series, 2016, 753(3): 032059.
[68] de Oliveira M, PURACA R C, CARMO B S. A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale[J]. Energy, 2023, 283: 128394.
[69] 李德顺, 臧志昭, 黄涛, 等. 中国B类风场中水平轴风力机尾流特性研究[J]. 液压气动与密封, 2021, 41: 30-36.
[70] ZHANG Z H, YANG H R, ZHAO Y S, et al. A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect[J]. Energy, 2024, 287: 129619.
[71] DRAPER M, GUGGERI A, MENDINA M, et al. A Large Eddy Simulation-Actuator Line Model framework to simulate a scaled wind energy facility and its application[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 146-159.
[72] STANLY R, MARTíNEZ-TOSSAS L A, FRANKEL S H, et al. Large-Eddy Simulation ofa wind turbine using a Filtered Actuator Line Model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 222: 104868.
[73] MICALLEF D, FERREIRA C, HERRáEZ I, et al. Assessment of actuator disc models in predicting radial flow and wake expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207: 104396.
[74] MIRSANE R S, RAHIMI M, TORABI F. Development of a novel analytical wake model behind HAWT by considering the nacelle effect[J]. Energy Conversion and Management, 2024, 301:118031.
[75] 周瑞涛. 基于致动面模型的风电场尾流特性模拟研究[D]. 中国科学院大学 (中国科学院工程热物理研究所), 2017.
[76] KüPPERS J P, REINICKE T. Numerical modelling of vertical axis turbines using the actuator surface model[J]. Journal of Fluids and Structures, 2021, 104: 103318.
[77] 王印. 青藏高原地区冬季来流对大型风力机功率及尾流的影响[D]. 兰州理工大学, 2020.
[78] ONEL H C, TUNCER I H. Investigation of wind turbine wakes and wake recovery in a tandem configuration using actuator line model with LES[J]. Computers & Fluids, 2021, 220: 104872.
[79] LIU S Y, LI Q S, LU B, et al. Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions[J]. Renewable Energy, 2024, 224: 120136.
[80] CAO J F, QIN Z J, GAO X, et al. Study of aerodynamic performance and wake effects for offshore wind farm cluster[J]. Ocean Engineering, 2023, 280: 114639.
[81] 张航, 史兆培, 束垠, 等. 平坦地形相邻风电场尾流影响研究[J]. 可再生能源, 2023, 41: 766-772.
[82] MAAS O, RAASCH S. Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight[J]. Wind Energy Science, 2022, 7(2): 715-739.
[83] REVAZ T, PORTé-AGEL F. Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models[J]. Energies, 2021, 14(13): 3745.
[84] LIU L Q, STEVENS R J A M. Effects of Two-Dimensional Steep Hills on the Performance of Wind Turbines and Wind Farms[J]. Boundary-Layer Meteorology, 2020, 176: 251-269.
[85] GAERTNER E, RINKER J, SETHURAMAN L, et al. IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine[EB/OL]. 2020. https://www.osti.gov/biblio/1603478.
[86] PORTé-AGEL F, LU H, WU Y T. A large-eddy simulation framework for wind energy applications[C]//The Fifth International Symposium on Computational Wind Engineering (CWE2010). North Carolina, 2010.
[87] MEHTA D, van Zuijlen A, KOREN B, et al. Large Eddy Simulation of wind farm aerodynamics: A review[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 1-17.
[88] SMAGORINSKY J. General Circulation Experiments with the Primitive Equations: I. the Basic Experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[89] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid‐scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765.
[90] NICOUD F, DUCROS F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor[J]. Flow, Turbulence and Combustion, 1999, 62: 183-200.
[91] YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of Fluids, 1986, 29(7): 2152-2164.
[92] BERNADES M, JOFRE L, CAPUANO F. A priori analysis for high-fidelity large-eddy simulation of wall-bounded transcritical turbulent flows[J]. The Journal of Supercritical Fluids, 2024, 207: 106191.
[93] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]//Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences. New York, 1966.
[94] GERMANO M. Turbulence: the filtering approach[J]. Journal of Fluid Mechanics, 1992, 238: 325–336.
[95] LILLY D K. A proposed modification of the Germano subgrid‐scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635.
[96] BETZ A. Das Maximum der Theoretisch Möglichen Ausnützung des Windes durch Windmotoren[J]. Zeitschrift für das Gesamte Turbinenwesen, 1920, 26: 307-309.
[97] HOU H B, SHI W C, XU Y X, et al. Actuator disk theory and blade element momentum theory for the force-driven turbine[J]. Ocean Engineering, 2023, 285: 115488.
[98] NFAOUI H. 2.04 - Wind Energy Potential[M]//SAYIGH A. Comprehensive Renewable Energy. Oxford: Elsevier, 2012: 73-92.
[99] HU W C, YANG Q S, YUAN Z T, et al. Wind farm layout optimization in complex terrain based on CFD and IGA-PSO[J]. Energy, 2024, 288: 129745.
[100] WANG Y, GUAN R H, WANG L, et al. Influence of turbulent coherent structures on the performance and wake of a wind turbine[J]. European Journal of Mechanics - B/Fluids, 2024, 105: 104-118.
[101] ZHANG D, LIU Z, LI W, et al. Numerical investigation of wind turbine wake characteristics using a coupled CFD-CSD method considering blade and tower flexibility[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2024, 244: 105625.
[102] LUND T S, WU X H, SQUIRES K D. Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations[J]. Journal of Computational Physics, 1998, 140(2): 233-258.
[103] SPALART P R, LEONARD A. Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers[C]//DURST F, LAUNDER B E, LUMLEY J L, et al. Turbulent Shear Flows 5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987: 234-252.
[104] DHAMANKAR N S, BLAISDELL G A, LYRINTZIS A S. Overview of Turbulent Inflow Boundary Conditions for Large-Eddy Simulations[J]. American Institute of Aeronautics and Astronautics Journal, 2018, 56(4): 1317-1334.
[105] 周桐. 大气边界层来流下的理想山地风场特性大涡模拟研究[D]. 北京交通大学, 2022.
[106] JARRIN N, BENHAMADOUCHE S, LAURENCE D, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat and Fluid Flow, 2006, 27(4): 585-593.
[107] POLETTO R, CRAFT T, REVELL A. A New Divergence Free Synthetic Eddy Method for the Reproduction of Inlet Flow Conditions for LES[J]. Flow, Turbulence and Combustion, 2013, 91: 519-539.
[108] KLEIN M, SADIKI A, JANICKA J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186(2): 652-665.
[109] LEE Y T, GUTTI L K, LIM H C. Numerical Study of the Influence of the Inlet Turbulence Length Scale on the Turbulent Boundary Layer[J]. Applied Sciences, 2021, 11(11): 5177.
[110] WANG Y, VITA G, FRAGA B, et al. Influence of Turbulent Inlet Boundary Condition on Large Eddy Simulation Over a Flat Plate Boundary Layer[J]. International Journal of Computational Fluid Dynamics, 2022, 36(3): 232-259.
[111] ABBOUD A W, SMITH S T. Large eddy simulation of a coaxial jet with a synthetic turbulent inlet[J]. International Journal of Heat and Fluid Flow, 2014, 50: 240-253.
[112] CAO S Y, TAMURA T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(1): 1-19.
[113] 宋佺珉. 基于CFD耦合致动理论的风电场群汇聚效应研究[D]. 扬州大学, 2023.

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/766170
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
吕成豪. 基于大涡模拟的风力机和风电场尾流特性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132409-吕成豪-力学与航空航天(24701KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吕成豪]的文章
百度学术
百度学术中相似的文章
[吕成豪]的文章
必应学术
必应学术中相似的文章
[吕成豪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。